261
Views
20
CrossRef citations to date
0
Altmetric
Research Article

Noticeable Decreased Expression of Tenascin-X in Calcific Aortic Valves

, , , , &
Pages 460-468 | Received 27 Apr 2012, Accepted 09 Jun 2012, Published online: 24 Jul 2012

References

  • Katz, R., Wong, N.D., Kronmal, R., Takasu, J., Shavelle, D.M., Probstfield, J.L., Bertoni, A.G., Budoff, M.J., and O’Brien, K.D. (2006). Features of the metabolic syndrome and diabetes mellitus as predictors of aortic valve calcification in the Multi-Ethnic Study of Atherosclerosis. Circulation 113:2113–2119.
  • Otto, C.M. (2009). Calcific aortic valve disease: Outflow obstruction is the end stage of a systemic disease process. Eur. Heart J. 30:1940–1942.
  • Mohler III, E.R., Gannon, F., Reynolds, C., Zimmerman, R., Keane, M.G., and Kaplan, F.S. (2001). Bone formation and inflammation in cardiac valves. Circulation 103:1522–1528.
  • Mohler III, E.R. (2004). Mechanisms of aortic valve calcification. Am. J. Cardiol. 94:1396–1402.
  • O’Brien, K.D., Kuusisto, J., Reichenbach, D.D., Ferguson, M., Giachelli, C., Alpers, C.E., and Otto, C.M. (1995). Osteopontin is expressed in human aortic valvular lesions. Circulation 92:2163–2168.
  • Freeman, R.V., and Otto, C.M. (2005). Spectrum of calcific aortic valve disease: Pathogenesis, disease progression, and treatment strategies. Circulation 111:3316–3326.
  • Beckmann, E., Grau, J.B., Sainger, R., Poggio, P., and Ferrari, G. (2010). Insights into the use of biomarkers in calcific aortic valve disease. J. Heart Valve Dis. 19:441–452.
  • Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., Purkayastha, S., Juhasz, P., Martin, S., Bartlet-Jones, M., He, F., Jacobson, A., and Pappin, D.J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol. Cell. Proteomics 3:1154–1169.
  • Matsumoto, K. (2012). Phosphorylation of extracellular matrix tenascin-X detected by differential mass tagging followed by nanoLC-MALDI-TOF/TOF-MS/MS using ProteinPilot software. Connect. Tissue Res. 53:106–116.
  • Matsumoto, K., Maniwa, T., Tanaka, T., Satoh, K., Okunishi, H., and Oda, T. (2012). Proteomic analysis of calcified abdominal and thoracic aortic aneurysms. Int. J. Mol. Med. 30:417–429.
  • Tucker, R.P., Drabikowski, K., Hess, J.F., Ferralli, J., Chiquet-Ehrismann, R., and Adams, J.C. (2006). Phylogenetic analysis of the tenascin gene family: Evidence of origin early in the chordate lineage. BMC Evol. Biol. 6:60.
  • Matsumoto, K., Arai, M., Ishihara, N., Ando, A., Inoko, H., and Ikemura, T. (1992). Cluster of fibronectin type III repeats found in the human major histocompatibility complex class III region shows the highest homology with the repeats in an extracellular matrix protein, tenascin. Genomics 12:485–491.
  • Bristow, J., Tee, M.K., Gitelman, S.E., Mellon, S.H., and Miller, W.L. (1993). Tenascin-X: A novel extracellular matrix protein encoded by the human XB gene overlapping P450c21B. J. Cell Biol. 122:265–278.
  • Lethias, C., Descollonges, Y., Boutillon, M.M., and Garrone, R. (1996). Flexilin: A new extracellular matrix glycoprotein localized on collagen fibrils. Matrix Biol. 15:11–19.
  • Matsumoto, K., Saga, Y., Ikemura, T., Sakakura, T., and Chiquet-Ehrismann, R. (1994). The distribution of tenascin-X is distinct and often reciprocal to that of tenascin-C. J. Cell Biol. 125:483–493.
  • Mao, J.R., Taylor, G., Dean, W.B., Wagner, D.R., Afzal, V., Lotz, J.C., Rubin, E.M., and Bristow, J. (2002). Tenascin-X deficiency mimics Ehlers-Danlos syndrome in mice through alteration of collagen deposition. Nat. Genet. 30:421–425.
  • Veit, G., Hansen, U., Keene, D.R., Bruckner, P., Chiquet-Ehrismann, R., Chiquet, M., and Koch, M. (2006). Collagen XII interacts with avian tenascin-X through its NC3 domain. J. Biol. Chem. 281:27461–27470.
  • Minamitani, T., Ikuta, T., Saito, Y., Takebe, G., Sato, M., Sawa, H., Nishimura, T., Nakamura, F., Takahashi, K., Ariga, H., and Matsumoto, K. (2004). Modulation of collagen fibrillogenesis by tenascin-X and type VI collagen. Exp. Cell Res. 298:305–315.
  • Egging, D., van den Berkmortel, F., Taylor, G., Bristow, J., and Schalkwijk, J. (2007). Interactions of human tenascin-X domains with dermal extracellular matrix molecules. Arch. Dermatol. Res. 298:389–396.
  • Margaron, Y., Bostan, L., Exposito, J.Y., Malbouyres, M., Trunfio-Sfarghiu, A.M., Berthier, Y., and Lethias, C. (2010). Tenascin-X increases the stiffness of collagen gels without affecting fibrillogenesis. Biophys. Chem. 14:87–91.
  • Zweers, M.C., van Vlijmen-Willems, I.M., van Kuppevelt, T.H., Mecham, R.P., Steijlen, P.M., Bristow, J., and Schalkwijk, J. (2004). Deficiency of tenascin-X causes abnormalities in dermal elastic fiber morphology. J. Invest. Dermatol. 122:885–891.
  • Elefteriou, F., Exposito, J.Y., Garrone, R., and Lethias, C. (2001). Binding of tenascin-X to decorin. FEBS Lett. 495:44–47.
  • Schalkwijk, J., Zweers, M.C., Steijlen, P.M., Dean, W.B., Taylor, G., van Vlijmen, I.M., van Haren, B., Miller, W.L., and Bristow, J. (2001). A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N. Engl. J. Med. 345:1167–1175.
  • Zweers, M.C., Peeters, A.C., Graafsma, S., Kranendonk, S., van der Vliet, J.A., den Heijer, M., and Schalkwijk, J. (2006). Abdominal aortic aneurysm is associated with high serum levels of tenascin-X and decreased aneurysmal tissue tenascin-X. Circulation 113:1702–1707.
  • Satoh, K., Tsukamoto, M., Shindoh, M., Totsuka, Y., Oda, T., and Matsumoto, K. (2010). Increased expression of tenascin-X in thoracic and abdominal aortic aneurysm tissues. Biol. Pharm. Bull. 33: 1898–1902.
  • Shilov, I.V., Seymour, S.L., Patel, A.A., Loboda, A., Tang, W.H., Keating, S.P., Hunter, C.L., Nuwaysir, L.M., and Schaeffer, D.A. (2007). The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol. Cell. Proteomics 6:1638–1655.
  • Sturn, A., Quackenbush, J., and Trajanoski, Z. (2002). Genesis: Cluster analysis of microarray data. Bioinformatics 18:207–208.
  • Ikuta, T., Ariga, H., and Matsumoto, K. (2000). Extracellular matrix tenascin-X in combination with vascular endothelial growth factor B enhances endothelial cell proliferation. Genes Cells 5:913–927.
  • Walldius, G., and Jungner, I. (2006). The apoB/apoA-I ratio: A strong, new risk factor for cardiovascular disease and a target for lipid-lowering therapy-a review of the evidence. J. Intern. Med. 259:493–519.
  • Stan, S., Delvin, E., Lambert, M., Seidman, E., and Levy, E. (2003). Apo A-IV: An update on regulation and physiologic functions. Biochim. Biophys. Acta 1631:177–187.
  • Olofsson, S.O., and Borèn, J. (2005). Apolipoprotein B: A clinically important apolipoprotein which assembles atherogenic lipoproteins and promotes the development of atherosclerosis. J. Intern. Med. 258:395–410.
  • Kaschina, E., Scholz, H., Steckelings, U.M., Sommerfeld, M., Kemnitz, U.R., Artuc, M., Schmidt, S., and Unger, T. (2009). Transition from atherosclerosis to aortic aneurysm in humans coincides with an increased expression of RAS components. Atherosclerosis 205:396–403.
  • Kendrick, J., and Chonchol, M. (2011). The role of phosphorus in the development and progression of vascular calcification. Am. J. Kidney Dis. 58:826–834.
  • Tasheva, E.S., Koester, A., Paulsen, A.Q., Garrett, A.S., Boyle, D.L., Davidson, H.J., Song, M., Fox, N., and Conrad, G.W. (2002). Mimecan/osteoglycin-deficient mice have collagen fibril abnormalities. Mol. Vis. 8:407–415.
  • Reed, C.C., and Iozzo, R.V. (2002). The role of decorin in collagen fibrillogenesis and skin homeostasis. Glycoconj. J. 19:249–255.
  • Ezura, Y., Chakravarti, S., Oldberg, A., Chervoneva, I., and Birk, D.E. (2000). Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons. J. Cell Biol. 151:779–788.
  • Izu, Y., Ansorge, H.L., Zhang, G., Soslowsky, L.J., Bonaldo, P., Chu, M.L., and Birk, D.E. (2011). Dysfunctional tendon collagen fibrillogenesis in collagen VI null mice. Matrix Biol. 30:53–61.
  • Zhang, G., Young, B.B., Ezura, Y., Favata, M., Soslowsky, L.J., Chakravarti, S., and Birk, D.E. (2005). Development of tendon structure and function: Regulation of collagen fibrillogenesis. J. Musculoskelet. Neuronal Interact. 5:5–21.
  • Takeda, U., Utani, A., Wu, J., Adachi, E., Koseki, H., Taniguchi, M., Matsumoto, T., Ohashi, T., Sato, M., and Shinkai, H. (2002). Targeted disruption of dermatopontin causes abnormal collagen fibrillogenesis. J. Invest. Dermatol. 119:678–683.
  • Wallin, R., Wajih, N., Greenwood, G.T., and Sane, D.C. (2001). Arterial calcification: A review of mechanisms, animal models, and the prospects for therapy. Med. Res. Rev. 21:274–301.
  • Kalamajski, S., and Oldberg, A. (2010). The role of small leucine-rich proteoglycans in collagen fibrillogenesis. Matrix Biol. 29:248–253.
  • Vogel, K.G., Paulsson, M., and Heinegård, D. (1984). Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycan of tendon. Biochem. J. 223:587–597.
  • Minamitani, T., Ariga, H., and Matsumoto, K. (2004). Deficiency of tenascin-X causes a decrease in the level of expression of type VI collagen. Exp. Cell Res. 297:49–60.
  • Rajamannan, N.M., Subramaniam, M., Rickard, D., Stock, S.R., Donovan, J., Springett, M., Orszulak, T., Fullerton, D.A., Tajik, A.J., Bonow, R.O., and Spelsberg, T. (2003). Human aortic valve calcification is associated with an osteoblast phenotype. Circulation 107:2181–2184.
  • Garg, V., Muth, A.N., Ransom, J.F., Schluterman, M.K., Barnes, R., King, I.N., Grossfeld, P.D., and Srivastava, D. (2005). Mutations in NOTCH1 cause aortic valve disease. Nature 437:270–274.
  • Acharya, A., Hans, C.P., Koenig, S.N., Nichols, H.A., Galindo, C.L., Garner, H.R., Merrill, W.H., Hinton, R.B., and Garg, V. (2011). Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One 6:e27743.
  • Luo, G., Ducy, P., McKee, M.D., Pinero, G.J., Loyer, E., Behringer, R.R., and Karsenty, G. (1997). Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 386:78–81.
  • Schafer, C., Heiss, A., Schwarz, A., Westenfeld, R., Ketteler, M., Floege, J., Muller-Esterl, W., Schinke, T., and Jahnen-Dechent, W. (2003). The serum protein alpha 2-Heremans-Schmid glycoprotein/fetuin-A is a systemically acting inhibitor of ectopic calcification. J. Clin. Invest. 112:357–366.
  • Moe, S.M., Reslerova, M., Ketteler, M., O’neill, K., Duan, D., Koczman, J., Westenfeld, R., Jahnen-Dechent, W., and Chen, N.X. (2005). Role of calcification inhibitors in the pathogenesis of vascular calcification in chronic kidney disease (CKD). Kidney Int. 67:2295–2304.
  • Mochida, Y., Parisuthiman, D., Pornprasertsuk-Damrongsri, S., Atsawasuwan, P., Sricholpech, M., Boskey, A.L., and Yamauchi, M. (2009). Decorin modulates collagen matrix assembly and mineralization. Matrix Biol. 28:44–52.
  • Chalajour, F., Treede, H., Ebrahimnejad, A., Lauke, H., Reichenspurner, H., and Ergun, S. (2004). Angiogenic activation of valvular endothelial cells in aortic valve stenosis. Exp. Cell Res. 298:455–464.
  • Dvorak, H.F., Brown, L.F., Detmar, M., and Dvorak, A.M. (1995). Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146: 1029–1039.
  • Lee, Y.J., Lee, H.J., Choi, S.H., Jin, Y.B., An, H.J., Kang, J.H., Yoon, S.S., and Lee, Y.S. (2012). Soluble HSPB1 regulates VEGF-mediated angiogenesis through their direct interaction. Angiogenesis 15: 229–242.
  • New, S.E., and Aikawa, E. (2011). Cardiovascular calcification: An inflammatory disease. Circ. J. 75:1305–1313.
  • Bathon, J.M., Hwang, J.J., Shin, L.H., Precht, P.A., Towns, M.C., and Horton Jr., W.E. (1994). Type VI collagen-specific messenger RNA is expressed constitutively by cultured human synovial fibroblasts and is suppressed by interleukin-1. Arthritis Rheum. 37:1350–1356.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.