196
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Fine Structure of Extracellular Fibers in Primo-nodes and Vessels

, &
Pages 487-495 | Received 18 Oct 2010, Accepted 15 Apr 2011, Published online: 05 Jul 2011

REFERENCES

  • Chan, S.H. (1984). What is being stimulated in acupuncture: Evaluation of the existence of a specific substrate. Neurosci. Biobehav. Rev. 8:25–33.
  • Soh, K.S. (2009). Bonghan circulatory system as an extension of acupuncture meridians. J. Acupunct. Meridian Stud. 2:93–106.
  • Ahn, A.C., Park, M., Shaw, J.R., McManus, C.A., Kaptchuk, T.J., and Langevin, H.M. (2010). Electrical impedance of acupuncture meridians: The relevance of subcutaneous collagenous bands. PLoS ONE 5:e11907.
  • Bai, Y., Yuan, L., Soh, K.S., Lee, B.C., Huang, Y., Wang, C.L., Wang, J., Wu, J.P., Dai, J.X., Palhalmi, J., Sha, O., and Yew, D.T. (2010). Possible applications for fascial anatomy and fasciaology in traditional Chinese medicine. J. Acupunct. Meridian Stud. 3:125–132.
  • Langevin, H.M. (2006). Connective tissue: A body-wide signaling network? Med. Hypotheses 66:1074–1077.
  • Langevin, H.M., Churchill, D.L., and Cipolla, M.J. (2001). Mechanical signaling through connective tissue: A mechanism for the therapeutic effect of acupuncture. FASEB J. 15:2275–2282.
  • Schleip, R., Klingler, W., and Lehmann-Horn, F. (2005). Active fascial contractility: Fascia may be able to contract in a smooth muscle-like manner and thereby influence musculoskeletal dynamics. Med. Hypotheses 65:273–277.
  • Yu, X., Ding, G., Huang, H., Lin, J., Yao, W., and Zhan, R. (2009). Role of collagen fibers in acupuncture analgesia therapy on rats. Connect. Tissue Res. 50:110–120.
  • Kim, B. (1963). On the Kyungrak system. J. Acad. Med. Sci. DPR Kor. 90:1–35.
  • Lee, B.C., Kim, H.B., Sung, B., Kim, K.W., Sohn, J., Son, B., Chang, B.J., and Soh, K.S. (2011). Network of endocardial vessels. Cardiology 118:1–7.
  • Sung, B. Bioimaging of Primo-vascular System with Fluorescent Nanoparticles and Cryo-electron Microscopy of Self-Assembled Spermine-DNA Condensates. PhD thesis, Seoul National University, Seoul, 2010.
  • Baik, K.Y., Lee, J.W., Lee, B.C., Johng, H.M., Nam, T.J., Sung, B., Cho, S.I., and Soh, K.S. (2004). Acupuncture meridian and intravascular Bonghan duct. Key Eng. Mater. 277:125–129.
  • Lee, B.C., Baik, K.Y., Johng, H.M., Nam, T.J., Lee, J., Sung, B., Choi, C., Park, W.H., Park, E.S., Park, D.H., Yoon, Y.S., and Soh, K.S. (2004). Acridine orange staining method to reveal the characteristic features of an intravascular threadlike structure. Anat. Rec. B. New Anat. 278:27–30.
  • Lee, B.C., Yoo, J.S., Baik, K.Y., Sung, B., Lee, J., and Soh, K.S. (2008). Development of a fluorescence stereomicroscope and observation of Bong-Han corpuscles inside blood vessels. Indian J. Exp. Biol. 46:330–335.
  • Johng, H.M., Yoo, J.S., Yoon, T.J., Shin, H.S., Lee, B.C., Lee, C., Lee, J.K., and Soh, K.S. (2007). Use of magnetic nanoparticles to visualize threadlike structures inside lymphatic vessels of rats. Evid. Based Complement. Alternat. Med. 4:77–82.
  • Lee, B.C., and Soh, K.S. (2008). Contrast-enhancing optical method to observe a Bonghan duct floating inside a lymph vessel of a rabbit. Lymphology 41:178.
  • Lee, B.C., Yoo, J.S., Baik, K.Y., Kim, K.W., and Soh, K.S. (2005). Novel threadlike structures (Bonghan ducts) inside lymphatic vessels of rabbits visualized with a Janus Green B staining method. Anat. Rec. B. New Anat. 286:1–7.
  • Lee, B.C., Kim, S., and Soh, K.S. (2008). Novel anatomic structures in the brain and spinal cord of rabbit that may belong to the Bonghan system of potential acupuncture meridians. J. Acupunct. Meridian Stud. 1:29–35.
  • Han, H., Sung, B., Ogay, V., and Soh, K. (2009). The flow path of alcian blue from the acupoint BL23 to the surface of abdominal organs. J. Acupunct. Meridian Stud. 2:182–189.
  • Kim, M.S., Oh, S.W., Lim, J.H., and Han, S.W. (2010). Phase contrast x-ray microscopy study of rabbit primo vessels. Appl. Phys. Lett. 97:213703.
  • Lee, B.C., Yoo, J.S., Ogay, V., Kim, K.W., Dobberstein, H., Soh, K.S., and Chang, B.S. (2007). Electron microscopic study of novel threadlike structures on the surfaces of mammalian organs. Microsc. Res. Tech. 70:34–43.
  • Shin, H.S., Johng, H.M., Lee, B.C., Cho, S.I., Soh, K.S., Baik, K.Y., and Yoo, J.S. (2005). Feulgen reaction study of novel threadlike structures (Bonghan ducts) on the surfaces of mammalian organs. Anat. Rec. B. New Anat. 284:35–40.
  • Yoo, J.S., Kim, M.S., Sung, B., Lee, B.C., Soh, K.S., Lee, S.H., Kim, Y.J., and Dobberstein, H. (2008). Cribriform structure with channels in the acupuncture meridian-like system on the organ surfaces of rabbits. Acupunct. Electrother. Res. 33:44–46.
  • Yoo, J.S., Kim, H.B., Ogay, V., Lee, B.C., Ahn, S., and Soh, K.S. (2009). Bonghan ducts as possible pathways for cancer metastasis. J. Acupunct. Meridian Stud. 2:118–123.
  • Ogay, V., Bae, K., Kim, K., and Soh, K. (2009). Comparison of the characteristic features of Bonghan ducts, blood and lymphatic capillaries. J. Acupunct. Meridian Stud. 2:107–117.
  • Sung, B., Kim, M.S., Corrigan, A., Donald, A.M., and Soh, K.S. (2009). In situ microextraction method to determine the viscosity of biofluid in threadlike structures on the surfaces of mammalian organs. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79:022901.
  • Sung, B., Kim, M.S., Lee, B.C., Yoo, J.S., Lee, S.H., Kim, Y.J., Kim, K.W., and Soh, K.S. (2008). Measurement of flow speed in the channels of novel threadlike structures on the surfaces of mammalian organs. Naturwissenschaften 95:117–124.
  • Sung, B., Kim, M.S., Lee, B.C., Ahn, S.H., Hwang, S.Y., and Soh, K.S. (2010). A cytological observation of the fluid in the primo-nodes and vessels on the surfaces of mammalian internal organs. Biologia (Bratisl). 65:914–918.
  • Choi, J.H., Lim, C.J., Han, T.H., Lee, S.K., Lee, S.Y., and Ryu, P.D. (2011). TEA-sensitive currents contribute to membrane potential of organ surface primo-node cells in rats. J. Membr. Biol. 239:167–175.
  • Park, S.H., Lee, B.C., Choi, C.J., Soh, K.S., Choi, J.H., Lee, S.Y., and Ryu, P.D. (2009). Bioelectrical study of Bonghan corpuscles on organ surfaces in rats. J. Korean Phys. Soc. 55:688–693.
  • Doughty, M.J., and Bergmanson, J.P. (2005). Resolution and reproducibility of measures of the diameter of small collagen fibrils by transmission electron microscopy – application to the rabbit corneal stroma. Micron 36:331–343.
  • Davankar, S.P., Deane, N.J., Davies, A.S., Firth, E.C., Hodge, H., and Parry, D.A. (1996). Collagen fibril diameter distributions in ligaments and tendons of the carpal region of the horse. Connect. Tissue Res. 34:11–21.
  • Flint, M.H., Craig, A.S., Reilly, H.C., Gillard, G.C., and Parry, D.A.D. (1984). Collagen fibril diameters and glycosaminoglycan content of skins – indices of tissue maturity and function. Connect. Tissue Res. 13:69–81.
  • Parry, D., Barnes, G., and Craig, A. (1978). A comparison of the size distribution of collagen fibrils in connective tissues as a function of age and a possible relation between fibril size distribution and mechanical properties. Proc. R. Soc. London, Ser. B 203:305–321.
  • Tzaphlidou, M. (2001). Diameter distributions of collagenous tissues in relation to sex. A quantitative ultrastructural study. Micron 32:333–336.
  • Biancalana, A., Veloso, L.A., and Gomes, L. (2010). Obesity affects collagen fibril diameter and mechanical properties of tendons in zucker rats. Connect. Tissue Res. 51:171–178.
  • Adachi, E., and Hayashi, T. (1986). In vitro formation of hybrid fibrils of type V collagen and type I collagen. Limited growth of type I collagen into thick fibrils by type V collagen. Connect. Tissue Res. 14:257.
  • Birk, D., Fitch, J., Babiarz, J., Doane, K., and Linsenmayer, T. (1990). Collagen fibrillogenesis in vitro: Interaction of types I and V collagen regulates fibril diameter. J. Cell Sci. 95:649.
  • Tzaphlidou, M., and Berillis, P. (2005). Collagen fibril diameter in relation to bone site. A quantitative ultrastructural study. Micron 36:703–705.
  • Xia, Y., and Elder, K. (2001). Quantification of the graphical details of collagen fibrils in transmission electron micrographs. J. Microsc. 204:3–16.
  • Zervakis, M., Gkoumplias, V., and Tzaphlidou, M. (2005). Analysis of fibrous proteins from electron microscopy images. Med. Eng. Phys. 27:655–667.
  • Tzaphlidou, M. (2001). Measurement of the axial periodicity of collagen fibrils using an image processing method. Micron 32:337–339.
  • Ottani, V., Raspanti, M., and Ruggeri, A. (2001). Collagen structure and functional implications. Micron 32:251–260.
  • Yoo, J.S., Johng, H.M., Yoon, T.J., Shin, H.S., Lee, B.C., Lee, C., Ahn, B.S., Kang, D.I., Lee, J.K., and Soh, K.S. (2007). In vivo fluorescence imaging of threadlike tissues (Bonghan ducts) inside lymphatic vessels with nanoparticles. Curr. Appl. Phys. 7:342–348.
  • Sung, B., Lee, B.C., Eom, K.H., Jung, J.H., and Soh, K.-S. (2011). Histological properties of primo-vessels and nodes. (in preparation).
  • Ogay, V., Baik, K.Y., Lee, B.C., and Soh, K.S. (2006). Characterization of DNA-containing granules flowing through the meridian-like system on the internal organs of rabbits. Acupunct. Electrother. Res. 31:13–31.
  • Han, Y.H., Yang, J.M., Yoo, J.S., Ogay, V., Kim, J.D., Kim, M.S., Baik, K.Y., Park, S.H., Soh, K.S., and Lee, B.C. (2006). Measurement of the optical properties of in-vitro organ-surface Bonghan corpuscles of rats. J. Korean Phys. Soc. 49:2239–2246.
  • Han, H.J., Ogay, V., Park, S.J., Lee, B.C., Kim, K.W., Lee, Y.W., Lee, J.K., and Soh, K.S. (2010). Primo-vessels as new flow paths for intratesticular injected dye in rats. J. Acupunct. Meridian Stud. 3:81–88.
  • Mosesson, M.W., DiOrio, J.P., Hernandez, I., Hainfeld, J.F., Wall, J.S., and Grieninger, G. (2004). The ultrastructure of fibrinogen-420 and the fibrin-420 clot. Biophys. Chem. 112:209–214.
  • Weisel, J.W., Phillips, G.N., Jr., and Cohen, C. (1983). The structure of fibrinogen and fibrin: II. Architecture of the fibrin clot. Ann. N. Y. Acad. Sci. 408:367–379.
  • Bleyl, U., Rieger, P., and Rossner, J.A. (1978). Identification of soluble fibrinogen fibrin monomer complexes by non-enzymatic polymerisation in the tissue. Virchows Arch. A Pathol. Anat. Histol. 378:67–74.
  • Collet, J.P., Park, D., Lesty, C., Soria, J., Soria, C., Montalescot, G., and Weisel, J.W. (2000). Influence of fibrin network conformation and fibrin fiber diameter on fibrinolysis speed: Dynamic and structural approaches by confocal microscopy. Arterioscler. Thromb. Vasc. Biol. 20:1354–1361.
  • Sakai, L., Keene, D., and Engvall, E. (1986). Fibrillin, a new 350-kD glycoprotein, is a component of extracellular microfibrils. J. Cell Biol. 103:2499.
  • Kierszenbaum, A.L. (2007). Histology and Cell Biology: An Introduction to Pathology. Philadelphia, PA: Mosby Elsevier.
  • Lee, S.J., Lee, B.C., Nam, C.H., Lee, W.C., Jhang, S.U., Park, H.S., and Soh, K.S. (2008). Proteomic analysis for tissues and liquid from Bonghan ducts on rabbit intestinal surfaces. J. Acupunct. Meridian Stud. 1:97–109.
  • Wagenseil, J.E., and Mecham, R.P. (2009). Vascular extracellular matrix and arterial mechanics. Physiol. Rev. 89:957–989.
  • Raspanti, M., Protasoni, M., Manelli, A., Guizzardi, S., Mantovani, V., and Sala, A. (2006). The extracellular matrix of the human aortic wall: Ultrastructural observations by FEG-SEM and by tapping-mode AFM. Micron 37:81–86.
  • Sharawy, M., Ali, A.M., and Choi, W.S. (2003). Experimental induction of anterior disk displacement of the rabbit craniomandibular joint: An immuno-electron microscopic study of collagen and proteoglycan occurrence in the condylar cartilage. J. Oral Pathol. Med. 32:176–184.
  • Ushiki, T. (2002). Collagen fibers, reticular fibers and elastic fibers. A comprehensive understanding from a morphological viewpoint. Arch. Histol. Cytol. 65:109–126.
  • Junqueira, L.C., Bignolas, G., and Brentani, R.R. (1979). Picrosirius staining plus polarization microscopy, a specific method for collagen detection in tissue sections. Histochem. J. 11:447–455.
  • Nimni, M.E., Olsen, B.R., and Kang, A.H. (1988). Collagen. Boca Raton, FL: CRC Press.
  • Ballon-Landa, G.R., Paterson, P.Y., and Dal Canto, M.C. (1978). Experimental allergic neuritis in Lewis rats: Altered pattern of disease induced by pertussis vaccine. Clin. Immunol. Immunopathol. 10:148–157.
  • Mosesson, M.W., DiOrio, J.P., Muller, M.F., Shainoff, J.R., Siebenlist, K.R., Amrani, D.L., Homandberg, G.A., Soria, J., Soria, C., and Samama, M. (1987). Studies on the ultrastructure of fibrin lacking fibrinopeptide B (beta-fibrin). Blood 69:1073–1081.
  • Schnitt, S.J., Stillman, I.E., Owings, D.V., Kishimoto, C., Dvorak, H.F., and Abelmann, W.H. (1993). Myocardial fibrin deposition in experimental viral myocarditis that progresses to dilated cardiomyopathy. Circ. Res. 72:914–920.
  • Lendrum, A.C., Fraser, D.S., Slidders, W., and Henderson, R. (1962). Studies on the character and staining of fibrin. J. Clin. Pathol. 15:401–413.
  • Greenlee, T.K., Jr., Ross, R., and Hartman, J.L. (1966). The fine structure of elastic fibers. J. Cell Biol. 30:59–71.
  • Imayama, S., and Braverman, I.M. (1989). A hypothetical explanation for the aging of skin. Chronologic alteration of the three-dimensional arrangement of collagen and elastic fibers in connective tissue. Am. J. Pathol. 134:1019–1025.
  • Junqueira, L.C.U., and Montes, G.S. (1983). Biology of collagen-proteoglycan interaction. Arch. Histol. Jpn 46:589–629.
  • Scott, J.E., Orford, C.R., and Hughes, E.W. (1981). Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem. J. 195:573–581.
  • Birbeck, M.S., and Wheatley, D.N. (1965). An electron microscopic study of the invasion of ascites tumor cells into the abdominal wall. Cancer Res. 25:490–497.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.