327
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Response of Sheep Chondrocytes to Changes in Substrate Stiffness from 2 to 20 Pa: Effect of Cell Passaging

, , , , , , & show all
Pages 159-166 | Received 02 Feb 2012, Accepted 21 Dec 2012, Published online: 26 Feb 2013

References

  • Mankin, H.J. (1982). The response of articular cartilage to mechanical injury. J. Bone Joint Surg. Am. 64:460–466.
  • Mandelbaum, B.R., Browne, J.E., Fu, F., Micheli, L., Mosely, J.B.Jr, Erggelet, C., Minas, T., and Peterson, L. (1998). Articular cartilage lesions of the knee. Am. J. Sports Med. 26(6):853–861.
  • Buckwalter, J.A., and Mankin, H.J. (1997). Articular cartilage. Degeneration and ostcoarthritis, repair, regeneration and transplantation. J. Bone Joint Surg. 79:612–632.
  • Newman, A.P. (1998). Articular cartilage repair. Am. J. Sports Med. 26:309–324.
  • Fukui, N., Ikeda, Y., Ohnuki, T., Tanaka, N., Hikita, A., Mitomi, H., Mori, T., Juji, T., Katsuragawa, Y., Yamamoto, S., Sawabe, M., Yamane, S., Suzuki, R., Sandell, L.J., and Ochi, T. (2008). Regional differences in chondrocyte metabolism in osteoarthritis: A detailed analysis by laser capture microdissection. Arthritis Rheum. 58(1):154–163.
  • Marlovits, S., Zeller, P., Singer, P., Resinger, C., and Vécsei, V. (2006). Cartilage repair: Generations of autologous chondrocyte transplantation. Eur. J. Radiol. 57:24–31.
  • Brittberg, M., Tallheden, T., Sjögren-Jansson, B., Lindahl, A., and Peterson, L. (2001). Autologous chondrocytes used for articular cartilage repair: An update. Clin. Orthop. Relat. Res. 391:337–348.
  • Roberts, S., Hollander, A.P., Caterson, B., Menage, J., and Richardson, J.B. (2001). Matrix turnover in human cartilage repair tissue in autologous chondrocyte implantation. Arthritis Rheum. 44(11):2586–2598.
  • Minas, T., and Peterson, L. (1999). Advanced techniques in autologous chondrocyte transplantation. Clin. Sports Med. 18(1):13–44.
  • Glowacki, J., Trepman, E., and Folkman, J. (1983). Cell shape and phenotypic expression in chondrocytes. Proc. Soc. Exp. Biol. Med. 172:93–98.
  • Brodkin, K.R., García, A.J., and Levenston, M.E. (2004). Chondrocyte phenotypes on different extracellular matrix monolayers. Biomaterials. 25:5929–5938.
  • Benya, P.D., and Shaffer, J.D. (1982). Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell. 30:215–224.
  • Binette, F., McQuaid, D.P., Haudenschild, D.R., Yaeger, P.C., McPherson, J.M., and Tubo, R. (1998). Expression of a stable articular cartilage phenotype without evidence of hypertrophy by adult human articular chondrocytes in vitro. J. Orthop. Res. 16:207–216.
  • Darling, E.M., and Athanasiou, K.A. (2005). Rapid phenotypic changes in passaged articular chondrocyte subpopulations. J. Orthop. Res. 23(2):425–432.
  • Heberhold, C., Faber, S., Stammberger, T., Steinlechner, M., Putz, R., Englmeier, K.H., Reiser, M., and Eckstein, F. (1999). In situ measurement of articular cartilage deformation in intact femoropatellar joints under static loading. J. Biomech. 32:1287–1295.
  • Ateshian, G.A., Kwak, S.D., Soslowsky, L.J., and Mow, V.C. (1994). A stereophotogrammetric method for determining in situ contact areas in diarthrodial joints, and a comparison with other methods. J. Biomech. 27:111–112.
  • Maxian, T.A., Brown, T.D., and Weinstein, S.L. (1995). Chronic stress tolerance levels for human articular cartilage: Two nonuniform contact models applied to long-term follow-up of CDH. J. Biomech. 28:159–166.
  • Bonassar, L.J., Grodzinsky, A.J., Srinivasan, A., Davila, S.G., and Trippel, S.B. (2000). Mechanical and physicochemical regulation of the action of IGF-I on articular cartilage. Arch. Biochem. Biophys. 379(1):57–63.
  • Grodzinsky, A.J., Levenston, M.E., Jin, M., and Frank, E.H. (2000). Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691–713.
  • Mauck, R.L., Soltz, M.A., Wang, C.C., Wong, D.D., Chao, P.H., Valhmu, W.B., Hung, C.T., and Ateshian, G.A. (2000). Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122(3):252–260.
  • Mauck, R.L., Seyhan, S.L., Ateshian, G.A., and Hung, C.T. (2002). Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30(8):1046–1056.
  • Mauck, R.L., Nicoll, S.B., Seyhan, S.L., Ateshian, G.A., and Hung, C.T. (2003). Synergistic action of growth factors and dynamic loading for articular cartilage tissue engineering. Tissue Eng. 9(4):597–611.
  • Engler, A.J., Sen, S., Sweeney, H.L., and Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell. 126(4):677–689.
  • Schuh, E., Hofmann, S., Stok, K.S., Notbohm, H., Müller, R., and Rotter, N. (2012). The influence of matrix elasticity on chondrocyte behavior in 3D. J. Tissue Eng. Regen. Med. 6(10):e31–e42 doi: 10.1002/term.501.
  • Schuh, E., Hofmann, S., Stok, K.S., Notbohm, H., Müller, R., and Rotter, N. (2012). Chondrocyte redifferentiation in 3D: The effect of adhesion site density and substrate elasticity. J. Biomed. Mater. Res. Part A. 100(1):38–47 . doi: 10.1002/jbm.a.33226.
  • Hoshiba, T., Yamada, T., Lu, H., Kawazoe, N., Tateishi, T., and Chen, G. (2008). Nuclear deformation and expression change of cartilaginous genes during in vitro expansion of chondrocytes. Biochem. Biophys. Res. Commun. 374(4):688–692.
  • Freed, L.E., Martin, I., and Vunjak-Novakovic, G. (1999). Frontiers in tissue engineering. In vitro modulation of chondrogenesis. Clin. Orthop. 367:S46–S58.
  • Sharma, B., and Elisseeff, J.H. (2004). Engineering structurally organized cartilage and bone tissues. Ann. Biomed. Eng. 32:148–159.
  • Park, J.S., Chu, J.S., Tsou, A.D., Diop, R., Tang, Z., Wang, A., and Li, S. (2011). The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β. Biomaterials. 32(16):3921–3930.
  • Chen, J., Irianto, J., Inamdar, S., Pravincumar, P., Lee, D.A., Bader, D.L., and Knight, M.M. (2012). Cell mechanics, structure, and function are regulated by the stiffness of the three-dimensional microenvironment. Biophys. J. 103(6):1188–1197.
  • Subramanian, A., and Lin, H.Y. (2005). Crosslinked chitosan: Its physical properties and the effects of matrix stiffness on chondrocyte cell morphology and proliferation. J. Biomed. Mater. Res. A. 75(3):742–753.
  • Pattappa, G., Heywood, H.K., de Bruijn, J.D., and Lee, D.A. (2011). The metabolism of human mesenchymal stem cells during proliferation and differentiation. J. Cell. Physiol. 226(10):2562–2570.
  • Heywood, H.K., and Lee, D.A. (2008). Monolayer expansion induces an oxidative metabolism and ROS in chondrocytes. Biochem. Biophys. Res. Commun. 373(2):224–229.
  • Heywood, H.K., Knight, M.M., and Lee, D.A. (2010). Both superficial and deep zone articular chondrocyte subpopulations exhibit the Crabtree effect but have different basal oxygen consumption rates. J. Cell. Physiol. 223(3):630–639.
  • Henrotin, Y., Kurz, B., and Aigner, T. (2005). Oxygen and reactive oxygen species in cartilage degradation: Friends or foes? Osteoarthr. Cartilage. 13(8):643–654.
  • Murphy, C.L., and Sambani, A. (2001). Effect of oxygen tension and alginate encapsulation on restoration of the differentiated phenotype of passaged chondrocytes. Tissue Eng. 7(6):791–803.
  • Murphy, C.L., Thoms, B.L., Vaghjiani, R.J., and Lafont, J.E. (2009). Hypoxia. HIF-mediated articular chondrocyte function: Prospects for cartilage repair. Arthritis Res. Ther. 11(1):213.
  • Thoms, B.L., and Murphy, C.L. (2010). Inhibition of hypoxia-inducible factor-targeting prolyl hydroxylase domain-containing protein 2 (PHD2) enhances matrix synthesis by human chondrocytes. J. Biol. Chem. 285(27):20472–20480.
  • Malda, J., Klein, T.J., and Upton, Z. (2007). Roles of hypoxia in the in vitro engineering of tissues. Tissue Eng. 13(9):2153–2162.
  • Sanz-Ramos, P., Mora, G., Ripalda, P., Vicente-Pascual, M., and Izal-Azcárate, I. (2012). Identification of signalling pathways triggered by changes in the mechanical environment in rat chondrocytes. Osteoarthr. Cartilage. 20:931–939.
  • Livak, K.J., and Schmittgen, T.D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25(4):402–408.
  • Lee, K., Kang, J.E., Park, S.K., Jin, Y., Chung, K.S., Kim, H.M., Lee, K., Kang, M.R., Lee, M.K., Song, K.B., Yang, E.G., Lee, J.J., and Won, M. (2010). LW6, a novel HIF-1 inhibitor, promotes proteasomal degradation of HIF-1alpha via upregulation of VHL in a colon cancer cell line. Biochem. Pharmacol. 80(7):982–989.
  • Discher, D.E., Janmey, P., and Wang, Y.L. (2005). Tissue cells feel and respond to the stiffness of their substrate. Science. 310(5751):1139–1143.
  • Pelham, R.J.Jr, and Wang, Y. (1997). Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl. Acad. Sci. USA. 94(25):13661–13665.
  • Peyton, S.R., and Putnam, A.J. (2005). Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion. J. Cell. Physiol. 204:198–209.
  • Sittinger, M., Bujia, T., Rotter, N., Reitzel, D., Minuthf, W.W., and Burmester, G.R. (1996). Tissue engineering and autologous transplant formation: Practical approaches with resorbable biomaterials and new cell culture techniques. Biomaterials. 17:237–242.
  • Vandenburgh, H., Del Tatto, M., Shansky, J., Lemaire, J., Chang, A., Payuno, F., Lee, P., Goodyear, A., and Raven, L. (1996). Tissue-engineered skeletal muscle organoids for reversible gene therapy. Hum. Gene Ther. 7(17):2195–2200.
  • Ragan, P.M., Staples, A.K., Hung, H.K., Chin, V.I., Binette, F., and Grodzinsky, A.J. (1998). Mechanical compression influences chondrocyte metabolism in a new alginate disk culture system. Trans. Orthop. Res. Soc. 12:991.
  • McBeath, R., Pirone, D.M., Nelson, C.M., Bhadriraju, K., and Chen, C.S. (2004). Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell. 6(4):483–495.
  • Jeong, C.G., and Hollister, S.J. (2010). Mechanical and biochemical assessments of three-dimensional poly(1,8-Octanediol-co-Citrate) scaffold pore shape and permeability effects on in vitro chondrogenesis using primary chondrocytes. Tissue Eng. Part A. 16(12):3759–3768.
  • Malda, J., Woodfield, T.B., van der Vloodt, F., Wilson, C., Martens, D.E., Tramper, J., van Blitterswijk, C.A., and Riesle, J. (2005). The effect of PEGT/PBT scaffold architecture on the composition of tissue engineered cartilage. Biomaterials. 26:63–72.
  • Miot, S., Woodfield, T., Daniels, A.U., Suetterlin, R., Peterschmitt, I., Heberer, M., van Blitterswijk, C.A., Riesle, J., and Martin, I. (2005). Effects of scaffold composition and architecture on human nasal chondrocyte redifferentiation and cartilaginous matrix deposition. Biomaterials. 26:2479–2489.
  • Woodfield, T.B., Malda, J., de Wijn, J., Peters, F., Riesle, J., and van Blitterswijk, C.A. (2004). Design of porous scaffolds for cartilage tissue engineering using a three-dimensional fiber-deposition technique. Biomaterials. 25:4149–4161.
  • Allen, J.L., Cooke, M.E., and Alliston, T. (2012). ECM stiffness primes the TGFß pathway to promote chondrocyte differentiation. Mol. Biol. Cell. 23(18):3731–3742.
  • Marchisio, P.C. (1991). Integrins and tissue organization. Adv. Neuroimmunol. 1:214–234.
  • Assoian, R.K. (1997). Anchorage-dependent cell cycle progression. J. Cell. Biol. 136(1):1–4.
  • Assoian, R.K., and Zhu, X. (1997). Cell anchorage and the cytoskeleton as partners in growth factor dependent cell cycle progression. Curr. Opin. Cell Biol. 9(1):93–98.
  • Margadant, C., van Opstal, A., and Boonstra, J. (2007). Focal adhesion signaling and actin stress fibers are dispensable for progression through the ongoing cell cycle. J. Cell Sci. 120(Pt 1):66–76.
  • Nathan, A.S., Baker, B.M., Nerurkar, N.L., and Mauck, R.L. (2011). Mechano-topographic modulation of stem cell nuclear shape on nanofibrous scaffolds. Acta Biomater. 1:57–66.
  • Sasazaki, Y., Seedhom, B.B., and Shore, R. (2008). Morphology of the bovine chondrocyte and of its cytoskeleton in isolation and in situ: Are chondrocytes ubiquitously paired through the entire layer of articular cartilage? Rheumatology. 47:1641–1646.
  • De Luca, M., Tamura, R.N., Kajiji, S., Bondanza, S., Rossino, P., Cancedda, R.Marchisio, P.C., and Quaranta, V. (1990). Polarized integrin mediates keratinocyte adhesion to basal lamina. Proc. Natl. Acad. Sci. USA. 87:6888–6892.
  • Silver, I.A. (1975). Measurement of pH and ionic composition of pericellular sites. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 271(912):261–272.
  • Robins, J.C., Akeno, N., Mukherjee, A., Dalal, R.R., Aronow, B.J., Koopman, P., and Clemens, T.L. (2005). Hypoxia induces chondrocyte-specific gene expression in mesenchymal cells in association with transcriptional activation of Sox9. Bone. 37(3):313–322.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.