925
Views
68
CrossRef citations to date
0
Altmetric
Research Article

Agarose Gel as Biomaterial or Scaffold for Implantation Surgery: Characterization, Histological and Histomorphometric Study on Soft Tissue Response

, , , , &
Pages 548-554 | Received 07 Dec 2011, Accepted 11 Jul 2012, Published online: 23 Aug 2012

References

  • Eppley, B.L., and Dadvand, B. (2006). Injectable soft-tissue fillers: Clinical overview. Plast. Reconstr. Surg. 118:98e–106e.
  • Beer, K. (2009). Dermal fillers and combinations of fillers for facial rejuvenation. Dermatol. Clin. 27:427–432.
  • Beer, K., and Solish, N. (2009). Hyaluronic for soft-tissue augmentation: Practical considerations and technical recommendations. J. Drugs Dermatol. 8:1086–1091.
  • Beasley, K.L., Weiss, M.A., and Weiss, R.A. (2009). Hyaluronic acid fillers: A comprehensive review. Facial. Plast. Surg. 25:86–94.
  • Tsunenaga, M., Nishiyama, T., Horii, I., Nakayama, Y., Arai, K., and Hayashi, T. (1992). Effect of hyaluronate on physicochemical and biological properties of collagen solution which could be used as collagen filler. Connect. Tissue Res. 28:113–123.
  • Carruthers, J.D., Glogau, R.G., and Blitzer, A. (2008). Advances in facial rejuvenation: Botulinum toxin type a, hyaluronic acid dermal fillers, and combination therapies-consensus recommendations. Plast. Reconstr. Surg. 121:5S–30S; quiz 31S–36S.
  • Carruthers, J., Cohen, S.R., Joseph, J.H., Narins, R.S., and Rubin, M. (2009). The science and art of dermal fillers for soft-tissue augmentation. J. Drugs Dermatol. 8:335–350.
  • Cregg, J.M., Wiseman, S.L., Pietrzak-Goetze, N.M., Smith, M.R., Jaroch, D.B., Clupper, D.C., and Gilbert, R.J. (2010). A rapid, quantitative method for assessing axonal extension on biomaterial platforms. Tissue. Eng. Part C: Methods. 16:167–172.
  • Fernandez-Cossio, S., and Castano-Oreja, M.T. (2006). Biocomapatibility of two novel dermal fillers. Histological evaluation of implants of a hyaluronic acid filler and polyacrylamide filler. Plastic. Reconstr. Surg. 11:1789–1796.
  • Fernández-Cossío, S., León-Mateos, A., Sampedro, F.G., and Oreja, M.T. (2007). Biocompatibility of agarose gel as a dermal filler: Histologic evaluation of subcutaneous implants. Plast. Reconstr. Surg. 120:1161–1169.
  • Gold, M. (2009). The science and art of hyaluronic acid dermal filler use in esthetic applications. J. Cosmet. Dermatol. 8:301–307.
  • Iafisco, M., Varoni, E., Battistella, E., Pietronave, S., Prat, M., Roveri, N., and Rimondini, L. (2010). The cooperative effect of size and crystallinity degree on the resorption of biomimetic hydroxyapatite for soft tissue augmentation. Int. J. Artif. Organs. 33:765–774.
  • Christensen, L.H. (2007). Normal and pathologic tissue reactions to soft tissue gel fillers. Dermatol. Surg. 33:S168–S175.
  • Christensen, L.H. (2009). Host tissue interaction, fate, and risks of degradable and nondegradable gel fillers. Dermatol. Surg. 35:1612–1619.
  • Scarano, A., Carinci, F., and Piattelli, A. (2009). Lip augmentation with a new filler (agarose gel): A 3-year follow-up study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 108:e11–e15.
  • Cao, Z., Gilbert, R.J., and He, W. (2009). Simple agarose-chitosan gel composite system for enhanced neuronal growth in three dimensions. Biomacromolecules. 10:2954–2959.
  • Gu, Y., Tabata, Y., Kawakami, Y., Balamurugan, A.N., Hori, H., Nagata, N., Satake, A., Cui, W., Qi, M., Misawa, Y., Toma, M., Miyamoto, M., Nozawa, M., and Inoue, K. (2001). Development of a new method to induce angiogenesis at subcutaneous site of streptozotocin-induced diabetic rats for islet transplantation. Cell. Transplant. 10:453–457.
  • Marczylo, T., Arimoto-Kobayashi, S., and Hayatsu, H. (2000). Protection against Trp-P-2 mutagenicity by purpurin: Mechanism of in vitro antimutagenesis. Mutagenesis. 15:223–228.
  • Erickson, I.E., Huang, A.H., Chung, C., Li, R.T., Burdick, J.A., and Mauck, R.L. (2009). Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. Part A. 15:1041–1052.
  • Hoffman, B.E., Newman-Tarr, T.M., Gibbard, A., Wang, S., Hanning, C., Pratta, M.A., Boyle, R.J., Kumar, S., and Majumdar, M.K. (2010). Development and characterization of a human articular cartilage-derived chondrocyte cell line that retains chondrocyte phenotype. J. Cell. Physiol. 222:695–702.
  • Kisiday, J.D., Kopesky, P.W., Evans, C.H., Grodzinski, A.J., McIlwraith, C.W., and Frisbie, D.D. (2008). Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J. Orthop. Res. 26:322–331.
  • Sheehy, E.J., Buckley, C.T., and Kelly, D.J. (2011). Chondrocytes and bone marrow-derived mesenchymal stem cells undergoing chondrogenesis in agarose hydrogels of solid and channelled architectures respond differentially to dynamic culture conditions. J. Tissue Eng. Regen. Med. 5(9):747–758.
  • Xu, X.L., Lou, J., Tang, T., Ng, K.W., Zhang, J., Yu, C., and Dai, K. (2005). Evaluation of different scaffolds for BMP-2 genetic orthopedic tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 75:289–303.
  • Malafaya, P.B., Silva, G.A., Baran, E.T., and Reis, R.L. (2002). Drug delivery therapies II. Strategies for delivering bone regenerating factors. Curr. Opin. Solid State Mater. Sci. 6:297–312.
  • Rossi, F., Santoro, M., Casalini, T., Veglianese, P., Masi, M., and Perale, G. (2011). Characterization and degradation behavior of agar-carbomer based hydrogels for drug delivery applications: Solute effect. Int. J. Mol. Sci. 12:3394–3408.
  • Rossi, F., Chatzistavrou, X., Perale, G., and Boccaccini, A.R. (2012). Synthesis and degradation of agar-carbomer based hydrogels for tissue engineering applications. J. Appl. Polym. Sci. 123:398–408.
  • Suzawa, Y., Funaki, T., Watanabe, J., Iwai, S., Yura, Y., Nakano, T., Umakoshi, Y., and Akashi, M. (2010). Regenerative behavior of biomineral/agarose composite gels as bone grafting materials in rat cranial defects. J. Biomed. Mater. Res. A. 93:965–975.
  • Tabata, M., Shimoda, T., Sugihara, K., Ogomi, D., Serizawa, T., and Akashi, M. (2003). Osteoconductive and hemostatic properties of apatite formed on/in agarose gel as a bone-grafting material. J. Biomed. Mater. Res. B Appl. Biomater. 67:680–688.
  • Tabata, M., Shimoda, T., Sugihara, K., Ogomi, D., Ohgushi, H., and Akashi, M. (2005). Apatite formed on/in agarose gel as a bone-grafting material in the treatment of periodontal infrabony defect. J. Biomed. Mater. Res. B Appl. Biomater. 75:378–386.
  • Tschon, M., Fini, M., Giavaresi, G., Torricelli, P., Rimondini, L., Ambrosio, L., and Giardino, R. (2007). In vitro and in vivo behaviour of biodegradable and injectable PLA/PGA copolymers related to different matrices. Int. J. Artif. Organs. 30:352–362.
  • Watanabe, J., Kashii, M., Hirao, M., Oka, K., Sugamoto, K., Yoshikawa, H., and Akashi, M. (2007). Quick-forming hydroxyapatite/agarose gel composites induce bone regeneration. J. Biomed. Mater. Res. A. 83:845–852.
  • Directive 86/609/ECC on the Protection of Animal used for Experimental and other Scientific Purpose of November 24, 1986.
  • Law by Decree 116/92 on January 27, 1992. N. 116, G.U. General Series n. 40 on February 18, 1992.
  • Commission Recommendations of June 18, 2007 on Guidelines for the Accommodation and Care of Animals Used for Experimental and Other Scientific Purposes EN Official Journal of the European Union L 197/1, July 30, 2007.
  • Directive 2010/63/EU of the European Parliament and of the Council of September 2010 on the protection of animals used for scientific purposes, Official Journal of the European Union L 276/33, October 20, 2010.
  • National Research Council (US) Committee for the Update of the Guide for the Care and Use of Laboratory Animals. (1996). Guide for the Care and Use of Laboratory Animals. Washington, DC: National Academy of Sciences, National Academy Press.
  • Giavaresi, G., Tschon, M., Borsari, V., Daly, J.H., Liggat, J.J., Fini, M., Bonazzi, V., Nicolini, A., Carpi, A., Morra, M., Cassinelli, C., and Giardino, R. (2004). New polymers for drug delivery systems in orthopaedics: In vivo biocompatibility evaluation. Biomed. Pharmacother. 58:411–417.
  • Williams, D.F. (2008). On the mechanisms of biocompatibility. Biomaterials. 29:2941–2953.
  • Cohen, J.L. (2008). Understanding, avoiding, and managing dermal filler complications. Dermatol. Surg. 34:S92–S99.
  • Sclafani, A.P., and Fagien, S. (2009). Treatment of injectable soft tissue filler complications. Dermatol. Surg. 35:1672–1680.
  • Grewal, N., Yacomotti, L., Melkonyan, V., Massey, M., Bradley, J.P., and Zuk, P.A. (2009). Freezing adipose tissue grafts may damage their ability to integrate into the host. Connect. Tissue Res. 50:14–28.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.