495
Views
47
CrossRef citations to date
0
Altmetric
Original Article

Compressive force stimulates the gene expression of IL-17s and their receptors in MC3T3-E1 cells

, , , , , , , , & show all
Pages 359-369 | Received 30 Jun 2009, Accepted 02 Nov 2009, Published online: 24 May 2010

REFERENCES

  • Krishnan, V., and Davidovitch, Z. (2006). Cellular, molecular, and tissue-level reactions to orthodontic force. Am. J. Orthod. Dentofacial Orthop. 129:469.e1–469.e32.
  • Lee, K.J., Park, Y.C., Yu, H.S., Choi, S.H., and Yoo, Y.J. (2004). Effects of continuous and interrupted orthodontic force on interleukin-1β and prostaglandin E2 production in gingival crevicular fluid. Am. J. Orthod. Dentofacial Orthop. 125:168–177.
  • Tuncer, B.B., Özmerlç, N., Tuncer, C., Teoman, I., Çakilci, B., Yücel, A., Alpar, R., and Baros, K. (2004). Levels of interleukin-8 during tooth movement. Angle Orthod. 75:631–636.
  • Jäger, A., Zhang, D., Kawarizadeh, A., Tolba, R., Braumann, B., Lossdörfer, S., and Götz, W. (2005). Soluble cytokine receptor treatment in experimental orthodontic tooth movement in the rat. Eur. J. Orthod. 27:1–11.
  • Basaran, G., Ozer, T., Kaya, F.A., and Hamamci, O. (2006). Interleukins 2, 6, and 8 levels in human gingival sulcus during orthodontic treatment. Am. J. Orthod. Dentofacial. Orthop. 130:7.e1–7.e6.
  • Bletsa, A., Berggreen, E., and Brudvik, P. (2006). Interleukin-1α and tumor necrosis factor-α expression during the early phases of orthodontic tooth movement in rats. Eur. J. Oral Sci. 114:423–429.
  • Takahashi, N., Udagawa, N., and Suda, T. (1999). A new member of tumor necrosis factor ligand family, ODF/OPGL/TRANCE/RANKL, regulates osteoclast differentiation and function. Biochem. Biophys. Res. Commun. 256:449–455.
  • Rouvier, E., Luciani, M.F., Mattei, M.G., Denizot, F., and Golstein, P. (1993). CTLA-8, cloned from an activated T cell, bearing AU-rich messenger RNA instability sequences, and homologous to a herpesvirus saimiri gene. J. Immunol. 150:5445–5456.
  • Yao, Z., Timour, M., Painter, S., Fanslow, W., and Spriggs, M. (1996). Complete nucleotide sequence of the mouse CTLA8 gene. Gene 168:223–225.
  • Kramer, J.M., and Gaffen, S.L. (2007). Interleukin-17: A new paradigm in inflammation, autoimmunity, and therapy. J. Periodontol. 78:1083–1093.
  • Aggarwal, S., and Gurney, A.L. (2002). IL-17: Prototype member of an emerging cytokine family. J. Leukoc. Biol. 71:1–8.
  • Moseley, T.A., Haudenschild, D.R., Rose, L., and Reddi, A.H. (2003). Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev. 14:155–174.
  • Yao, Z., Fanslow, W., Seldin, M.F., Rousseau, A.M., Painter, S.L., Comeau, M.R., Cohen, J.I., and Spriggs, M.K. (1995). Herpesvirus Saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821.
  • Yao, Z., Spriggs, M.K., Derry, J.M., Strockbine, L., Park, L.S., VandenBos, T., Zappone, J.D., Painter, S.L., and Armitage, R.J. (1997). Molecular characterization of the human interleukin (IL)-17 receptor. Cytokine 9:794–800.
  • Chen, L., Wei, X.Q., Evans, B., Jiang, W., and Aeschlimann, D. (2008). IL-23 promotes osteoclast formation by up-regulation of receptor activator of NF-kappaB (RANK) expression in myeloid precursor cells. Eur. J. Immunol. 38:2845–2854.
  • Chan, F.K. (2007). Three is better than one: Pre-ligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 37:101–107.
  • Latz, E., Verma, A., Visintin, A., Gong, M., Sirois, C.M., Klein, D.C., Monks, B.G., McKnight, C.J., Lamphier, M.S., Duprex, W.P., Espevik, T., and Golenbock, D.T. (2007). Ligand-induced conformational changes allosterically activate Toll-like receptor 9. Nat. Immunol. 8:772–779.
  • Kuestner, R., Taft, D., Haran, A., Brandt, C., Brender, T., Lum, K., Harder, B., Okada, S., Ostrander, C.D., Kleindler, J.L., Aujula, S.J., Reardon, B., Moore, M., Shea, P., Schreckhise, R., Bukowski, T.R., Presnell, S., Guerra-Lewis, P., Parrish-Novak, J., Ellsworth, J.L., Jaspers, S., Lewis, K.E., Appleby, M., Kolls, J.K., Rixon, M., West, J.W., Gaz, Z., and Levin, S.D. (2007). Identification of the IL-17 receptor related molecule, IL-17RC, as the receptor for IL-17F. J. Immunol. 179:5462–5473.
  • Lee, J., Ho, W.H., Maruoka, M., Corpuz, R.T., Baldwin, D.T., Foster, J.S., Goddard, A.D., Yansura, D.G., Vandren, R.L., Wood, W.I., and Gurney, A.L. (2001). IL-17E, a novel proinflammatory ligand for the IL-17 receptor homolog IL-17Rh1. J. Biol. Chem. 276:1660–1664.
  • Venkatachalam, K., Mummidi, S., Cortez, D.M., Prabhu, S.D., Valente, A.J., and Chandrasekar, B. (2008). Resveratrol inhibits high glucose-induced PI3K/Akt/ERK-dependent interleukin-17 expression in primary mouse cardiac fibroblasts. Am. J. Physiol. Heart Circ. Physiol. 294:H2078–H2087.
  • Bettelli, E., Oukka, M., and Kuchroo, V.K. (2007). T(H)-17 cells in the circle of immunity and autoimmunity. Nat. Immunol. 8:345–350.
  • Mori, H., Nishida, K., Ozaki, T., Inoue, H., and Nakanishi, T. (2008). Isolation of a mRNA preferentially expressed in synoviocytes from rheumatoid arthritis that is identical with lumican, which encodes a collagen binding, extracellular matrix protein. J. Hard Tissue Biol. 17:125–130.
  • Van Bezooijen, R., Farih-Sips, H.C., Papapoulos, S.E., and Löwik, C.W. (1999). Interleukin-17: A new bone acting cytokine in vitro. J. Bone Miner. Res. 9:1513–1521.
  • Bezerra, M.C., Carvalho, J.F., Prokopowitch, A.S., and Pereira, R.M. (2005). RANK, RANKL and osteoprotegerin in arthritic bone loss. Braz. J. Med. Biol. Res. 38:161–170.
  • Suda, T., Takahashi, N., Udagawa, N., Jimi, E., Gillespie, M.T., and Martin, J. (1999). Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr. Rev. 20:345–357.
  • Koyama, Y., Mitsui, N., Suzuki, N., Yanagisawa, M., Sanuki, R., Isokawa, K., Shimizu, N., and Maeno, M. (2008). Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch. Oral Biol. 53:488–496.
  • Takahashi, K., Azuma, T., Motohira, H., Kinane, D.F., and Kitetsu, S. (2005). The potential role of interleukin-17 in the immunopathology of periodontal disease. J. Clin. Periodontol. 32:369–374.
  • Botero, J.E., Contreras, A., and Parra, B. (2008). Profiling of inflammatory cytokines produced by gingival fibroblasts after human cytomegalovirus infection. Oral Microbiol. Immunol. 23:291–298.
  • Sudo, H., Kodama, H., Amagai, Y., Yamamoto, S., and Kasai, S. (1983). In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J. Cell Biol. 96:191–198.
  • Fujita, T., Izumo, N., Fukuyama, R., Meguro, T., Nakamura, H., Kohno, T., and Koida, M. (2001). Phosphate provides an extracellular signal that drives nuclear export of Runx2/Cbfa1 in bone cells. Biochem. Biophys. Res. Commun. 280:348–352.
  • Gilbert, L., He, X., Farmer, P., Rubin, J., Drissi, H., van Wijnen, A.J., Lian, J.B., Stein, G.S., and Nanes, M.S. (2002). Expression of the osteoblast differentiation factor RUNX2 (Cbfa1/AML3/Pebp2αA) is inhibited by tumor necrosis factor-α. J. Biol. Chem. 277:2695–2701.
  • Williams, D.C., Boder, G.B., Toomey, R.E., Paul, D.C., Hillman, Jr., C.C., King, K.L., Van Flank, R.M., and Johnston, Jr., C.C. (1980). Mineralization and metabolic response in serially passaged adult rat bone cells. Calcif. Tissue Int. 30:233–246.
  • Mitsui, N., Suzuki, N., Maeno, M., Mayahara, K., Yanagisawa, M., Otsuka, K., and Shimizu, N. (2005). Optimal compressive force induces bone formation via increasing bone sialoprotein and prostaglandin E2 production appropriately. Life Sci. 77:3168–3182.
  • Mitsui, N., Suzuki, N., Maeno, M., Yanagisawa, M., Koyama, Y., Otsuka, K., and Shimizu, N. (2006). Optimal compressive force induces bone formation via increasing bone morphogenetic proteins production and decreasing their antagonists production by Saos-2 cells. Life Sci. 78:2697–2706.
  • Sanuki, R., Mitsui, N., Suzuki, N., Koyama, Y., Yamaguchi, A., Isokawa, K., Shimizu, N., and Maeno, M. (2007). Effect of compressive force on the production of prostaglandin E2 and its receptors in osteoblastic Saos-2 cells. Connect. Tiss. Res. 48:246–253.
  • Kanai, K., Nohara, H., and Hanada, K. (1992). Initial effects of continuously applied compressive stress to human periodontal ligament fibroblasts. J. Jpn. Orthod. Soc. 51:153–163.
  • Watanabe, K., Saito, I., and Hanada, K. (1998). Effects of conditioned medium of continuously compressed human periodontal ligament fibroblasts on MC3T3-E1. J. Jpn. Orthod. Soc. 57:173–179.
  • Kanzaki, H., Chiba, M., Shimizu, Y., and Mitani, H. (2002). Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor κB ligand up-regulation via prostaglandin E2 synthesis. J. Bone Miner. Res. 17:210–220.
  • Fujisaki, K., Tanabe, N., Suzuki, N., Kawato, T., Takeichi, O., Tsuzukibashi, O., Makimura, M., Ito, K., and Maeno, M. (2007). Receptor activator of NF-кB ligand induces the expression of carbonic anhydrase II, cathepsin K, and matrix metalloproteinase-9 in osteoclast precursor RAW264.7 cells. Life. Sci. 80:1311–1318.
  • Denlinger, L.C., Fisette, P.L., Garis, K.A., Kwon, G., Vazquez-Torres, A., Simon, A.D., Nguyen, B., Proctor, R.A., Bertics, P.J., and Corbett, J.A. (1996). Regulation of inducible nitric oxide synthase expression by macrophage purinoreceptors and calcium. J. Biol. Chem. 271:337–342.
  • Kokubu, T., Haudenschild, D.R., Moseley, T.A., Rose, L., and Reddi, A.H. (2008). Immunolocalization of IL-17A, IL‐17B, and their receptors in chondrocytes during fracture healing. J. Histochem. Cytochem. 56:89–95.
  • Saban, M.R., Simpson, C., Davis, C., Wallis, G., Knowlton, N., Frank, M.B., Centola, M., Gallucci, R.M., and Saban, R. (2007). Discriminators of mouse bladder response to intravesical Bacillus Calmette-Guerin (BCG). BMC Immunol. 8:6.
  • Zaph, C., Du, Y., Saenz, S.A., Nair, M.G., Perrigoue, J.G., Taylor, B.C., Troy, A.E., Kobuley, D.E., Kastelein, R.A., Cua, D.J., Yu, Y., and Artis, D. (2008). Commensal-dependent expression of IL-25 regulates the IL-23-IL-17 axis in the intestine. J. Exp. Med. 205:2191–2198.
  • Sanuki, R., Shionome, C., Kuwabara, A., Mitsui, N., Koyama, Y., Suzuki, N., Zhang, F., Shimizu, N., and Maeno, M. (2010). Compressive force induces osteoclast differentiation via prostaglandin E2 production in MC3T3-E1 cells. Connect. Tissue Res. 51:150–158.
  • Tanabe, N., Maeno, M., Suzuki, N., Fujisaki K., Tanaka, H., Ogiso, B., and Ito, K. (2005). IL-1α stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sci. 77:615–620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.