33
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Development of a Natural Degradable Polymer for Orthopaedic Use

Pages 129-137 | Published online: 09 Jul 2009

References

  • Muller M. E., Allgower R. M., Schneider R., Willenegger H. Manual of Internal Fixation. Springer-Verlag, Berlin 1979
  • Schatzker J., Tile M. The Rationale of Operative Fracture Care. Springer-Verlag, Berlin 1987
  • Cochran C. V. B. Effects of internal fixation plates on mechanical deformation of bone. Surgical Forum 1969; 20: 469–471
  • Uhthoff H. K., Dubuc F. L. Bone structure changes in the dog under rigid internal fixation. Clinical Orthopaedics 1971; 81: 165–170
  • Bradley G. W., McKenna G. B., Dunn H. K., Daniels A. U., Statton W. O. Journal of Bone and Joint Surgery 1979; 61–A: 866–872
  • Tormala P., Vasenius J., Vainionpaa S., Laiho J., Pohjonen T., Rokkanen P. Ultra high strength absorbable self reinforced polyglycolide (SR-PGA) composite rods for internal fixation of bone fractures: in vitro and in vivo study. Journal of Biomedical Materials Research 1991; 25: 1–22
  • Lewis D., Dunn R., Casper R., Tipton A. Absorbable fixation plates with fiber reinforcement. Presented at the 7th Annual Meeting, Society of Biomaterials, New York, 1981, 61
  • Kilpikari J., Tormala P. Carbon fibre reinforced biodegradable and non-biodegradable polymers as bone plate materials. Presented at the 2nd World Congress of Biomaterials. Washington, DC 1984; 242
  • Bostman O., Hirvensalo E., Makinen J., Rokkanen P. Foreign body reactions to fracture fixation implants of biogradable synthetic polymers. Journal of Bone and Joint Surgery 1990; 72–B: 592–596
  • Santavirta S., Konttinen Y. T., Saito T., Gronblad M., Partio E., Kemppinen P., Rokkanen P. Immune response to polyglycolic acid implants. Journal of Bone and Joint Surgery 1990; 72–B: 597–600
  • Bos R. R. M., Boering G., Rozema F. R., Leenslag J. W. Resorbable poly(l-lactide) plates and screws for the fixation of zygomatic fractures. Journal of Oral and Maxillofacial Surgery 1987; 45: 751–753
  • Leenslag J. W., Pennings A. J., Bos R. R. M., Rozema F. R., Boering G. Resorbable materials of poly(l-lactide). VII. In vivo and in vitro degradation. Biomaterials 1987; 8: 311–314
  • Rozema F. R., Bos R. R. M., Boering G., Leenslag J. W., Pennings A. J. Experimental fractures of the mandibular body of sheep and dogs: a new technique. British Journal of Oral and Maxillofacial Surgery, 2 1989; 7: 163–168
  • Bos R. R. M., Rozema F. R., Boering G., Nijenhuis A. J., Pennings A. J., Verwey A. B., Nieuwenhuis P., Jansen H. W. B. Degradation of and tissue reaction to biodegradable poly(l-lactide) for use as internal fixation of fractures. Biomaterials 1991; 12: 32–36
  • Leenslag J. W., Pennings A. J., Bos R. R. M., Rozema F. R., Boering G. Resorbable materials of poly(l-lactide). VI. Plates and screws for internal fracture fixation. Biomaterials 1987; 8: 70–73
  • Baptist J. N., Werber F. X. Poly(B-hydroxybuatyric acid), naturally occurring thermoplastic material. Society of Plastics Engineers, Transactions 1964; 4: 245–250
  • Holmes P. A. Applications of PHB-a microbially produced biodegradable thermoplastic. Physics and Technology 1985; 16: 32–36
  • Emsley J. Degradable plastics. New Scientist. 1991; 1–4
  • Ando Y., Fukada E. Piezoelectric properties and molecular motion of poly(B-hydroxvbutyrate) films. Journal of Polymer science 1984; 21: 1821–1834
  • Fukada E., Anw Y. Bending piezoelectricity in a microbially produced poly-B-hydroxybutyrate. Biorheology 1988; 25: 297–302
  • Grassie N., Murray E. J., Holmes P. A. The thermal degradation of poly(-d)-B-hydroxybutyric acid), a naturally occurring thermoplastic. Part 1. Identification and quantitative analysis of products. Polymer. Degradation and Stability 1984; 6: 47–61
  • Grassie N., Murray E. J., Holmes P. A. The thermal degradation of poly(-d)-B-hydroxybutyric acid), a naturally occurring thermoplastic. Part 2. Changes inmolecular weight. Polymer Degradation and Stability 1984; 6: 95–103
  • Organ S. J., Barham P. J. An etching for poiy(3–hydroxybutyrate) copolymers. Journal of Material Science Letters 1989; 8: 621–623
  • Bissery M. C., Puisieux F., Thies C. A study of the process parameters in the making of microspheres by the solvent evaporation process. Exposition, Congress of International Technology and Pharmacy 1984; 3: 233–239
  • Bissery M. C., Valeriote F., Thies C. In vitro and in vivo evaluation of CCNU loaded microspheres prepared from poly(+)-lactide and poly(B-hydroxybutyrate). Microspheres and Drug Therapy. Pharmaceutical, Immunological and Medical Aspsets, S. S. Davies, L. Illum, J. G. McVie, E. Tomlinson. Elsevier, Amsterdam. 1984; 217–227
  • von Korsatko W., Wabnegg B, Braunegg G., Lafferty R. M. Poly-d-(-)-3–hydroxybutyric acid (poly-HBA)—a biodegradable carrier for long term medication dosage. 1: Development of parenteral matrix tablets for long term application of pharmaceuticals. Pharmacy and Industry 1983; 45: 525–527
  • von Korsatko W., Wabnegg B., Tillian H. M., Braunegg G. Poly-d-(-)-3–hydroxybutyric acid (poly-H3A)—a biogradable former for long term medication dosage. 2: The biodegradation in animal organism and in vitroenin vivo correction of the liberation of pharmaceuticals from parenteral matrix retard tablets. Pharmacy and Industry 1983; 45: 1004–1007
  • von Korsatko W., Wabnegg B., Tillian H. M., Egger G., Pfragner R, Walser V. Poly-d-(—)-3–hydroxybutyric acid (poiy-H3A)—a bidegradable former for long term medication dosage. 3 Studies on compatibility of ply-HBA implantation tablets in tissue culture and animals. Pharmacy and Industry 1984; 46: 952–954
  • Miller N. D, Williams D. F. On the biodegradation of poly-B-hydroxybutyrate (PHB) homo-polymer and poly-B-hydroxybutrate-hydroxyvalerate copolymers. Biomaterials 1987; 8: 129–137
  • Holland S. J., Jolly A. M., Yasn M., Tighe B. J. Polymes for biodegradable medical devices. II. Hydroxybutyrate-hydroxyvalerate copolymers. Biomateri als 1987; 8: 289–295
  • Holland S. J., Yasin M., Tighe B. J. Polymers for biodegradable medical devices II. Hydroxybutyrate-hydroxyvalerate copolymers: degradation of copolymers and their blends with polysaccharides under in vitro physiological. Biomaterials 1990; 11: 206–215
  • Knowles J. C. Polymer glass composites for surgical implants, PhD thesis. Staffordshire Polytechnic. 1991
  • Doyle C., Tanner K. E., BonField W. In vitro and in vivo evaluation of polyhyrodxybztyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 1991; 12: 841–847
  • Burnie J. Controlled release glass (CRG)—a new biomaterial, PhD thesis. University of Strathclyde. 1982
  • Fukada E., Yasuda I. On the piezoelectri effect of bone. Journal of the Physical Society of Japan 1957; 12: 1158–1162
  • Bassett C. A. L., Pawluk R. J., Becker R. O. Effect of electric currents in bone. Nature 1964; 204: 652–654
  • Knowles J. C., Mahmud F. A., Hastings G. W. Piezoelectric characteristics of a polyhydroxybutyrate based composite. Clinical Materials 1991; 8: 155–158
  • Holland S. J., Tighe B. J., Gould P. L. Polymers for biodegradable medical devices. The potential of polyesters as controlled macromolecular release systems. Journal of Controlled Release 1986; 4: 155–180
  • Osborn J. F., Newesley H. The materials science of calcium phosphate ceramics. Biomaterials 1980; 1: 108–111
  • Higashi S., Yamamuro T., Nakamura T., Ikada Y., Hyon S. H., Jamshida K. Polymer-hydroxyapatite composites for biodegradable bone fillers. Biomaterials 1986; 7: 183–187
  • Niwa S., Hori M. Clinical application of synthetic hydroxyapatite for filling bone defects. Bioceramics, Proceedings of the 1st International Bioceramics Symposium, Tokyo, 1989, H Oonishi, H. Aoki, K. Sawai. Ishiyaku EuroAmerica, 130–132
  • Gatti A. M., Zaffe D., Poli G. P. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep bone defects. Biomaterials 1990; 11: 513–517
  • Bradley J. S., Hastings G. W., Johnson-Nurse C. Carbon fibre-reinforced epoxy as a high strength, low modulus material for internal fixation plates. Biomaterials 1980; 1: 38–40
  • Tanner K. E., Doyle C., Bonfield W. The strength of the interface developed between biomaterials and bone. Advances in Biomaterials, G. Heimke, U. Soltesz, A. J. C. Lee. Elsevier, Amsterdam 1990; 9
  • Burnie J., Gilchrist T., Duff S. R. I., Drake C. F., Harding N. G. L., Malcolm A. J. Controlled release glasses for biomedical uses. Biomaterials 1981; 2: 243–244
  • Knowles J. C., Hastings J. C. In vitro and in vivo investigation of a range of phosphate glass reinforced polyhydroxybutyrate based degradable composites. Journal of Materials Science: Materials in Medicine 1992; 4: 102–106
  • Okada K., Qtsuka N. Synthesis of mullite whiskers by vapour-phase reaction. Journal of Materials Science, Letters 1989; 8: 1052–1054
  • Okada K., Mutoh H., Otsuka N., Yano T. Formation of Al2O3 whiskers by thermai decomposition of 9Al2O3.2B2O3 whiskers. Journal of Materials Science, Letters 1991; 10: 588–590
  • Gatti A. M., Zaffe D., Poli G. P. Behaviour of tricalcium phosphate and hydroxyapatite granules in sheep/bone defects. Biomaterials 1990; 11: 513–517
  • Klein C. P. A. T., de Bleck-Hogervorst J. M. A., Wolke J. G. C., de Groot K. Studies of the solubility of different calcium phosphate ceramic particles. in vitro. Biomaterials 1990; 11: 509

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.