193
Views
1
CrossRef citations to date
0
Altmetric
Innovations

Development and evaluation of thin-film flexible microelectrode arrays for retinal stimulation and recording

, , &
Pages 79-85 | Received 02 Jul 2012, Accepted 07 Aug 2012, Published online: 18 Dec 2012

References

  • Litke, A.M., Bezayiff, N., Chichilnisky, E.J., Cunningham, W., Dabrowski, W., Grillo, A.A., Grivich, M., Grybos, P., Hottowy, P., Kachiguine, S., Kalmar, R.S., Mathieson, K., Petrusca, D., Rahman, M., and Sher, A., 2004, What does the eye tell the brain? Development of a system for large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51, 1434–1440
  • Kim, S.Y., Sadda, S., Pearlman, J., Humayun, M.S., de Juan, E.Jr, Melia, B.M., and Green, W.R., 2002, Morphometric analysis of the macula in eyes with disciform age-related macular degeneration. Retina, 22, 471–477
  • Medeiros, N.E., and Curcio, C.A., 2011, Preservation of ganglion cell layer neurones in age-related macular degeneration. Investigative Ophthalmology, 42, 795–803
  • Humayan, M.S., Prince, M., and de Juan, E.Jr, 1999, Morphometreic analysis of the extramucular retina from postmortem eyes with retinitis pigmentosa. Investigative Ophthalmology, 40, 143–148
  • Zrenne, E., 2002, Will retinal implants restore vision?. Science, 295, 1022–1025
  • Chow, A.Y., Chow, V.Y., Packo, K.H., Pollack, J.S., Peyman, G.A., and Scuchard, R., 2004, The artificial silicon retina microchip for the treatment of visual loss from retinitis opigmentosa. Archives of Ophthalmology, 122, 460–469
  • Humayun, M.S., Weiland, J.D., Fujii, G.Y., Greenberg, R., Williamson, R., Little, J., Mech, B., Cimmarusti, V., Van Boemel, G., Dagnelie, G., and de Juan, E.Jr, 2003, Visual perception in a blind subject with a chronic microelectronic retinal prosthesis. Vision Research, 43, 2573–2581
  • Mathieson, K., Kachiguine, S., Adams, C., Cunningham, W., Gunning, D., O'shea, V., Smith, K.M., Chichilnisky, E.J., Litke, A.M., Sher, A., and Rahman, M., 2004, Large-area microelectrode arrays for recording of neural signals. IEEE Transactions on Nuclear Science, 51, 2027–2031
  • Chen, Y.-C., Hsu, H.-L., Lee, Y.-T., Su, H.-C., Yen, S.-J., Chen, C.-H., Hsu, W.-L., Yew, T.-R., Yeh, S.-R., Yao, D.-J., Chang, Y.-C., and Chen, H., 2011, An active flexible carbon nanotube microelectrode array for recording electrocorticograms. Journal of Neural Engineering, 8, 1–7
  • Du, J., Blanche, T.J., Harrison, R.R., Lester, H.A., and Masmanidis, S.C., 2011, Multiplexed, high density electrophysiology with nanofabricated neural probes. PLOS One, 6, 1–11
  • Adams, C., Mathieson, K., Gunning, D., Cunningham, W., Rahman, M., Morrison, J.D., and Prydderch, M.L., 2005, Development of flexible arrays for in vivo neuronal recording and stimulation. Nuclear Instruments and Methods in Physics Research A, 546, 154–159
  • Maturana, H.R., Lettvin, J.Y., McCulloch, W.S., and Pitts, W.H., 1960, Anatomy and physiology of vision in the frog (Rana pipiens). Journal of General Physiology, 43, 129–175
  • Morriso, J.D., 1975, The response of the retinal ganglion cells of the frog. Vision Research, 15, 1339–1344
  • Dacey, D.M., 1993, The mosaic of midget ganglion cells in the human retina. Journal of Neuroscience, 13, 5334–5355
  • Hart, M.D., Prydderch, M.L., Morrison, J.D., Murdoch, D., and Mathieson, K., 2009, Programmable active pixel sensor to investigate neural interactions within the retina. Proceedings SPIE, 7365, 1–10
  • Sekirnjak, C., Hottowy, P., Sher, A., Dabrowski, W., Litke, A.M., and Chichilnisky, E.J., 2006, Electrical stimulation of mammalian retinal ganglion cells with multielectrode arrays. Journal of Neurophysiology, 95, 3311–3327
  • Seo, J.‐M., Kim, S.J., Chung, H., Kim, E.T., Yu, H.G., and Yu, Y.S., 2004, Biocompatibility of polyimide microelectrode array for retinal stimulation. Materials Science & Engineering, C24, 185–189
  • Stieglitz, T., Beutel, H., Keller, R., and Meyer, J.‐U., 2004, A flexible retina implant for people suffering from retinitis pigmentosa. Proceedings of the 26th Annual Conference IEEE Engineering Management Society (Sendai, Japan), pp. 4178–4181
  • Besch, D., Sachs, H., Szurman, P., Gulicher, D., Wilke, R., Reinert, S., Zrenner, E., Bartz-Schmidt, K.U., and Gekeler, F., 2008, Extraocular surgery for implantation of an active subretinal visual prosthesis with external connections: Feasibility and outcome in seven patients. British Journal of Ophthalmology, 92, 1361–1368
  • Humayun, M.S., de Juan, E.Jr, Weiland, J.D., Dagnelie, G., Katona, S., Greenberg, R., and Suzuki, S, 1999, Pattern electrical stimulation of the human retina. Vision Research, 39, 2569–2576
  • Caspi, A., Dorn, J.D., McClure, K.H., Humayun, M.S., Greenberg, R.J., and McMahon, M.J., 2009, Spatial vision with a 16-electrode implant. Archives of Ophthalmology, 127, 398–401
  • Zrenner, E., Stett, A., Weiss, S., Aramant, R.B., Guenther, E., Kohler, K., Miliczek, K.‐D., Seiler, M.J., and Haemmerle, H., 1999, Can subretinal microphotodiodes successfully replace degenerated photoreceptors?. Vision Research, 39, 2555–2567
  • Zrenner, E., Bartz-Schmidt, K.U., Benav, H., Besch, D., Bruckmann, A., Gabel, V.‐P., Gekeler, F., Greppmaier, U., Harscher, A., Kibbel, S., Koch, J., Kusnyerik, A., Peters, T., Stingl, K., Sachs, H., Stett, A., Szurman, P., Wilhelm, B., and Wilke, R., 2011, Subretinal electronic chips allow blind patients to read letters and combine them to words. Proceedings of the Royal Society London B, 278, 1489–1497
  • Viventi, J., Kim, D.-H., Vigeland, L., Frechette, E.S., Blanco, J.A., Kim, Y.-S., Avrin, A.E., Tiruvadi, V.R., Hwang, S.-W., Vanleer, A.C., Wulsin, D.F., Davis, K., Gelber, C.E., Palmer, L., Van der Spiegel, J., Wu, J., Xiao, J., Huang, Y., Contreras, D., Rogers, J.A., and Litt, B., 2011, Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nature Neuroscience, 14, 1599–1605
  • Tscherter, A., Marc, O., Heuschkel, M.O., Renaud, P., and Streit, J., 2001, Spatiotemporal characterization of rhythmic activity in rat spinal cord slice cultures. European Journal of Neuroscience, 14, 179–190
  • Wong, K.Y., Dunn, F.A., Graham, D.M., and Berson, D.M., 2007, Synaptic influences on rat ganglion-cell photoreceptors. Journal of Physiology, 582, 279–296
  • Sekirnjak, C., Hottowy, P., Sher, A., Dabrowski, V., Litke, A.M., and Chichilnisky, E.J., 2008, High-resolution electrical stimulation of primate retina for epiretinal implant design. Journal of Neuroscience, 28, 4446–4456
  • Gunning, D., Adams, C., Cunningham, W., Mathieson, K., O'shea, V., Smith, K.M., Chichilnisky, E.J., Litke, A.M., and Rahman, M., 2005, 30 µm spacing 519-electrode arrays for in vitro retinal studies. Nuclear Instruments and Methods in Physics Research A, 546, 148–153
  • Hubbard, J.I., Llinas, R., and Quastel, D.M.J., 1969, Electrophysiological Analysis of Synaptic Transmission. (London: Edward Arnold)
  • Jensen, R.J., Ziv, O.R., and Rizzio, J.F., 2005, Responses of rabbit retinal ganglion cells to electrical stimulation with an epiretinal electrodes. Journal of Neural Engineering, 2, S16–S21
  • Talukder, M.I., Siy, P., and Auner, G.W., 2008, High resolution implantable microsystem and probe design for retinal prosthesis. Open Ophthalmology Journal, 2, 77–90
  • Holsheimer, J., Dijkstra, E.A., Demeulemeester, H., and Nuttin, B., 2000, Chronaxie calculated from current-duration and voltage-duration data. Journal of Neuroscience Methods, 97, 45–50
  • Shannon, R.V., 1992, A model for safe levels of electrical stimulation. IEEE Transactions on Biomedical Engineering, 39, 424–426
  • McCreery, D.B., Agnew, W.F., Yuen, T.G.H., and Bullara, L., 1990, Charge density and charge per phase as cofactors in neural injury induced by electrical stimulation. IEEE Transactions on Biomedical Engineering, 37, 996–1001
  • Rose, T.L., and Robblee, L.S., 1990, Electrical stimulation with Pt electrodes. VIII Electrochemically safe charge injection limits with 0.2 ms pulses. IEEE Transactions on Biomedical Engineering, 37, 1118–1120
  • Palanker, D., Vankov, A., Huie, P., and Baccus, S., 2005, Design of a high-resolution optoelectronic retinal prosthesis. Journal of Neural Engineering, 2, S105–S120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.