847
Views
8
CrossRef citations to date
0
Altmetric
Review Article

Toll-like receptors (TLRs) and mannan-binding lectin (MBL): On constant alert in a hostile environment

Pages 90-99 | Received 22 Nov 2010, Accepted 01 Dec 2010, Published online: 17 Feb 2011

References

  • Palm NW, Medzhitov R. Pattern recognition receptors and control of adaptive immunity. Immunol Rev. 2009;227:221–33.
  • Pangburn MK, Ferreira VP, Cortes C. Discrimination between host and pathogens by the complement system. Vaccine. 2008;(26Suppl8):I15–21.
  • Crocker PR, Paulson JC, Varki A. Siglecs and their roles in the immune system. Nat Rev Immunol. 2007;7:255–66.
  • vanBeek EM, Cochrane F, Barclay AN, van den Berg TK. Signal regulatory proteins in the immune system. J Immunol. 2005;175:7781–7.
  • Venkatesh B. Evolution and diversity of fish genomes. CurrOpin Genet Dev. 2003;13:588–92.
  • Magnadóttir B. Innate immunity of fish (overview). Fish Shellfish Immunol. 2006;20:137–51.
  • Rebl A, Goldammer T, Seyfert HM. Toll-like receptor signaling in bony fish. Vet ImmunolImmunopathol. 2010;134:139–50.
  • Nikolakopoulou K, Zarkadis IK. Molecular cloning and characterisation of two homologues of Mannose-Binding Lectin in rainbow trout. Fish Shellfish Immunol. 2006;21:305–14.
  • Zarkadis IK, Mastellos D, Lambris JD. Phylogenetic aspects of the complement system. Dev Comp Immunol. 2001;25:745–62.
  • Zipfel PF. Complement and immune defense: from innate immunity to human diseases. ImmunolLett. 2009;126:1–7.
  • Kabelitz D, Medzhitov R. Innate immunity-cross-talk with adaptive immunity through pattern recognition receptors and cytokines. CurrOpinImmunol. 2007;19:1–3.
  • Medzhitov R, Janeway CA Jr. Decoding the patterns of self and nonself by the innate immune system. Science. 2002;296:298–300.
  • Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol. 2001;1:135–45.
  • Zhang X, Kimura Y, Fang C, Zhou L, Sfyroera G, Lambris JD. Regulation of Toll-like receptor-mediated inflammatory response by complement in vivo. Blood. 2007;110:228–36.
  • Garlanda C, Maina V, Cotena A, Moallia F. The soluble pattern recognition receptor pentraxin-3 in innate immunity, inflammation and fertility. J ReprodImmunol. 2009;83:128–33.
  • Hajishengallis G, Lambris JD. Crosstalk pathways between Toll-like receptors and the complement system. Trends Immunol. 2010;31:154–63.
  • Friec GL, Kemper C. Complement: coming full circle. Arch ImmunolTherExp (Warsz). 2009;57:393–407.
  • Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature. 1997;388:394–7.
  • Larsen PH, Holm TH, Owens T. Toll-like receptors in brain development and homeostasis. SciSTKE. 2007; 2007:pe47.
  • Ma Y, Li J, Chiu I, Wang Y, Sloane JA, Lü J, Toll-like receptor 8 functions as a negative regulator of neurite outgrowth and inducer of neuronal apoptosis. J Cell Biol. 2006;175:209–15.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–84.
  • Beutler B, Rehli M. Evolution of the TIR, Tolls and TLRs: functional inferences from computational biology. Curr Top MicrobiolImmunol. 2002;270:1–21.
  • Hughes AL, Piontkivska H. Functional diversification of the toll-like receptor gene family. Immunogenetics. 2008;60:249–56.
  • Kruithof EKO, Satta N, Liu JW, Dunoyer-Geindre S, Fish RJ. Gene conversion limits divergence of mammalian TLR1 and TLR6. BMC Evol Biol. 2007;7:148.
  • Boyd A, Philbin VJ, Smith AL. Conserved and distinct aspects of the avian Toll-like receptor (TLR) system: implications for transmission and control of bird-borne zoonoses. BiochemSoc Trans. 2007;35:1504–7.
  • Tenor JL, Aballay A. A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity. EMBO Rep. 2008;9:103–9.
  • Hibino T, Loza-Coll M, Messier C, Majeske AJ, Cohen AH, Terwilliger DP, The immune gene repertoire encoded in the purple sea urchin genome. Dev Biol. 2006;300:349–65.
  • Zhang Q, Zmasek CM, Godzik A. Domain architecture evolution of pattern-recognition receptors. Immunogenetics. 2010;62:263–72.
  • Huang S, Yuan S, Guo L, Yu Y, Li J, Wu T, Genomic analysis of the immune gene repertoire of amphioxus reveals extraordinary innate complexity and diversity. Genome Res. 2008;18:1112–26.
  • Ishii A, Kawasaki M, Matsumoto M, Tochinai S, Seya T. Phylogenetic and expression analysis of amphibian Xenopus Toll-like receptors. Immunogenetics. 2007;59:281–93.
  • Ishii A, Matsuo A, Sawa H, Tsujita T, Shida K, Matsumoto M, Lamprey TLRs with properties distinct from those of the variable lymphocyte receptors. J Immunol. 2007;178:397–406.
  • Tsujita T, Tsukada H, Nakao M, Oshiumi H, Matsumoto M, Seya T. Sensing bacterial flagellin by membrane and soluble orthologs of Toll-like receptor 5 in rainbow trout (Onchorhynchusmikiss). J Biol Chem. 2004;279:48588–97.
  • LeBouder E, Rey-Nores JE, Rushmere NK, Grigorov M, Lawn SD, Affolter M, Soluble forms of Toll-like receptor (TLR)2 capable of modulating TLR2 signaling are present in human plasma and breast milk. J Immunol. 2003;171:6680–9.
  • Iwami KI, Matsuguchi T, Masuda A, Kikuchi T, Musikacharoen T, Yoshikai Y. Cutting edge: naturally occurring soluble form of mouse Toll-like receptor 4 inhibits lipopolysaccharide signaling. J Immunol. 2000;165:6682–6.
  • Uenishi H, Shinkai H. Porcine Toll-like receptors: the front line of pathogen monitoring and possible implications for disease resistance. Dev Comp Immunol. 2008;33:353–61.
  • Roach JC, Glusman G, Rowen L, Kaur A, Purcell MK, Smith KD, The evolution of vertebrate Toll-like receptors. ProcNatlAcadSci U S A. 2005;102:9577–82.
  • Hasan U, Chaffois C, Gaillard C, Saulnier V, Merck E, Tancredi S, Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J Immunol. 2005;174:2942–50.
  • Takeda K, Akira S. Toll-like receptors in innate immunity. IntImmunol. 2005;17:1–14.
  • Liew FY, Xu D, Brint EK, O'Neill LA. Negative regulation of toll-like receptor-mediated immune responses. Nat Rev Immunol. 2005;5:446–58.
  • Hennessy EJ, O'Neill LAJ. Toll-like receptors: very clever molecules. Available at: http://www.abcam.com/index.html?pageconfig=resource&rid=12189&pid=10629 (accessed 5 November 2010).
  • Zhong F, Cao W, Chan E, Tay PN, Cahya FF, Zhang H, Deviation from major codons in the Toll-like receptor genes is associated with low Toll-like receptor expression. Immunology. 2005;114:83–93.
  • Bergman IM, Rosengren JK, Edman K, Edfors I. European wild boars and domestic pigs display different polymorphic patterns in the Toll-like receptor (TLR) 1, TLR2, and TLR6 genes. Immunogenetics. 2010;62:49–58.
  • Phelan PE, Mellon MT, Kim CH. Functional characterization of full-length TLR3, IRAK-4, and TRAF6 in zebrafish (Daniorerio). MolImmunol. 2005;42:1057–71.
  • Bilak H, Tauszig-Delamasure S, Imler JL. Toll and Toll-like receptors in Drosophila. BiochemSoc Trans. 2003;31:648–51.
  • Gangloff M, Murali A, Xiong J, Arnot CJ, Weber AN, Sandercock AM, Structural insight into the mechanism of activation of the Toll receptor by the dimeric ligand Spätzle. J Biol Chem. 2008;283:14629–35.
  • Nürnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev. 2004;198:249–66.
  • Burch-Smith TM, Dinesh-Kumar SP. The functions of plant TIR domains. SciSTKE. 2007; 2007:pe46.
  • Lillie BN, Brooks AS, Keirstead ND, Hayes MA. Comparative genetics and innate immune functions of collagenous lectins in animals. Vet ImmunolImmunopathol. 2005;108:97–110.
  • Ikeda K, Sannoh T, Kawasaki N, Kawasaki T, Yamashina I. Serum lectin with known structure activates complement through the classical pathway. J Biol Chem. 1987;262:7451–4.
  • Fujita T, Matsushita M, Endo Y. The lectin-complement pathway-its role in innate immunity and evolution. Immunol Rev. 2004;198:185–202.
  • Takahashi M, Iwaki D, Matsushita A, Nakata M, Matsushita M, Endo Y, Cloning and characterization of mannose-binding lectin from lamprey (Agnathans). J Immunol. 2006;176:4861–8.
  • Hummelshoj T, Fog LM, Madsen HO, Sim RB, Garred P. Comparative study of the human ficolins reveals unique features of Ficolin-3 (Hakata antigen). MolImmunol. 2008;45:1623–32.
  • Skjoedt MO, Hummelshoj T, Palarasah Y, Honore C, Koch C, Skjodt K, A novel mannose-binding lectin/ficolin-associated protein is highly expressed in heart and skeletal muscle tissues and inhibits complement activation. J Biol Chem. 2010;285:8234–43.
  • Brikos C, O'Neill AJO. Signalling of Toll-like receptors. In: Bauer S, Hartmann G, editors. Toll-like receptors (TLRs) and innate immunity. Berlin Heidelberg: Springer-Verlag; 2008. p. 21–50.
  • Koneti A, Linke MJ, Brummer E, Stevens DA. Evasion of innate immune responses: evidence for mannose binding lectin inhibition of tumor necrosis factor alpha production by macrophages in response to Blastomyces dermatitidis. Infect Immun. 2008;76:994–1002.
  • Sato M, Sano H, Iwaki D, Kudo K, Konishi M, Takahashi H, Direct binding of Toll-like receptor 2 to zymosan, and zymosan-induced NF-kappa B activation and TNF-alpha secretion are down-regulated by lung collectin surfactant protein A. J Immunol. 2003;171:417–25.
  • Garred P, Larsen F, Seyfarth J, Fujita R, Madsen HO. Mannose-binding lectin and its genetic variants. Genes Immun. 2006;7:85–94.
  • Iwaki D, Kanno K, Takahashi M, Endo Y, Lynch NJ, Schwaeble WJ, Small mannose-binding lectin-associated protein plays a regulatory role in the lectin complement pathway. J Immunol. 2006;177:8626–32.
  • Hughes AL. Looking for Darwin in all the wrong places: the misguided quest for positive selection at the nucleotide sequence level. Heredity. 2007;99:364–73.
  • Kryazhimskiy S, Plotkin JB. The population genetics of dN/dS. PLoS Genet. 2008;4:e1000304.
  • Wolf JB, Künstner A, Nam K, Jakobsson M, Ellegren H. Nonlinear dynamics of nonsynonymous (dN) and synonymous (dS) substitution rates affects inference of selection. Genome BiolEvol. 2009;1:308–19.
  • Portnoy DA. Manipulation of innate immunity by bacterial pathogens. CurrOpinImmunol. 2005;17:25–8.
  • Werling D, Jann OC, Offord V, Glass EJ, Coffey TJ. Variation matters: TLR structure and species-specific pathogen recognition. Trends Immunol. 2009;30:124–30.
  • Higuchi M, Matsuo A, Shingai M, Shida K, Ishii A, Funami K, Combinational recognition of bacterial lipoproteins and peptidoglycan by chicken Toll-like receptor 2 subfamily. Dev Comp Immunol. 2008;32:147–55.
  • Jann OC, Werling D, Chang JS, Haig D, Glass EJ. Molecular evolution of bovine Toll-like receptor 2 suggests substitutions of functional relevance. BMC Evol Biol. 2008;8:288.
  • Stephan K, Smirnova I, Jacque B, Poltorak A. Genetic analysis of the innate immune responses in wild-derived inbred strains of mice. Eur J Immunol. 2007;37:212–23.
  • White SN, Taylor KH, Abbey CA, Gill CA, Womack JE. Haplotype variation in bovine Toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. ProcNatlAcadSci U S A. 2003;100:10364–9.
  • Shinkai H, Tanaka M, Morozumi T, Eguchi-Ogawa T, Okumura N, Muneta Y, Biased distribution of single nucleotide polymorphisms (SNPs) in porcine Toll-like receptor 1 (TLR1), TLR2, TLR4, TLR5, and TLR6 genes. Immunogenetics. 2006;58:324–30.
  • Morozumi T, Uenishi H. Polymorphism distribution and structural conservation in RNA-sensing Toll-like receptors 3, 7, and 8 in pigs. BiochimBiophysActa. 2009;1790:267–74.
  • Chen JS, Wang TY, Tzeng TD, Wang CY, Wang D. Evidence for positive selection in the TLR9 gene of teleosts. Fish Shellfish Immunol. 2008;24:234–42.
  • Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Evolutionary dynamics of human Toll-like receptors and their different contributions to host defense. PLoS Genet. 2009;5:e1000562.
  • Wlasiuk G, Nachman MW. Adaptation and constraint at Toll-like receptors in primates. MolBiolEvol. 2010;27:2172–86.
  • Seabury CM, Seabury PM, Decker JE, Schnabel RD, Taylor JF, Womack JE. Diversity and evolution of 11 innate immune genes in Bostaurustaurus and Bostaurusindicus cattle. ProcNatlAcadSci U S A. 2010;107:151–6.
  • Jin MS, Kim SE, Heo JY, Lee ME, Kim HM, Paik SG, Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell. 2007;130:1071–82.
  • Subramanian S, Kumar S. Higher intensity of purifying selection on >90% of the human genes revealed by the intrinsic replacement mutation rates. MolBiolEvol. 2006;23:2283–7.
  • Garred P, Honoré C, Ma YJ, Munthe-Fog L, Hummelshøj T. MBL2, FCN1, FCN2 and FCN3-the genes behind the initiation of the lectin pathway of complement. MolImmunol. 2009;46:2737–44.
  • Turner MW. The role of mannose-binding lectin in health and disease. MolImmunol. 2003;40:423–9.
  • Santos IK, Costa CH, Krieger H, Feitosa MF, Zurakowski D, Fardin B, Mannan-binding lectin enhances susceptibility to visceral leishmaniasis. Infect Immun. 2001;69:5212–15.
  • Garred P, Richter C, Andersen AB, Madsen HO, Mtoni I, Svejgaard A, Mannan-binding lectin in the sub-Saharan HIV and tuberculosis epidemics. Scand J Immunol. 1997;46:204–8.
  • Denholm JT, McBryde ES, Eisen DP. Mannose-binding lectin and susceptibility to tuberculosis: a meta-analysis. ClinExpImmunol. 2010;162:84–90.
  • Seyfarth J,Garred P, Madsen HO. The ‘involution’ of mannose-binding lectin. Hum Mol Genet. 2005;14:2859–69.
  • Lillie BN, Keirstead ND, Squires EJ, Hayes MA. Single-hnucleotide polymorphisms in porcine mannan-binding lectin A. Immunogenetics. 2006;58:983–93.
  • Juul-Madsen HR, Krogh-Meibom T, Henryon M, Palaniyar N, Heegaard PM, Purup S, Identification and characterization of porcine mannan-binding lectin A (pMBL-A), and determination of serum concentration heritability. Immunogenetics. 2007;58:129–37.
  • Bernig T, Taylor JG, Foster CB, Staats B, Yeager M, Chanock SJ. Sequence analysis of the mannose-binding lectin (MBL2) gene reveals a high degree of heterozygosity with evidence of selection. Genes Immun. 2004;5:461–76.
  • Verdu P, Barreiro LB, Patin E, Gessain A, Cassar O, Kidd JR, Evolutionary insights into the high worldwide prevalence of MBL2 deficiency alleles. Hum Mol Genet. 2006;15:2650–8.
  • Barreiro LB, Quintana-Murci L. From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet. 2010;11:17–30.
  • Enard D, Depaulis F, Crollius HR. Human and non-human primate genomes share hotspots of positive selection. PLoS Genet. 2010;6:e1000840.