487
Views
30
CrossRef citations to date
0
Altmetric
Research Article

Effect of Mechanical Stimulation on the Differentiation of Cord Stem Cells

, , &
Pages 149-159 | Received 01 Jul 2009, Accepted 29 Aug 2011, Published online: 07 Dec 2011

REFERENCES

  • Quarto, R., Mastrogiacomo, M., Cancedda, R., Kutepov, S.M., Mukhachev, V., Lavroukov, A., Kon, E., and Marcacci, M. (2001). Repair of large bone defects with the use of autologous bone marrow stromal cells. N. Engl. J. Med. 344:385–386.
  • Fuchs, J.R., Hannouche, D., Terada, S., Vacanti, J.P., and Fauza, D.O. (2003). Fetal tracheal augmentation with cartilage engineered from bone marrow-derived mesenchymal progenitor cells. J. Pediatr. Surg. 38:984–987.
  • Gangji, V., Hauzeur, J.P., Matos, C., De Maertelaer, V., Toungouz, M., and Lambermont, M. (2004). Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. A pilot study. J. Bone Joint Surg. Am. 86–A:1153–1160.
  • Horwitz, E.M., Prockop, D.J., Fitzpatrick, L.A., Koo, W.W., Gordon, P.L., Neel, M., Sussman, M., Orchard, P., Marx, J.C., Pyeritz, R.E., and Brenner, M.K. (1999). Transplantability and therapeutic effects of bone marrow-derived mesenchymal cells in children with osteogenesis imperfecta. Nat. Med. 5:309–313.
  • Koc, O.N., Day, J., Nieder, M., Gerson, S.L., Lazarus, H.M., and Krivit, W. (2002). Allogeneic mesenchymal stem cell infusion for treatment of metachromatic leukodystrophy (Mld) and Hurler syndrome (MPS-IH). Bone Marrow Transplant. 30:215–222.
  • Chen, S.L., Fang, W.W., Ye, F., Liu, Y.H., Qian, J., Shan, S.J., Zhang, J.J., Chunhua, R.Z., Liao, L.M., Lin, S., and Sun, J.P. (2004). Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94:92–95.
  • Deb, A., Wang, S., Skelding, K.A., Miller, D., Simper, D., and Caplice, N.M. (2003). Bone marrow-derived cardiomyocytes are present in adult human heart: A study of gender-mismatched bone marrow transplantation patients. Circulation. 107:1247–1249.
  • Kadereit, S., Deeds, L.S., Haynesworth, S.E., Koc, O.N., Kozik, M.M., Szekely, E., Daum-Woods, K., Goetchius, G.W., Fu, P., Welniak, L.A., Murphy, W.J., and Laughlin, M.J. (2002). Expansion of LTC-ICs and maintenance of P21 and Bcl-2 expression in cord blood Cd34(+)/Cd38(–) early progenitors cultured over human MSCs as a feeder layer. Stem Cells 20:573–582.
  • Zhang, Y., Li, C., Jiang, X., Zhang, S., Wu, Y., Liu, B., Tang, P., and Mao, N. (2004). Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood Cd34+ cells. Exp. Hematol. 32:657–664.
  • Fouillard, L., Bensidhoum, M., Bories, D., Bonte, H., Lopez, M., Moseley, A.M., Smith, A., Lesage, S., Beaujean, F., Thierry, D., Gourmelon, P., Najman, A., and Gorin, N.C. (2003). Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia. 17:474–476.
  • Horwitz, E.M., Gordon, P.L., Koo, W.K., Marx, J.C., Neel, M.D., McNall, R.Y., Muul, L., and Hofmann, T. (2002). Isolated allogeneic bone marrow-derived mesenchymal cells engraft and stimulate growth in children with osteogenesis imperfecta: Implications for cell therapy of bone. Proc. Natl. Acad. Sci. U.S.A. 99:8932–8937.
  • Sabatini, F., Petecchia, L., Tavian, M., de Villeroche, J.V., Rossi, G.A., and Brouty-Boye, D. (2005). Human bronchial fibroblasts exhibit a mesenchymal stem cell phenotype and multilineage differentiating potentialities. Lab. Invest. 85:962–971.
  • Zuk, P.A., Zhu, M., Ashjian, P., De Ugarte, D.A., Huang, J.I., Mizuno, H., Alfonso, Z.C., Fraser, J.K., Benhaim, P., and Hedrick, M.H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13:4279–4295.
  • Hou, T., Xu, J., Wu, X., Xie, Z., Luo, F., Zhang, Z., and Zeng, L. (2009). Umbilical cord Wharton’s jelly: A new potential cell source of mesenchymal stromal cells for bone tissue engineering. Tissue Eng. Part A. 15:2325–2334.
  • Romanov, Y.A., Svintsitskaya, V.A., and Smirnov, V.N. (2003). Searching for alternative sources of postnatal human mesenchymal stem cells: Candidate MSC-like cells from umbilical cord. Stem Cells. 21:105–110.
  • Sarugaser, R., Lickorish, D., Baksh, D., Hosseini, M.M., and Davies, J.E. (2005). Human umbilical cord perivascular (HUCPV) cells: A source of mesenchymal progenitors. Stem Cells. 23:220–229.
  • Wang, H.S., Hung, S.C., Peng, S.T., Huang, C.C., Wei, H.M., Guo, Y.J., Fu, Y.S., Lai, M.C., and Chen, C.C. (2004). Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 22:1330–1337.
  • Fu, Y.S., Cheng, Y.C., Lin, M.Y., Cheng, H., Chu, P.M., Chou, S.C., Shih, Y.H., Ko, M.H., and Sung, M.S. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: Potential therapeutic application for Parkinsonism. Stem Cells. 24:115–124.
  • Ma, L., Feng, X.Y., Cui, B.L., Law, F., Jiang, X.W., Yang, L.Y., Xie, Q.D., and Huang, T.H. (2005). Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chin. Med. J. (Engl). 118:1987–1993.
  • Cohena, Y., and Nagler, A. (2003). Hematopoietic stem-cell transplantation using umbilical-cord blood. Leuk. Lymphoma. 44:1287–1299.
  • Ooi, J. (2006). The efficacy of unrelated cord blood transplantation for adult myelodysplastic syndrome. Leuk. Lymphoma. 47:599–602.
  • Laughlin, M.J., Barker, J., Bambach, B., Koc, O.N., Rizzieri, D.A., Wagner, J.E., Gerson, S.L., Lazarus, H.M., Cairo, M., Stevens, C.E., Rubinstein, P., and Kurtzberg, J. (2001). Hematopoietic engraftment and survival in adult recipients of umbilical-cord blood from unrelated donors. N. Engl. J. Med. 344:1815–1822.
  • Hayani, A., Lampeter, E., Viswanatha, D., Morgan, D., and Salvi, S.N. (2007). First report of autologous cord blood transplantation in the treatment of a child with leukemia. Pediatrics 119:e296–e300.
  • Lee, C.H., Shin, H.J., Cho, I.H., Kang, Y.M., Kim, I.A., Park, K.D., and Shin, J.W. (2005). Nanofiber alignment and direction of mechanical strain affect the ECM production of human ACL fibroblast. Biomaterials. 26:1261–1270.
  • Lee, W.C., Maul, T.M., Vorp, D.A., Rubin, J.P., and Marra, K.G. (2007). Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech. Model. Mechanobiol. 6:265–273.
  • Wang, Y., Maciejewski, B.S., Soto-Reyes, D., Lee, H.S., Warburton, D., and Sanchez-Esteban, J. (2009). Mechanical stretch promotes fetal type II epithelial cell differentiation via shedding of HB-EGF and TGF-Alpha. J. Physiol. 587:1739–1753.
  • Han, M.J., Seo, Y.K., Yoon, H.H., Song, K.Y., and Park, J.K. (2008). Effect of mechanical tension on the human dental pulp cells. Biotechnol. Bioprocess Eng. 13:410–417.
  • Matheson, L.A., Maksym, G.N., Santerre, J.P., and Labow, R.S. (2007). Differential effects of uniaxial and biaxial strain on U937 macrophage-like cell morphology: Influence of extracellular matrix type proteins. J. Biomed. Mater. Res. A. 81:971–981.
  • Sambajon, V.V., Cillo, J.E., Jr., Gassner, R.J., and Buckley, M.J. (2003). The effects of mechanical strain on synovial fibroblasts. J. Oral Maxillofac. Surg. 61:707–712.
  • Hsieh, A.H., Tsai, C.M., Ma, Q.J., Lin, T., Banes, A.J., Villarreal, F.J., Akeson, W.H., and Sung, K.L. (2000). Time-dependent increases in type-III collagen gene expression in medical collateral ligament fibroblasts under cyclic strains. J. Orthop. Res. 18:220–227.
  • Berry, C.C., Cacou, C., Lee, D.A., Bader, D.L., and Shelton, J.C. (2003). Dermal fibroblasts respond to mechanical conditioning in a strain profile dependent manner. Biorheology 40:337–345.
  • Breen, E.C. (2000). Mechanical strain increases type I collagen expression in pulmonary fibroblasts in vitro. J. Appl. Physiol. 88:203–209.
  • Choi, K.-M., Seo, Y.-K., Yoon, H.-H., Kwon, S.-Y., Lee, H.-S., Park, Y.-S., Son, Y., Song, K.-Y., Kim, Y.-J., and Park, J.-K. (2006). Differentiation of human bone marrow-derived mesenchymal stem cell into fibroblast-like cell in vitro by mechanical tension. J Tissue Eng. Regen. Med. 3:423–431.
  • Toma, C.D., Ashkar, S., Gray, M.L., Schaffer, J.L., and Gerstenfeld, L.C. (1997). Signal transduction of mechanical stimuli is dependent on microfilament integrity: Identification of osteopontin as a mechanically induced gene in osteoblasts. J. Bone Miner. Res. 12:1626–1636.
  • Claes, L.E., Heigele, C.A., Neidlinger-Wilke, C., Kaspar, D., Seidl, W., Margevicius, K.J., and Augat, P. (1998). Effects of mechanical factors on the fracture healing process. Clin. Orthop. Relat. Res. 355:S132–S147.
  • Park, J.S., Chu, J.S., Cheng, C., Chen, F., Chen, D., and Li, S. (2004). Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells. Biotechnol. Bioeng. 88:359–368.
  • Mullender, M., El Haj, A.J., Yang, Y., van Duin, M.A., Burger, E.H., and Klein-Nulend, J. (2004). Mechanotransduction of bone cells in vitro: Mechanobiology of bone tissue. Med. Biol. Eng. Comput. 42:14–21.
  • Bhatt, K.A., Chang, E.I., Warren, S.M., Lin, S.E., Bastidas, N., Ghali, S., Thibboneir, A., Capla, J.M., McCarthy, J.G., and Gurtner, G.C. (2007). Uniaxial mechanical strain: An in vitro correlate to distraction osteogenesis. J. Surg. Res. 143:329–336.
  • Zhao, H., Zhou, H., Wang, X., Dong, J., Yang, Y., and Zhang, X. (2009). Effect of mechanical strain on differentiation of mesenchymal stem cells into osteoblasts. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 26:518–522.
  • Simmons, C.A., Matlis, S., Thornton, A.J., Chen, S., Wang, C.Y., and Mooney, D.J. (2003). Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (Erk1/2) signaling pathway. J. Biomech. 36:1087–1096.
  • Sumanasinghe, R.D., Bernacki, S.H., and Loboa, E.G. (2006). Osteogenic differentiation of human mesenchymal stem cells in collagen matrices: Effect of uniaxial cyclic tensile strain on bone morphogenetic protein (BMP-2) Mrna expression. Tissue Eng. 12:3459–3465.
  • Wiesmann, A., Buhring, H.J., Mentrup, C., and Wiesmann, H.P. (2006). Decreased CD90 expression in human mesenchymal stem cells by applying mechanical stimulation. Head Face Med. 2:8.
  • Qi, M.C., Hu, J., Zou, S.J., Chen, H.Q., Zhou, H.X., and Han, L.C. (2008). Mechanical strain induces osteogenic differentiation: Cbfa1 and Ets-1 expression in stretched rat mesenchymal stem cells. Int. J. Oral Maxillofac. Surg. 37:453–458.
  • Peters, A., Toben, D., Lienau, J., Schell, H., Bail, H.J., Matziolis, G., Duda, G.N., and Kaspar, K. (2009). Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing. Tissue Eng. Part A. 15:2947–2954.
  • Musser, D.A., and Oseroff, A.R. (1994). The use of tetrazolium salts to determine sites of damage to the mitochondrial electron transport chain in intact cells following in vitro photodynamic therapy with photofrin II. Phytochem. Photobiol. 59:621–626.
  • Gomez-Serranillos, M.P., Martin, S., Ortega, T., Palomino, O.M., Prodanov, M., Vacas, V., Hernandez, T., Estrella, I., and Carretero, M.E. (2009). Study of red wine neuroprotection on astrocytes. Plant Foods Hum. Nutr. 64:238–243.
  • Hu, S.L., Zhang, J.Q., Hu, X., Hu, R., Luo, H.S., Li, F., Xia, Y.Z., Li, J.T., Lin, J.K., Zhu, G., and Feng, H. (2009). In vitro labeling of human umbilical cord mesenchymal stem cells with superparamagnetic iron oxide nanoparticles. J. Cell. Biochem. 108:529–535.
  • Diao, Y., Ma, Q., Cui, F., and Zhong, Y. (2009). Human umbilical cord mesenchymal stem cells: Osteogenesis in vivo as seed cells for bone tissue engineering. J. Biomed. Mater. Res. A. 91:123–131.
  • Chen, X.D., Qian, H.Y., Neff, L., Satomura, K., and Horowitz, M.C. (1999). Thy-1 antigen expression by cells in the osteoblast lineage. J. Bone Miner. Res. 14:362–375.
  • Stein, G.S., Lian, J.B., and Owen, T.A. (1990). Relationship of cell growth to the regulation of tissue-specific gene expression during osteoblast differentiation. FASEB J. 4: 3111–3123.
  • Kirkham, G.R., and Cartmell, S.H. (2007). Genes and proteins involved in the regulation of osteogenesis. Topics Tissue Eng. 3:1–22.
  • Delorme, B., Ringe, J., Gallay, N., Le Vern, Y., Kerboeuf, D., Jorgensen, C., Rosset, P., Sensebe, L., Layrolle, P., Haupl, T., and Charbord, P. (2008). Specific plasma membrane protein phenotype of culture-amplified and native human bone marrow mesenchymal stem cells. Blood 111:2631–2635.
  • Yang, J.W., de Isla, N., Huselstein, C., Sarda-Kolopp, M.N., Li, N., Li, Y.P., Jing-Ping, O.Y., Stoltz, J.F., and Eljaafari, A. (2006). Evaluation of human MSCs cell cycle, viability and differentiation in micromass culture. Biorheology. 43:489–496.
  • Jin, H.J., Park, S.K., Oh, W., Yang, Y.S., Kim, S.W., and Choi, S.J. (2009). Down-regulation of Cd105 is associated with multi-lineage differentiation in human umbilical cord blood-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 381:676–681.
  • Kyung-Min Choi, Y.-K.S., Hee-Hoon, Y., Kye-Yong, S., Soon-Yong, K., Hwa-Sung, L., and Jung-Keug, P. (2007). Effects of mechanical stimulation on the proliferation of bone marrow-derived human mesenchymal stem cells. Biotechnol. Bioprocess Eng. 12:601–609.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.