794
Views
43
CrossRef citations to date
0
Altmetric
Review

Biomineralization—An Active or Passive Process?

Pages 438-445 | Received 02 Aug 2012, Accepted 11 Sep 2012, Published online: 19 Sep 2012

References

  • Farb, A., Burke, A.P., Tang, A.L., Liang, T.Y., Mannan, P., Smialek, J., and Virmani, R. (1996). Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation. 93:1354–1363.
  • Lehto, S., Niskanen, L., Suhonen, M., Ronnemaa, T., and Laakso, M. (1996). Medial artery calcification. A neglected harbinger of cardiovascular complications in non-insulin-dependent diabetes mellitus. Arterioscler. Thromb. Vasc. Biol. 16:978–983.
  • Ea, H.K., Nguyen, C., Bazin, D., Bianchi, A., Guicheux, J., Reboul, P., Daudon, M., and Liote, F. (2011). Articular cartilage calcification in osteoarthritis: Insights into crystal-induced stress. Arthritis Rheum. 63:10–18.
  • Golub, E.E. (2010). Biomineralization and matrix vesicles in biology and pathology. Semin. Immunopathol. 1790:1592–1598.
  • Howell, D.S. (2002). Articular cartilage calcification and matrix vesicles. Curr. Rheumatol. Rep. 4:265–269.
  • Ho, A.M., Johnson, M.D., and Kingsley, D.M. (2000). Role of the mouse ank gene in control of tissue calcification and arthritis. Science. 289:265–270.
  • Terkeltaub, R. (2006). Physiologic and pathologic functions of the NPP nucleotide pyrophosphatase/phosphodiesterase family focusing on NPP1 in calcification. Purinergic Signal. 2:371–377.
  • Addison, W.N., Azari, F., Sorensen, E.S., Kaartinen, M.T., and McKee, M.D. (2007). Pyrophosphate inhibits mineralization of osteoblast cultures by binding to mineral, up-regulating osteopontin, and inhibiting alkaline phosphatase activity. J. Biol. Chem. 282:15872–15883.
  • Luo, G., Ducy, P., McKee, M.D., Pinero, G.J., Loyer, E., Behringer, R.R., and Karsenty, G. (1997). Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature. 386:78–81.
  • Kidd, P.M. (2010). Vitamins D and K as pleiotropic nutrients: Clinical importance to the skeletal and cardiovascular systems and preliminary evidence for synergy. Altern. Med. Rev. 15:199–222.
  • Kim, H.J., Delaney, J.D., and Kirsch, T. (2010). The role of pyrophosphate/phosphate homeostasis in terminal differentiation and apoptosis of growth plate chondrocytes. Bone. 47:657–665.
  • Yagami, K., Suh, J.Y., Enomoto-Iwamoto, M., Koyama, E., Abrams, W.R., Shapiro, I.M., Pacifici, M., and Iwamoto, M. (1999). Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb. J. Cell Biol. 147:1097–1108.
  • Zebboudj, A.F., Imura, M., and Bostrom, K. (2002). Matrix GLA protein, a regulatory protein for bone morphogenetic protein-2. J. Biol. Chem. 277:4388–4394.
  • Anderson, H.C. (2003). Matrix vesicles and calcification. Curr. Rheumatol. Rep. 5:222–226.
  • Kornak, U. (2011). Animal models with pathological mineralization phenotypes. Joint Bone Spine. 78:561–567.
  • Wang, W., Xu, J., Du, B., and Kirsch, T. (2005). Role of the progressive ankylosis gene (ank) in cartilage mineralization. Mol. Cell. Biol. 25:312–323.
  • Hessle, L., Johnson, K.A., Anderson, H.C., Narisawa, S., Sali, A., Goding, J.W., Terkeltaub, R., and Millan, J.L. (2002). Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc. Natl. Acad. Sci. USA, 99:9445–9449.
  • Kirsch, T. (2005). Annexins—Their role in cartilage mineralization. Front. Biosci. 10:576–581.
  • Kirsch, T., Nah, H.D., Shapiro, I.M., and Pacifici, M. (1997). Regulated production of mineralization-competent matrix vesicles in hypertrophic chondrocytes. J. Cell Biol. 137:1149–1160.
  • Bonucci, E. (2012). Bone mineralization. Front. Biosci. 17:100–128.
  • Gorski, J.P. (2012). Biomineralization of bone: A fresh view of the roles of non-collagenous proteins. Front. Biosci. 17:2598–2621.
  • Kirsch, T., Wang, W., and Pfander, D. (2003). Functional differences between growth plate apoptotic bodies and matrix vesicles. J. Bone Miner. Res. 18:1872–1881.
  • Kirsch, T., Harrison, G., Golub, E.E., and Nah, H.-D. (2000). The roles of annexins and types II and X collagen in matrix vesicle-mediated mineralization of growth plate cartilage. J. Biol. Chem. 275:35577–35583.
  • Arispe, N., Rojas, E., Genge, B.R., Wu, L.N.Y., and Wuthier, R.E. (1996). Similarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers. Biophys. J. 71:1764–1775.
  • Isas, J.M., Cartailler, J.-P., Sokolov, Y., Patel, D.R., Langen, R., Luecke, H., Hall, J.E., and Haigler, H.T. (2000). Annexins V and XII insert into bilayers at mildly acidic pH and form ion channels. Biochemistry. 39:3015–3022.
  • Minashima, T., Small, W., Moss, S.E., and Kirsch, T. (2012). Intracellular modulation of signaling pathways by annexin a6 regulates terminal differentiation of chondrocytes. J. Biol. Chem. 287:14803–14815.
  • Belluoccio, D., Grskovic, I., Niehoff, A., Schlotzer-Schrehardt, U., Rosenbaum, S., Etich, J., Frie, C., Pausch, F., Moss, S.E., Poschl, E., Bateman, J.F., and Brachvogel, B. (2010). Deficiency of annexins A5 and A6 induces complex changes in the transcriptome of growth plate cartilage but does not inhibit the induction of mineralization. J. Bone Miner. Res. 25:141–153.
  • Babiychuk, E.B., and Draeger, A. (2000). Annexins in cell membrane dynamics. Ca2+-regulated association of lipid microdomains. J. Cell Biol. 150:1113–1124.
  • Gillette, J.M., and Nielsen-Preiss, S.M. (2004). The role of annexin 2 in osteoblastic mineralization. J. Cell Sci. 117:441–449.
  • Genge, B.R., Wu, L.N., and Wuthier, R.E. (2008). Mineralization of annexin-5-containing lipid-calcium-phosphate complexes: Modulation by varying lipid composition and incubation with cartilage collagens. J. Biol. Chem. 283:9737–9748.
  • Brachvogel, B., Dikschas, J., Moch, H., Welzel, H., von der Mark, K., Hofmann, C., and Poschl, E. (2003). Annexin A5 is not essential for skeletal development. Mol. Cell. Biol. 23:2907–2913.
  • Wuthier, R.E. (1992). Matrix vesicles: Formation and function—mechanisms in membrane/matrix—mediated mineralization. In Chemistry and Biology of Mineralized Tissues, 1st ed., H. Slavkin and P. Price (eds.) pp. 143–152. Philadelphia, PA: Elsevier Science Publisher.
  • Kardos, T.B., and Hubbard, M.J. (1982). Are matrix vesicles apoptotic bodies? Prog. Clin. Biol. Res. 101:45–60.
  • Wuthier, R.E. (1975). Lipid composition of isolated epiphyseal cartilage cells, membranes and matrix vesicles. Biochem. Biophys. Acta. 409:128–143.
  • Lin, H.C., Suedhof, T.C., and Anderson, G.W. (1992). Annexin VI is required for budding of clathrin-coated pits. Cell. 70:283–291.
  • Kamal, A., Ying, Y., and Anderson, R.G. (1998). Annexin VI-mediated loss of spectrin during coated pit budding is coupled to delivery of LDL to lysosomes. J. Cell Biol. 142:937–947.
  • Wang, W., and Kirsch, T. (2002). Retinoic acid stimulates annexin-mediated growth plate chondrocyte mineralization. J. Cell Biol. 157:1061–1069.
  • Iannotti, J.P., Naidu, S., Noguchi, Y., Hunt, R.M., and Brighton, C.T. (1994). Growth-plate matrix vesicle biogenesis—The role of intracellular calcium. Clin. Orthop. Rel. Res. 306:222–229.
  • Demer, L.L., and Tintut, Y. (2008). Vascular calcification: Pathobiology of a multifaceted disease. Circulation. 117:2938–2948.
  • Terkeltaub, R.A. (2001). Inorganic pyrophosphate generation and disposition in pathophysiology. Am. J. Physiol. Cell. Physiol. 281:C1–C11.
  • Kirsch, T., Swoboda, B., and Nah, H.-D. (2000). Activation of annexin II and V expression, terminal differentiation, mineralization and apoptosis in human osteoarthritic cartilage. Osteoarthr. Cartil. 8:294–302.
  • Jubeck, B., Gohr, C., Fahey, M., Muth, E., Matthews, M., Mattson, E., Hirschmugl, C., and Rosenthal, A.K. (2008). Promotion of articular cartilage matrix vesicle mineralization by type I collagen. Arthritis Rheum. 58:2809–2817.
  • Pfander, D., Swoboda, B., and Kirsch, T. (2001). Expression of early and late differentiation markers (proliferating cell nuclear antigen, syndecan-3, annexin VI, and alkaline phosphatase) by human osteoarthritic chondrocytes. Am. J. Pathol. 159:1777–1783.
  • Mollenhauer, J., Mok, M.T., King, K.B., Gupta, M., Chubinskaya, S., Koepp, H., and Cole, A. (1999). Expression of anchorin CII (cartilage annexin V) in human young, normal adult, and osteoarthritic cartilage. J. Histochem. Cytochem. 47:209–220.
  • Chen, N.X., O‘Neill, K.D., Chen, X., and Moe, S.M. (2008). Annexin-mediated matrix vesicle calcification in vascular smooth muscle cells. J. Bone Miner. Res. 23:1798–1805.
  • Kapustin, A.N., Davies, J.D., Reynolds, J.L., McNair, R., Jones, G.T., Sidibe, A., Schurgers, L.J., Skepper, J.N., Proudfoot, D., Mayr, M., and Shanahan, C.M. (2011). Calcium regulates key components of vascular smooth muscle cell-derived matrix vesicles to enhance mineralization. Circ. Res. 109:e1–e12.
  • Lau, W.L., Pai, A., Moe, S.M., and Giachelli, C.M. (2011). Direct effects of phosphate on vascular cell function. Adv. Chronic Kidney Dis. 18:105–112.
  • Merz, D., Liu, R., Johnson, K., and Terkeltaub, R. (2003). IL-8/CXCL8 and growth-related oncogene alpha/CXCL1 induce chondrocyte hypertrophic differentiation. J. Immunol. 171:4406–4415.
  • Cheung, H.S., Sallis, J.D., Demadis, K.D., and Wierzbicki, A. (2006). Phosphocitrate blocks calcification-induced articular joint degeneration in a guinea pig model. Arthritis Rheum. 54:2452–2461.
  • O‘Neill, W.C., and Lomashvili, K.A. (2010). Recent progress in the treatment of vascular calcification. Kidney Int. 78:1232–1239.
  • Cole, R.E. (2011). Clinical strategies to address patients’ concerns in osteoporosis management with bisphosphonates. Postgrad. Med. 123:131–144.
  • Narisawa, S., Harmey, D., Yadav, M.C., O‘Neill, W.C., Hoylaerts, M.F., and Millan, J.L. (2007). Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J. Bone Miner. Res. 22:1700–1710.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.