255
Views
50
CrossRef citations to date
0
Altmetric
Research Article

Parallel regulation of extracellular ATP and inorganic pyrophosphate: Roles of growth factors, transduction modulators, and ANK

, , , , &
Pages 139-146 | Received 08 Feb 2010, Accepted 05 May 2010, Published online: 06 Jul 2010

REFERENCES

  • Terkeltaub, R. (2001). Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Cell. Physiol. 281:C1–C11.
  • Rosenthal, A., McCarty, B., Cheung, H., and Ryan, L. (1993). A comparison of the effect of transforming growth factor b1 on pyrophosphate elaboration from various articular tissues. Arthritis Rheum 36:539–542.
  • Ryan, L., Cheung, H., and McCarty, D. (1981). Release of pyrophosphate by normal mammalian articular hyaline and fibrocartilage in organ culture. Arthritis Rheum 124: 1522–1527.
  • Russell, R. (1976). Metabolism of inorganic pyrophosphate. Arthritis Rheum 19(Suppl):465–478.
  • Felix, R., and Fleisch, H. (1977). The effect of pyrophosphate and diphosphonates on calcium transport in red cells. Experientia 332:1003–1005.
  • Ho, A., Johnson, M., and Kingsley, D. (2000). Role of the mouse ank gene in tissue calcification and arthritis. Science 289:265–270.
  • Rosenthal, A., and Ryan, L. (1993). Probenecid inhibits transforming growth factor b1 induced pyrophosphate elaboration by chondrocytes. J Rheumatol 21:896–900.
  • Ryan, L., Wortmann, R., Karas, B., and McCarty, D. (1984). Cartilage nucleoside triphosphate (NTP) pyrophosphohydrolase. I. Identification as an ecto-enzyme. Arthritis Rheum 27:404–409.
  • Ryan, L., Wortmann, R., Karas, B., and McCarty, D. (1985). Cartilage nucleoside triphosphate pyrophosphohydrolase. II. Role in extracellular pyrophosphate generation and nucleotide metabolism. Arthritis Rheum 28:413–418.
  • Johnson, K., Vainankar, S., Chen, Y., Moffa, A., Goldring, M.B., Sano, K., Jin-Hua, P., Sali, A., Goding, J., and Terkeltaub, R. (1999). Differential mechanisms of inorganic pyrophosphate production by plasma cell membrane glycoprotein-1 and B10 in chondrocytes. Arthritis Rheum 42:1986–1997.
  • Rutsch, F., Ruf, N., Vaingankar, S., Toliat, M., Suk, A., Hohne, W., Schauer, G., Lehmann, M., Roscioli, T., Schnabel, D., Epplen, J.T., Knisely, A., Superti-Furga, A., McGill, J., Filippone, M., Sinaiko, A.R., Vallance, H., Hinrichs, B., Smith, W., Ferre, M., Terkeltaub, R., and Nürnberg, P. (2003). Mutations in ENPP1 are associated with “idiopathic” infantile arterial calcification. Nat. Genet. 34:379–381.
  • Hessle, L., Johnson, K., Anderson, C., Nariwawa, S., Sali, A., Goding, J., Terkeltaub, R., and Millan, J.L. (2002). Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralizatoin. PNAS 99:9445–9449.
  • Okawa, A., Nakamura, I., Goto, S., Moriya, H., Nakamura, Y., and Ikegawa, S. (1998). Mutation in Npps in a mouse model of ossification of the posterior longitudianl ligament of the spine. Nat. Genet. 19:271–273.
  • Rachow, J., and Ryan, L. (1985). Adenosine triphosphate pyrophosphohydrolase and neutral inorganic pyrophosphatase in pathologic joint fluids: Elevated pyrophosphohydroalse in calcium pyrophosphate dihydrate deposition disease. Arthritis Rheum 28:1283–1288.
  • Rachow, J., Ryan, L., McCarty, D., and Halverson, P. (1988). Synovial fluid inorganic pyrophosphate concentration and nucelotide pyrophosphohydrolase activity in basic calcium phsophate deposition arthropathy and Milwaukee Shoulder Syndrome Arthritis Rheum 31:408–413.
  • Hirose, J., Ryan, L., and Masuda, I. (2002). Up-regulated expression of cartilage intermediate-layer protein and ANK in patients with calcium pyrophosphate dihydrate crystal deposition disease. Arthritis Rheum 46:3218–3229.
  • Derfus, B., Rachow, J., Mandel, N., Boskey, A., Buday, M., Kushnaryov, V., and Ryan, L. (1992). Articular cartilage vesicles generate calcium pyrophosphate dihydrate-like crystals in vitro. Arthritis Rheum 35:231–240.
  • Ryan, L., Kurup, I., Derfus, B., and Kushnaryov, V. (1992). ATP-induced chondrocalcinosis. Arthritis Rheum 35:1520–1524.
  • Rosenthal, A., Gohr, C., Uzuki, M., and Masuda, I. (2007). Osteopontin promotes pathologic mineralization in articular cartilage. Matrix Biol. 26:96–105.
  • Rosenthal, A., Mattson, E., Gohr, C., and Hirschmugl, C. (2008). Characterization of articular calcium-containing crystals by synchrotron FTIR. Osteoarthr. Cartil. 16:1395–1402.
  • Ryan, L., Rachow, J., and McCarty, D. (1991). Synovial fluid ATP: A potential substrate for the production of inorganic pyrophosphate. J. Rheumatol. 18:716–720.
  • Dubyak, G. (2009). Both sides now: Multiple interactions of ATP with pannexin-1 hemichannels. Am. J. Cell Physiol. Cell Physiol. 296:235–241.
  • Graff, R., Lazarowksi, E., Banes, A., and Lee, G. (2000). ATP release by mechanically loaded porcine chondrons in pellet culture. Arthritis Rheum 43:1571–1579.
  • Millward-Sadler, S., Wright, M., Flatman, P., and Salter, D. (2004). ATP in the mechanotransduction pathway of normal human chondrocytes. Biorheology 41:567–575.
  • Cheung, H., and Ryan, L. (1981). A method of determining DNA and chondrocyte content of articular cartilage. Anal. Biochem. 116:93–97.
  • Rosenthal, A., Cheung, H., and Ryan, L. (1991). Transforming growth factor beta 1 stimulates inorganic pyrophosphate elaboration by porcine cartilage. Arthritis Rheum 34:904–911.
  • Olmez, U., Ryan, L., Kurup, I., and Rosenthal, A. (1994). Insulin-like growth factor-1 suppresses pyrophosphate elaboration by transforming growth factor beta1 stimulated chondrocytes and cartilage. Osteoarthr. Cartil. 2:149–154.
  • Ryan, L.M., Kurup, I.V., and Cheung, H.S. (1999). Transduction mechanisms of porcine chondrocyte inorganic pyrophosphate elaboration. Arthritis Rheum 42:555–560.
  • Medhora, M., Daniels, J., Mundey, K., Fisslthaler, B., Busse, R., Jacobs, E., and Harder, D. (2003). Epoxygenase-driven angiogenesis in human lung microvascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol. 284:215–224.
  • Rosenthal, A., Rosier, T., and Ryan, L. (1993). TGF beta levels in synovial fluid. Arthritis Rheum 36(Suppl.):S161.
  • Prosdocimo, D., Douglas, D., Romani, A., O’Neill, W., and Dubyak, G. (2009). Autocrine ATP release coupled to extracellular pyrophosphate accumulation in vascular smooth muscle cells. Am. J. Physiol. Cell Physiol. 296: C828–C839.
  • Sawada, K., Echigo, N., Juge, N., Miyaji, T., Otsuka, M., Omote, H., Yamamoto, A., and Moriyama, Y. (2008). Identification of a vesicular nucleotide transporter. PNAS 105:5683–5686.
  • Cotrina, M., Lin, J., Alves-Rodrigues, A., Liu, S., Li, J., Azmi-Ghadimi, H., Kang, J., Naus, C.C., and Nedergaard, M. (1998). Connexins regulate calcium signaling by controlling ATP release. PNAS 95, 15735–15740.
  • Knight, M., McGlashan, S., Garcia, M., Jensen, C., and Poole, C. (2009). Articular chondrocytes express connexin 43 hemichannels and P2 receptors—a putative mechanoreceptor complex involving the primary cilium? J. Anat. 214: 275–283.
  • Schwiebert, E., Egan, M., Hwang, T., Fulmer, S., Allen, S., Cutting, G., and Guggino, WB. (1995). CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 81:1063–1073.
  • Sabirov, R., and Okada, Y. (2009). The maxi-anion channel: A classical channel playing novel roles through an unidentified molecular entity. J. Physiol. Sci. 59:3–21.
  • Picher, M., Graff, R., and Lee, G. (2003). Extracellular nucleotide metabolism and signaling in the pathophysiology of articular cartilage. Arthritis Rheum 48:2722–2736.
  • Hamilton, S., and McMahon, S. (2000). ATP as a peripheral mediator of pain. J. Auton. Nerv. Syst. 81:187–194.
  • Donohue, H., Guiolak, F., Vander Molen, M., McLeod, K., Rubin, C., Grande, D., and Brink, P. (1995). Chondrocytes isolated from mature articular cartilage retain the capacity to form functional gap junctions. J. Bone Miner. Res. 10, 1359–1364.
  • Schwab, W., Hofer, A., and Kasper, M. (1998). Immunohistochemical distribution of connexin-43 in the cartilage of rats and mice. Histochem. J. 30, 413–419.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.