616
Views
62
CrossRef citations to date
0
Altmetric
Review Article

Cytochrome P450 regulation: the interplay between its heme and apoprotein moieties in synthesis, assembly, repair, and disposal

, &
Pages 1-26 | Received 06 Aug 2010, Accepted 10 Aug 2010, Published online: 23 Sep 2010

References

  • Abraham, N. G., Cao, J., Sacerdoti, D., Li, X., Drummond, G. (2009). Heme oxygenase: the key to renal function regulation. Am J Physiol Renal Physiol 297:F1137–F1152.
  • Abbritti, G., De Matteis, F. (1973). Effect of 3,5-diethoxycarbonyl-1,4-dihydrocollidine on degradation of liver heme. Enzyme 16:196–202.
  • Acharya, P., Chen, J. J., Correia, M. A. (2010). Hepatic heme-regulated inhibitor (HRI) eukaryotic initiation factor 2alpha kinase: a protagonist of heme-mediated translational control of CYP2B enzymes and a modulator of basal endoplasmic reticulum stress tone. Mol Pharmacol 77:575–592.
  • Ades, I. Z. (1990). Heme production in animal tissues: the regulation of biogenesis of delta-aminolevulinate synthase. Int J Biochem 22:565–578.
  • Ajioka, R. S., Phillips, J. D., Kushner, J. P. (2006). Biosynthesis of heme in mammals. Biochim Biophys Acta 1763:723–736.
  • Alam, J., Smith, A. (1992). Heme-hemopexin–mediated induction of metallothionein gene expression. J Biol Chem 267:16379–16384.
  • Alterman, L., Negishi, M., Sabatini, D. D. (1980). Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc Natl Acad Sci U S A 77:965–969.
  • Anderson, K. E. (1978). Effects of antihypertensive drugs on hepatic heme biosynthesis, and evaluation of ferrochelatase inhibitors to simplify testing of drugs for heme pathway induction. Biochim Biophys Acta 543:313–327.
  • Anderson, K. E., Bloomer, J. R., Bonkovsky, H. L., Kushner, J. P., Pierach, C. A., Pimstone, N. R., et al. (2005). Recommendations for the diagnosis and treatment of the acute porphyries. Annu Intern Med 142:439–450.
  • Bakken, A. F., Thaler, M. M., Schmid, R. (1972). Metabolic regulation of heme catabolism and bilirubin production. I. Hormonal control of hepatic heme oxygenase activity. J Clin Invest 51:530–536.
  • Bar-Nun, S., Kreibich, G., Adesnik, M., Alterman, L., Negishi, M. (1980). Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes. Proc Natl Acad Sci U S A 77:965–969.
  • Barañano, D. E., Rao, M., Ferris, C. D., Snyder, S. H. (2002). Biliverdin reductase: a major physiologic cytoprotectant. Proc Natl Acad Sci U S A 99:16093–16098.
  • Bauer, M., Bauer, I. (2004). Heme oxygenase-1: redox regulation and role in the hepatic response to oxidative stress. Antioxid Redox Signal 4:749–758.
  • Bauer, B. N., Rafie-Kolpin, M., Lu, L., Han, A., Chen, J. J. (2001). Multiple autophosphorylation is essential for the formation of the active and stable homodimer of heme-regulated eIF2alpha kinase. Biochemistry 40:11543–11551.
  • Bender, A. T., Silverstein, A. M., Demady, D. R., Kanelakis, K. C., Noguchi, S., Pratt, W. B., et al. (1998). Nitric-oxide synthase is regulated by the hsp90-based chaperone system in vivo. J Biol Chem 274:1472–1478.
  • Berlanga, J. J., Herrero, S., de Haro, C. (1998). Characterization of the hemin-sensitive eukaryotic initiation factor 2alpha kinase from mouse nonerythroid cells. J Biol Chem 273:32340–32346.
  • Bhat, G. J., Padmanaban, G. (1988). Heme is a positive regulator of cytochrome P-450 gene transcription. Arch Biochem Biophys 264:584–590.
  • Bissell, D. M., Hammaker, L. E. (1977). Effect of endotoxin on tryptophan pyrrolase and delta-aminolaevulinate synthase: evidence for an endogenous regulatory haem fraction in rat liver. Biochem J 166:301–304.
  • Bonkovsky, H. L., Healey, J. F., Lourie, A. N., Gerron, G. G. (1991). Intravenous heme albumin in acute intermittent porphyria: evidence for repletion of hepatic hemoproteins and regulatory heme pools. Am J Gastroenterol 86:1050–1056.
  • Bonkovsky, H. L., Sinclair, J. F., Healey, J. F., Sinclair, P. R., Smith, E. L. (1984). Formation of cytochrome P-450 containing haem or cobalt-protoporphyrin in liver homogenates of rats treated with phenobarbital and allylisopropylacetamide. Biochem J 222:453–462.
  • Borgese, N., Meldolesi, J. (1980). Localization and biosynthesis of NADH-cytochrome b5 reductase, an integral membrane protein in rat liver cells. I. Distribution of the enzyme activity in microsomes, mitochondria, and Golgi complex. J Cell Biol 85:501–515.
  • Bornheim, L. M., Correia, M. A., Smith, K. M. (1984). Functional reconstitution of rat liver cytochrome P-450 with mesohemin. Biochem Biophys Res Commun 121:95–101.
  • Bornheim, L. M., Parish, D. W., Smith, K. M., Litman, D. A., Correia, M. A. (1986). The influence of side chain modifications of the heme moiety on prosthetic acceptance and function of rat hepatic cytochrome P-450 and tryptophan pyrrolase. Arch Biochem Biophys 246:63–74.
  • Brady, A. M., Lock, E. A. (1992). Inhibition of ferrochelatase and accumulation of porphyrins in mouse hepatocyte cultures exposed to porphyrinogenic chemicals. Arch Toxicol 66:175–181.
  • Burmester, T., Weich, B., Reinhardt, S., Hankeln, T. (2000). A vertebrate globin expressed in the brain. Nature 407:520–523.
  • Cable, E. E., Miller, T. G., Isom, H. C. (2000). Regulation of heme metabolism in rat hepatocytes and hepatocyte cell lines: delta-aminolevulinic acid synthase and heme oxygenase are regulated by different heme-dependent mechanisms. Arch Biochem Biophys 384:280–295.
  • Cable, E. E., Pepe, J. A., Karamitsios, N. C., Lambrecht, R. W., Bonkovsky, H. L. (1994). Differential effects of metalloporphyrins on messenger RNA levels of delta-aminolevulinate synthase and heme oxygenase. Studies in cultured chick embryo liver cells. J Clin Invest 94:649–654.
  • Camus-Randon, A. M., Raffalli, F., Bereziat, J. C., McGregor, D., Konstandi, M., Lang, M. A. (1996). Liver injury and expression of cytochromes P450: evidence that regulation of CYP2A5 is different from that of other major xenobiotic metabolizing CYP enzymes. Toxicol Appl Pharmacol 138:140–148.
  • Chefalo, P. J., Oh, J., Rafie-Kolpin, M., Kan, B., Chen, J. J. (1998). Heme-regulated eIF-2alpha kinase purifies as a hemoprotein. Eur J Biochem 258:820–830.
  • Chen J. J. (2000). Heme-regulated eIF-2a kinase. In: Sonenberg, N., Hershey, J. W. B., Mathews, M. B. (Eds.), Translational control of gene expression (pp 529–546). Cold Spring Harbor, Maine, USA: Cold Spring Harbor Laboratory Press.
  • Chen, J. J. (2007). Regulation of protein synthesis by the heme-regulated eIF2alpha kinase: relevance to anemias. Blood 109:2693–2699.
  • Chen, J. J., London, I. M. (1995). Regulation of protein synthesis by heme-regulated eIF-2 alpha kinase. Trends Biochem Sci 20:105–108.
  • Chen, J. J., Yang, J. M., Petryshyn, R., Kosower, N., London, I. M. (1989). Disulfide bond formation in the regulation of eIF-2 alpha kinase by heme. J Biol Chem 264:9559–9564.
  • Converso, D. P., Taille, C., Carreras, M. C., Jaitovich, A., Poderoso, J. J., Boczkowski, J. (2006). HO-1 is located in liver mitochondria and modulates mitochondrial heme content and metabolism. FASEB J 20:1236–1238.
  • Correia, M. A. (2003). Hepatic cytochrome P450 degradation: mechanistic diversity of the cellular sanitation brigade. Drug Metab Rev 35:107–143, and references therein.
  • Correia, M. A., Liao, M. (2007). Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomyces cerevisiae to mammalian liver. Exp Opin Drug Metab Toxicol 3:33–49.
  • Correia, M. A., Meyer, U. A. (1975). Apocytochrome P-450: reconstitution of functional cytochromme with hemin in vitro. Proc Natl Acad Sci U S A 72:400–404.
  • Correia, M. A., Davoll, S. H., Wrighton, S. A., Thomas, P. E. (1992b). Degradation of rat liver cytochromes P450 3A after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: characterization of the proteolytic system. Arch Biochem Biophys 297:228–238.
  • Correia, M. A., Decker, C., Sugiyama, K., Caldera, P., Bornheim, L., Wrighton, S. A., et al. (1987). Degradation of rat hepatic cytochrome P-450 heme by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine to irreversibly bound protein adducts. Arch Biochem Biophys 258:436–451.
  • Correia, M. A., Farrell, G. C., Olson, S., Wong, J. S., Schmid, R., Ortiz de Montellano, P. R., et al. (1981). Cytochrome P-450 heme moiety. The specific target in drug-induced heme alkylation. J Biol Chem 256:5466–5470.
  • Correia, M. A., Farrell, G. C., Schmid, R., Ortiz de Montellano, P. R., Yost, G. S., Mico, B. A. (1979). Incorporation of exogenous heme into hepatic cytochrome P450 in vivo. J Biol Chem 254:15–17.
  • Correia, M. A., Yao, K., Wrighton, S. A., Waxman, D. J., Rettie, A. E. (1992a). Differential apoprotein loss of rat liver cytochromes P450 after their inactivation by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine: a case for distinct proteolytic mechanisms? Arch Biochem Biophys 294:493–503.
  • Crosby, J. S., Lee, K., London, I. M., Chen, J. J. (1994). Erythroid expression of the heme-regulated eIF-2 alpha kinase. Mol Cell Biol 14:3906–3914.
  • Dailey T. A., Woodruff J. H., Dailey, H. A. (2005). Examination of mitochondrial protein targeting of haem synthetic enzymes: in vivo identification of three functional haem-responsive motifs in 5-aminolaevulinate synthase. Biochem J 386:381–386.
  • Dar, A. C., Dever, T. E., Sicheri, F. (2005). Higher-order substrate recognition of eIF2alpha by the RNA-dependent protein kinase PKR. Cell 122:887–900.
  • Dean, P. A., Rettie, A. E., Turnblom, S. M., Namkung, M. J., Juchau, M. R. (1986). Cytosolic activation of hematin-dependent microsomal monooxygenase activity in the lung. Chem Biol Interact 58:79–94.
  • Delaunay, J., Ranu, R. S., Levin, D. H., Ernst, V., London, I. M. (1977). Characterization of a rat liver factor that inhibits initiation of protein synthesis in rabbit reticulocyte lysates. Proc Natl Acad Sci U S A 74:2264–2268.
  • De Matteis, F. (1970). Loss of haem in rat liver caused by the porphyrogenic agent 2-allyl-2-isopropylacetamide. Biochem J 124:767–777.
  • De Matteis, F. (1978). Hepatic porphyrias. In: De Matteis, F., Aldridge, W. N. (Eds.), Heme and hemoproteins. Handbook Exp Pharmacol 44:129–155.
  • De Matteis, F. (1982). Loss of microsomal components in drug-induced liver damage, in cholestasis, and after administration of chemicals which stimulate heme catabolism. In: Schenkman, J.B., Kupfer, D. (Eds.), Hepatic cytochrome P-450 monoxygenase system. International encyclopedia of pharmacol therap, section 108 (pp 307–340 ). Oxford, UK: Pergamon Press.
  • De Matteis, F., Gibbs, A. (1972). Stimulation of liver 5-aminolaevulinate synthetase by drugs and its relevance to drug-induced accumulation of cytochrome P-450. Studies with phenylbutazone and 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Biochem J 126:1149–1160.
  • De Matteis, F., Gibbs A. H. (1975). Stimulation of the pathway of porphyrin synthesis in the liver of rats and mice by griseofulvin, 3,5-diethoxycarbonyl-1,4-dihydrocollidine, and related drugs: evidence for two basically different mechanisms. Biochem J 146:285–287.
  • De Matteis, F., Gibbs, A. H. (1976). The effect of cobaltous chloride on liver haem metabolism in the rat. Evidence for inhibition of haem synthesis and for increased haem degradation. Ann Clin Res 8:193–197.
  • De Matteis, F., Marks, G. S. (1983). The effect of N-methylprotoporphyrin and succinyl-acetone on the regulation of heme biosynthesis in chicken hepatocytes in culture. FEBS Lett 159:127–131.
  • De Matteis, F., Marks, G. S. (1996). Cytochrome P450 and its interactions with the heme biosynthetic pathway. Can J Physiol Pharmacol 74:1–8.
  • De Matteis, F., Ray, D. E. (1982). Studies on cerebellar haem metabolism in the rat in vivo. J Neurochem 39:551–556.
  • De Matteis, F., Unseld, A. (1976). Increased liver haem degradation caused by foreign chemicals: a comparison of the effects of 2-allyl-2-isopropylacetamide and cobaltous chloride. Biochem Soc Trans 4:205–209.
  • De Matteis, F., Abbritti, G., Gibbs, A. H. (1973). Decreased liver activity of porphyrin-metal chelatase in hepatic porphyria caused by 3,5-diethoxycarbonyl-1,4-dihydrocollidine. Studies in rats and mice. Biochem J 134:717–727.
  • De Matteis, F., Gibbs, A. H., Smith, A. G. (1980). Inhibition of protohaem ferro-lyase by N-substituted porphyrins. Structural requirements for the inhibitory effect. Biochem J 189:645–648.
  • De Matteis, F., Harvey, C., Martin, S. R. (1986). N-alkylation of hexogenous heme analogues caused by drugs in isolated hepatocytes. Structural isomerism and chirality of the resulting porphyrins. Biochem J 238:263–268.
  • Dey, M., Cao, C., Dar, A. C., Tamura, T., Ozato, K., Sicheri, F., et al. (2005). Mechanistic link between PKR dimerization, autophosphorylation, and eIF2alpha substrate recognition. Cell 122:901–913.
  • Dierks, P. (1990). Molecular biology of eukaryotic 5-aminolevulinate synthase. In: Dailey, H. A. (Ed.), Biosynthesis of heme and chlorophylls (pp 201–234). New York: McGraw-Hill.
  • Drew, P. D., Ades I. Z. (1986). Regulation of production of embryonic chick liver delta-aminolevulinate synthase: effects of testosterone and of hemin on the mRNA of the enzyme. Biochem Biophys Res Commun 140:81–87.
  • Drummond, G. S., Rosenberg, D. W.,Kappas, A. (1982). Metal induction of haem oxygenase without concurrent degradation of cytochrome P-450. Protective effects of compound SKF 525A on the haem protein. Biochem J 202: 59–66.
  • Duez, H., Staels, B. (2008). Rev-erbα: a potential target for the treatment of circadian disorders. Heart Metab 44:21–24.
  • Duvigneau, J. C., Piskernik, C., Haindl, S., Kloesch, B., Hartl, R. T., Hüttemann, M., et al. (2008). A novel endotoxin-induced pathway: upregulation of heme oxygenase 1, accumulation of free iron, and free iron-mediated mitochondrial dysfunction. Lab Invest 88:70–77.
  • Dwarki, V. J., Francis, V. N., Bhat, G. J., Padmanaban, G. (1987). Regulation of cytochrome P-450 messenger RNA and apoprotein levels by heme. J Biol Chem 262:16958–16962.
  • Elder, G. H. (1998). Porphyria cutanea tarda. Semin Liver Dis 18:67–75.
  • Fagard, R., Guguen-Guillouzo, C. (1983). The effect of hemin and of allyl isopropyl acetamide on protein synthesis in rat hepatocytes. Biochem Biophys Res Comm 114:612–619.
  • Faller, M., Matsunaga, M., Yin, S., Loo, J. A., Guo, F. (2007). Heme is involved in microRNA processing. Nat Struct Mol Biol 14:23–29.
  • Figueiredo, R. T., Fernandez, P. L., Mourao-Sa, D. S., Porto, B. N., Dutra, F. F., Alves, L. S., et al. (2007). Characterization of heme as activator of Toll-like receptor 4. J Biol Chem 282:20221–20229.
  • Fraser, D. J., Podvinec, M., Kaufmann, M. R., Meyer, U. A. (2002). Drugs mediate the transcriptional activation of the 5-aminolevulinic acid synthase (ALAS1) gene via the chicken xenobiotic-sensing nuclear receptor (CXR). J Biol Chem 277:34717–34726.
  • Fraser, D. J., Zumsteg, A., Meyer, U. A. (2003). Nuclear receptors constitutive androstane receptor and pregnane X receptor activate a drug-responsive enhancer of the murine 5-aminolevulinic acid synthase gene. J Biol Chem 278:39392–39401.
  • Furuyama, K., Kaneko, K., Vargas, P. D. (2007). Heme as a magnificent molecule with multiple missions: heme determines its own fate and governs cellular homeostasis. Tohoku J Exp Med 213:1–16.
  • Gachon, F., Olela, F. F., Schaad, O., Descombes, P., Schibler, U. (2006). The circadian PAR-domain basic leucine zipper transcription factors DBP, TEF, and HLF modulate basal and inducible xenobiotic detoxification. Cell Metab 4:25–36.
  • Goasduff, T., Cederbaum, A. I. (1999). NADPH-dependent microsomal electron transfer increases degradation of CYP2E1 by the proteasome complex: role of reactive oxygen species. Arch Biochem Biophys 370:258–270.
  • Gozzelino, R., Jeney, V., Soares, M. P. (2010). Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354.
  • Graber, S. G., Woodworth, R. C. (1986). Myoglobin expression in L6 muscle cells. Role of differentiation and heme. J Biol Chem 261:9150–9154.
  • Grandori, R., Schwarzinger, S., Müller, N. (2000). Cloning, overexpression, and characterization of micro-myoglobin, a minimal heme-binding fragment. Eur J Biochem 267:1168–1172.
  • Granick, S., Urata, G. (1963). Increase in activity of alpha-aminolevulinic acid synthetase in liver mitochondria induced by feeding of 3,5-dicarbethoxy-1,4-dihydrocollidine. J Biol Chem 238:821–827, and references therein.
  • Granick, S., Sinclair, P., Sassa, S., Grieninger, G. (1975). Effects by heme, insulin, and serum albumin on heme and protein synthesis in chick embryo liver cells cultured in a chemically defined medium, and a spectrofluorometric assay for porphyrin composition. J Biol Chem 250:9215–9225.
  • Guarente, L., Mason, T. (1983). Heme regulates transcription of the CYC1 gene of S. cerevisiae via an upstream activation site. Cell 32:1279–1286.
  • Guengerich, F. P. (1978). Destruction of heme and hemoproteins mediated by liver microsomal reduced nicotinamide adenine dinucleotide phosphate-cytochrome P-450 reductase. Biochemistry 17:3633–3639.
  • Guengerich, F. P. (2007). Mechanisms of cytochrome P450 substrate oxidation: minireview. J Biochem Mol Toxicol 21:163–168.
  • Guéye, P. M., Glasser, N., Férard, G., Lessinger, J. M. (2006). Influence of human haptoglobin polymorphism on oxidative stress induced by free hemoglobin on red blood cells. Clin Chem Lab Med 44:542–547.
  • Halpert, J. R., Guengerich, F. P., Bend, J. R., Correia, M. A. (1994). Selective inhibitors of cytochromes P450. Toxicol Appl Pharmacol 125:163–175.
  • Hamilton, J. W., Bement, W. J., Sinclair, P. R., Sinclair, J. F., Alcedo, J. A., Wetterhahn, K. E. (1991). Heme regulates hepatic 5-aminolevulinate synthase mRNA expression by decreasing mRNA half-life and not by altering its rate of transcription. Arch Biochem Biophys 289:387–392.
  • Hamilton, J. W., Bement, W. J., Sinclair, P. R., Sinclair, J. F., Wetterhahn, K. E. (1988). Expression of 5-aminolaevulinate synthase and cytochrome P-450 mRNAs in chicken embryo hepatocytes in vivo and in culture. Effect of porphyrinogenic drugs and haem. Biochem J 255:267–275; erratum in: Biochem J 1989: 257:following 934.
  • Hamilton, B., Hofbauer, R., Ruis, H. (1982). Translational control of catalase synthesis by hemin in the yeast Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 79:7609–7613.
  • Han, A. P., Fleming, M. D., Chen, J. J. (2005). Heme-regulated eIF2alpha kinase modifies the phenotypic severity of murine models of erythropoietic protoporphyria and beta-thalassemia. J Clin Invest 115:1562–1570.
  • Han, X. M., Lee, G., Hefner, C., Maher, J. J., Correia, M. A. (2005). Heme-reversible impairment of CYP2B1/2 induction in heme-depleted rat hepatocytes in primary culture: translational control by a hepatic alpha-subunit of the eukaryotic initiation factor kinase? J Pharmacol Exp Ther 314:128–138.
  • Han, A. P., Yu, C., Lu, L., Fujiwara, Y., Browne, C., Chin, G., et al. (2001). Heme-regulated eIF2alpha kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency. EMBO J 20:6909–6918.
  • Handschin, C., Meyer, U. A. (2003). Induction of drug metabolism: the role of nuclear receptors. Pharmacol Rev 55:649–673.
  • Harding, H. P., Zhang, Y., Zeng, H., Novoa, I., Lu, P. D., Calfon, M., et al. (2003). An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633.
  • Hargrove, M. S., Olson, J. S. (1996). The stability of holomyoglobin is determined by heme affinity. Biochemistry 35:11310–11318.
  • Henderson, C. J., Otto, D. M., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I., et al. (2003). Inactivation of the hepatic cytochrome P450 system by conditional deletion of hepatic cytochrome P450 reductase. J Biol Chem 278:13480–13486.
  • Heinemann, I. U., Jahn, M., Jahn, D. (2008). The biochemistry of heme biosynthesis. Arch Biochem Biophys 474:238–251.
  • Hockin, L. J., Paine, A. J. (1983). The role of 5-aminolaevulinate synthase, haem oxygenase, and ligand formation in the mechanism of maintenance of cytochrome P-450 concentration in hepatocyte culture. Biochem J 210:855–857.
  • Honkakoski, P., Negishi, M. (1998). Protein serine/threonine phosphatase inhibitors suppress phenobarbital-induced Cyp2b10 gene transcription in mouse primary hepatocytes. Biochem J 330:889–895.
  • Honkakoski, P., Moore, R., Washburn, K. A., Negishi, M. (1998a). Activation by diverse xenochemicals of the 51-base pair phenobarbital-responsive enhancer module in the CYP2B10 gene. Mol Pharmacol 53:597–601.
  • Honkakoski, P., Zelko, I., Sueyoshi, T., Negishi, M. (1998b). The nuclear orphan receptor CAR-retinoid X receptor heterodimer activates the phenobarbital-responsive enhancer module of the CYP2B gene. Mol Cell Biol 18:5652–5658.
  • Hörtner, H., Ammerer, G., Hartter, E., Hamilton, B., Rytka, J., Bilinski, T., et al. (1982). Regulation of synthesis of catalases and iso-1-cytochrome c in Saccharomyces cerevisiae by glucose, oxygen, and heme. Eur J Biochem 128:179–184.
  • Igarashi, J., Murase, M., Iizuka, A., Pichierri, F., Martinkova, M., Shimizu, T. (2008). Elucidation of the heme binding site of heme-regulated eukaryotic initiation factor 2alpha kinase and the role of the regulatory motif in heme sensing by spectroscopic and catalytic studies of mutant proteins. J Biol Chem 283:18782–18791.
  • Igarashi, J., Sato, A., Kitagawa, T., Yoshimura, T., Yamauchi, S., Sagami, I., et al. (2004). Activation of heme-regulated eukaryotic initiation factor 2alpha kinase by nitric oxide is induced by the formation of a five-coordinate NO-heme complex: optical absorption, electron spin resonance, and resonance raman spectral studies. J Biol Chem 279:15752–15762.
  • Ikuta, T., Ausenda, S., Cappellini, M. D. (2001). Mechanism for fetal globin gene expression: role of the soluble guanylate cyclase-cGMP-dependent protein kinase pathway. Proc Natl Acad Sci U S A 98:1847–1852.
  • Inuzuka, T., Yun, B. G., Ishikawa, H., Takahashi, S., Hori, H., Matts, R. L., et al. (2004). Identification of crucial histidines for heme binding in the N-terminal domain of the heme-regulated eIF2alpha kinase. J Biol Chem 279:6778–6782.
  • Ishimori, K., Morishima, I. (1988). Study of the specific heme orientation in reconstituted hemoglobins. Biochemistry 27:4747–4753.
  • Jacobs, J. M., Sinclair, P. R., Bement, W. J., Lambrecht, R. W., Sinclair, J. F., Goldstein, J. A. (1989). Oxidation of uroporphyrinogen by methylcholanthrene-induced cytochrome P-450. Essential role of cytochrome P-450d. Biochem J 258:247–253.
  • Jover, R., Hoffmann, K., Meyer, U. A. (1996). Induction of 5-aminolevulinate synthase by drugs is independent of increased apocytochrome P450 synthesis. Biochem Biophys Res Commun 226:152–157.
  • Jover, R., Hoffmann, F., Scheffler-Koch, V., Lindberg, R. L. (2000). Limited heme synthesis in porphobilinogen deaminase-deficient mice impairs transcriptional activation of specific cytochrome P450 genes by phenobarbital. Eur J Biochem 267:7128–7137.
  • Jover, R., Lindberg, R. L., Meyer, U. A. (1996). Role of heme in cytochrome P450 transcription and function in mice treated with lead acetate. Mol Pharmacol 50:474–481.
  • Kaasik, K., Lee, C. C. (2004). Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471.
  • Kanno, Y., Otsuka, S., Hiromasa, T., Nakahama, T., Inouye, Y. (2004). Diurnal difference in CAR mRNA expression. Nucl Recept 2:6.
  • Kaufman, R. J. (2004). Regulation of mRNA translation by protein folding in the endoplasmic reticulum. Trends Biochem Sci 29:152–158.
  • Kawamoto, T., Sueyoshi, T., Zelko, I., Moore, R., Washburn, K., Negishi, M. (1999). Phenobarbital-responsive nuclear translocation of the receptor CAR in induction of the CYP2B gene. Mol Cell Biol 19:6318–6322.
  • Kemper, B. (1998). Regulation of cytochrome P450 gene transcription by phenobarbital. Prog Nucleic Acid Res Mol Biol 61:23–64.
  • Kim, J., Kemper, B. (1997). Phenobarbital alters protein binding to the CYP2B1/2 phenobarbital-responsive unit in native chromatin. J Biol Chem 272:29423–29425.
  • Kim, J., Min, G., Kemper, B. (2001). Chromatin assembly enhances binding to the CYP2B1 phenobarbital-responsive unit (PBRU) of nuclear factor-1, which binds simultaneously with constitutive androstane receptor (CAR)/retinoid X receptor (RXR) and enhances CAR/RXR-mediated activation of the PBRU. J Biol Chem 276:7559–7567.
  • Kim, Y-M., Bergonia, H. A., Müller, C., Pitt, B. R., Watkins, W. D., Jack, R., et al. (1995). Loss and degradation of enzyme-bound heme Induced by cellular nitric oxide synthesis. J Biol Chem 270:5710–5713.
  • Kimura, I., Nakayama, Y., Yamauchi, H., Konishi, M., Miyake, A., Mori, M., et al. (2008). Neurotrophic activity of neudesin, a novel extracellular heme-binding protein, is dependent on the binding of heme to its cytochrome b5-like heme/steroid-binding domain. J Biol Chem 283:4323–4331.
  • Kikuchi, G., Hayashi, N. (1981). Regulation by heme of synthesis and intracellular translocation of delta-aminolevulinate synthase in the liver. Mol Cell Biochem 37:27–41.
  • Kolluri, S., Sadlon, T. J., May, B. K., Bonkovsky, H. L. (2005). Haem repression of the housekeeping 5-aminolaevulinic acid synthase gene in the hepatoma cell line LMH. Biochem J 392:173–180.
  • Korsmeyer, K. K., Davoll, S., Figueiredo-Pereira, M. E., Correia, M. A. (1999). Proteolytic degradation of heme-modified hepatic cytochromes P450: a role for phosphorylation, ubiquitination, and the 26S proteasome? Arch Biochem Biophys 365:31–44.
  • La Mar, G. N., Budd, D. L., Viscio, D. B., Smith, K. M., Langry, K. C. (1978). Proton nuclear magnetic resonance characterization of heme disorder in hemoproteins. Proc Natl Acad Sci U S A 75:5755–5759.
  • Langlois, M. R., Delanghe, J. R. (1996). Biological and clinical significance of haptoglobin polymorphism in humans. Clin Chem 42:1589–1600.
  • Lathrop, J. T., Timko, M. P. (1993). Regulation by heme of mitochondrial protein transport through a conserved amino acid motif. Science 259:522–525.
  • Layer, G., Reichelt, J., Jahn, D., Heinz, D. W. (2010). Structure and function of enzymes in heme biosynthesis. Prot Sci 19:1137–1161.
  • Lazarow, P., deDuve, C. (1973). The synthesis and turnover of rat liver peroxisomes: IV. Biochemical pathway of catalase synthesis. J Cell Biol 59:491–506.
  • Lee, J. S., Jacobsen, N. E., Ortiz de Montellano, P. R. (1988). 4-alkyl radical extrusion in the cytochrome P-450-catalyzed oxidation of 4-alkyl-1,4-dihydropyridines. Biochemistry 27:7703–7710.
  • Levi, F., Schibler, U. (2007). Circadian rhythms: mechanisms and therapeutic implications. Annu Rev Pharmacol Toxicol 47:593–628.
  • Liao, M., Pabarcus, M. K., Wang, Y., Hefner, C., Maltby, D. A., Medzihradszky, K. F., et al. (2007). Impaired dexamethasone-mediated induction of tryptophan 2,3-dioxygenase in heme-deficient rat hepatocytes: translational control by a hepatic eIF2alpha kinase, the heme-regulated inhibitor. J Pharmacol Exp Ther 323:979–989.
  • Licad-Coles, E., He, K., Yin, H., Correia, M. A. (1997). Cytochrome P450 2C11: Escherichia coli expression, purification, functional characterization, and mechanism-based inactivation of the enzyme. Arch Biochem Biophys 338:35–42.
  • Lindberg, R. L., Porcher, C., Grandchamp, B., Ledermann, B., Burki, K., Brandner, S., et al. (1996). Porphobilinogen deaminase deficiency in mice causes a neuropathy resembling that of human hepatic porphyria. Nat Genet 12:195–199.
  • Litman, D. A., Correia, M. A. (1983). L-tryptophan: a common denominator of biochemical and neurological events of acute hepatic porphyria? Science 222:1031–1033.
  • Litman, D. A., Correia, M. A. (1985). Elevated brain tryptophan and enhanced 5-hydroxytryptamine turnover in acute hepatic heme deficiency: clinical implications. J Pharmacol Exp Ther 232:337–345.
  • Mackie, J. E., Marks, G. S. (1989). Synergistic induction of delta-aminolevulinic acid synthase activity by N-ethylprotoporphyrin IX and 3,5-diethoxycarbonyl-1,4-dihydro-2,6-dimethyl-4-isobutylpyridine. Biochem Pharmacol 38:2169–2173.
  • Mackie, J. E., Back, D. W., Hamilton, J. W., Marks, G. S. (1991). Elevation of delta-aminolevulinic acid synthase and cytochrome PB1 P450 messenger RNA levels by dihydropyridines, dihydroquinolines, sydnones, and N-ethylprotoporphyrin IX. Biochem Pharmacol 42:475–483.
  • Maines, M. D. (1992). Heme oxygenase, clinical applications and functions. Boca Raton, Florida, USA: CRC Press.
  • Maines, M. D., Kappas, A. (1975). Cobalt stimulation of heme degradation in the liver. Dissociation of microsomal oxidation of heme from cytochrome P-450. J Biol Chem 250:4171–4177.
  • Maines, M. D., Trakshel, G. M., Kutty, R. K. (1986). Characterization of two constitutive forms of rat liver microsomal heme oxygenase. Only one molecular species of the enzyme is inducible. J Biol Chem 261:411–419.
  • Mancuso, C., Barone, E. (2009). The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab 10:579–594.
  • Marks, G. S., Goldman, D. R., McCluskey, S. A., Sutherland, E. P., Lyon, M. E. (1986). The effects of dihydropyridine calcium antagonists on heme biosynthesis in chick embryo liver cell culture. Can J Physiol Pharmacol 64:438–443.
  • Maxwell, J. D., Meyer, U. A. (1976). Effect of lead on hepatic delta-aminolaevulinic acid synthetase activity in the rat: a model for drug sensitivity in intermittent acute porphyria. Eur J Clin Invest 6:373–379.
  • May, B. K., Borthwick, I. A., Srivastava, G., Pirola, B. A., Elliott, W. H. (1986). Control of 5-aminolevulinate synthase in animals. Curr Top Cell Regul 28:233–262.
  • Mellor, H., Flowers, K. M., Kimball, S. R., Jefferson, L. S. (1994). Cloning and characterization of cDNA encoding rat hemin-sensitive initiation factor-2 alpha (eIF-2 alpha) kinase. Evidence for multitissue expression. J Biol Chem 269:10201–10204.
  • Mense, S. M., Zhang, L. (2006). Heme: a versatile signaling molecule controlling the activities of diverse regulators ranging from transcription factors to MAP kinases. Cell Res 16:681–692.
  • Meyer, U. A. (2007). Endo-xenobiotic crosstalk and the regulation of cytochromes P450. Drug Metab Rev 39:639–646.
  • Meyer, U. A., Marver, H. S. (1971). Chemically-induced porphyria. Increased microsomal heme turnover after treatment with allylisopropylacetamide. Science 171:64–66.
  • Meyer, R. P., Podvinec, M., Meyer, U. A. (2002). Cytochrome P450 CYP1A1 accumulates in the cytosol of kidney and brain and Is activated by heme. Mol Pharmacol 62:1061–1067.
  • Miksanova, M., Igarashi, J., Minami, M., Sagami, I., Yamauchi, S., Kurokawa, H., et al. (2006). Characterization of heme-regulated eIF2alpha kinase: roles of the N-terminal domain in the oligomeric state, heme binding, catalysis, and inhibition. Biochemistry 45:9894–9905.
  • Modi, S., Primrose, W. U., Lian, L-Y., Roberts, G. C. K. (1995). Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Biochem J 310:939–943.
  • Monier, P., Van Luc, G., Kreibich, G., Sabatini, D. D., Adesnik, M. (1998). Signals for the incorporation and orientation of cytochrome P450 in the endoplasmic reticulum membrane. J Cell Biol 107:457–470.
  • Morgan, W. T., Muster, P., Tatum, F., Kao, S. M., Alam, J., Smith, A. (1993). Identification of the histidine residues of hemopexin that coordinate with heme-iron and of a receptor-binding region. J Biol Chem 268:6256–6262.
  • Morishima, Y., Peng, H-M., Lin, H-L., Hollenberg, P. F., Sunahara, R. K., Osawa, Y., et al. (2005). Regulation of cytochrome P450 2E1 by heat shock protein 90-dependent stabilization and CHIP-dependent proteasomal degradation. Biochemistry 44:16333–16340.
  • Morse, D., Lin, L., Choi, A. M., Ryter, S. W. (2009). Heme oxygenase-1, a critical arbitrator of cell death pathways in lung injury and disease. Free Radic Biol Med 47:1–12.
  • Murray, B. P., Zgoda, V. G., Correia, M. A. (2002). Native CYP2C11: heterologous expression in Saccharomyces cerevisiae reveals a role for vacuolar proteases rather than the proteasome system in the degradation of this endoplasmic reticulum protein. Mol Pharmacol 61:1146–1153.
  • Myers, A. M., Crivellone, M. D., Koerner, T. J., Tzagoloff, A. (1987). Characterization of the yeast HEM2 gene and transcriptional regulation of COX5 and COR1 by heme. J Biol Chem 262:16822–16829.
  • Namkung, M. J., Faustman-Watts, E., Juchau, M. R. (1983). Hematin-mediated increases of benzo(a)pyrene mono-oxygenation in maternal, fetal, and placental tissues of inducible and non-inducible mouse strains. Dev Pharmacol Ther 6:199–206.
  • Negishi, M., Kreibich, G. (1978). Coordinated polypeptide synthesis and insertion of protoheme in cytochrome P-450 during development of endoplasmic reticulum membranes. J Biol Chem 253:4791–4797.
  • Negishi, M., Fujii-Kuriyama, Y., Tashiro, Y., Imai, Y. (1976). Site of biosynthesis of cytochrome P-450 in hepatocytes of phenobarbital treated rats. Biochem Biophys Res Commun 71:1153–1160.
  • Nichols, K. D., Kirby, G. M. (2008). Expression of cytochrome P450 2A5 in a glucose-6-phosphate dehydrogenase-deficient mouse model of oxidative stress. Biochem Pharmacol 75:1230–1239.
  • Ogawa, K., Sun, J., Taketani, S., Nakajima, O., Nishitani, C., Sassa, S., et al. (2001). Heme mediates derepression of Maf recognition element through direct binding to transcription repressor Bach1. EMBO J 20:2835–2843.
  • Okada, Y., Frey, A. B., Guenthner, T. M., Oesch, F., Sabatini, D. D., Kreibich, G. (1982). Studies on the biosynthesis of microsomal membrane proteins: site of synthesis and mode of insertion of cytochrome b5, cytochrome b5 reductase, cytochrome P-450 reductase, and epoxide hydrolase. Eur J Biochem 122:393–402.
  • Okano, S., Zhou, L., Kusaka, T., Shibata, K., Shimizu, K., Gao, X., et al. (2010). Indispensable function for embryogenesis, expression, and regulation of the nonspecific form of the 5-aminolevulinate synthase gene in mouse. Genes Cells 15:77–89.
  • Omiecinski, C. J., Bond, J. A., Juchau, M. R. (1978). Stimulation by hematin of monooxygenase activity in extra-hepatic tissues from rats, rabbits, and chickens. Biochem Biophys Res Commun 83:1004–1011.
  • Omiecinski, C. J., Namkung, M. J., Juchau, M. R. (1980). Mechanistic aspects of the hematin-mediated increases in brain monooxygenase activities. Mol Pharmacol 17:225–232.
  • Onisawa, J., Labbe, R. F. (1963) Effects of diethyl-1,4-dihydro-2,4,6-trimethylpyridine-3,5-dicarboxylate on the metabolism of porphyrins and iron. J Biol Chem 238:724–727.
  • Ortiz de Montellano, P. R. (2009). Hemes in biology. In: Wiley encyclopedia of chemical biology (pp 240–249). New York: John Wiley & Sons.
  • Ortiz de Montellano, P. R., De Vos, J. J. (2004). Substrate oxidation by cytochrome P450 enzymes. In: Ortiz de Montellano, P. R. (Ed.), Cytochrome P450. Structure, mechanism, and biochemistry (pp 183–246, and references therein). New Tork: Plenum Press.
  • Ortiz de Montellano, P. R., Kunze, K. L., Beilan, H. S. (1983). Chiral orientation of prosthetic heme in the cytochrome P-450 active site. J Biol Chem 258:45–47.
  • Ortiz de Montellano, P. R., Kunze, K. L., Cole, S. P., Marks, G. S. (1980). Inhibition of hepatic ferrochelatase by the four isomers of N-methylprotoporphyrin IX. Biochem Biophys Res Commun 97:1436–1442.
  • Ortiz de Montellano, P. R., Kunze, K. L., Cole, S. P., Marks, G. S. (1981). Differential inhibition of hepatic ferrochelatase by the isomers of N-ethylprotoporphyrin IX. Biochem Biophys Res Commun 103:581–586.
  • Ortiz de Montellano, P. R., Mico, B. A., Yost, G. S. (1978). Suicidal inactivation of cytochrome P-450. Formation of a heme-substrate covalent adduct. Biochem Biophys Res Commun 83:132–137.
  • Osawa, Y., Korzekwa, K. (1991). Oxidative modification by low levels of HOOH can transform myoglobin to an oxidase. Proc Natl Acad Sci U S A 88:7081–7085.
  • Osawa, Y., Pohl, L. R. (1989). Covalent bonding of the prosthetic heme to protein: a potential mechanism for the suicide inactivation or activation of hemoproteins. Chem Res Toxicol 2:131–141.
  • Padmanaban, G., Venkateswar, V., Rangarajan, P. N. (1989). Haem as a multifunctional regulator. Trends Biochem Sci 14:492–496.
  • Pal, J. K., Chen, J. J., London, I. M. (1991). Tissue distribution and immunoreactivity of heme-regulated eIF-2 alpha kinase determined by monoclonal antibodies. Biochemistry 30:2555–2562.
  • Panda, S., Antoch, M. P., Miller, B. H., Su, A. I., Schook, A. B., Straume, M., Schultz, P. G., Kay, S. A., Takahashi, J. S., and Hogenesch, J. B. (2002). Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320.
  • Park, Y., Li, H., Kemper, B. (1996). Phenobarbital induction mediated by a distal CYP2B2 sequence in rat liver transiently transfected in situ. J Biol Chem 271:23725–23728.
  • Paschos, G. K., Baggs, J. E., Hogenesch, J. B., FitzGerald, G. A. (2009). The role of clock genes in pharmacology. Annu Rev Pharmacol Toxicol 50:187–214.
  • Peterson, S. J., Frishman, W. H., Abraham, N. G. (2009). Targeting heme oxygenase: therapeutic implications for diseases of the cardiovascular system. Cardiol Rev 17:99–111.
  • Pfeifer, K., Arcangioli, B., Guarente, L. (1987). Yeast HAP1 activator competes with the factor RC2 for binding to the upstream activation site UAS1 of the CYC1 gene. Cell 49:9–18.
  • Pfeifer, K., Kim, K. S., Kogan, S., and Guarente, L. (1989). Functional dissection and sequence of yeast HAP1 activator. Cell 56:291–301.
  • Pinkham, J. L., Olesen, J. T., Guarente, L. P. (1987). Sequence and nuclear localization of the Saccharomyces cerevisiae HAP2 protein, a transcriptional activator. Mol Cell Biol 7:578–585.
  • Pinkham, J. L., Wang, Z. D., Alsina, J. (1997). Heme regulates SOD2 transcription by activation and repression in Saccharomyces cerevisiae. Curr Gen 31:281–291.
  • Pinnix, I. B., Guzman, G. S., Bonkovsky, H. L., Zaki, S. R., Kinkade, J. M., Jr. (1994). The post-translational processing of myeloperoxidase is regulated by the availability of heme. Arch Biochem Biophys 312:447–458.
  • Podvinec, M., Handschin, C., Looser, R., Meyer, U. A. (2004). Identification of the xenosensors regulating human 5-aminolevulinate synthase. Proc Natl Acad Sci U S A 101:9127–9132.
  • Ponka, P. (1999). Cell biology of heme. Am J Med Sci 318:241–256.
  • Price, V. E., Sterling, W. R., Tarantola, V. R., Hartley, R. W., Jr., Rechcigl, M., Jr. (1962). The kinetics of catalase synthesis and destruction in vivo. J Biol Chem 237:3468–3475.
  • Rafie-Kolpin, M., Chefalo, P. J., Hussain, Z., Hahn, J., Uma, S., Matts, R. L., et al. (2000). Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J Biol Chem 275:5171–5178.
  • Rafie-Kolpin, M., Han, A. P., Chen, J. J. (2003). Autophosphorylation of threonine 485 in the activation loop is essential for attaining eIF2alpha kinase activity of HRI. Biochemistry 42:6536–6544.
  • Raghuram, S., Stayrook, K. R., Huang, P., Rogers, P. M., Nosie, A. K., McClure, D. B., et al. (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol 14:1207–1213.
  • Ramsden, R., Sommer, K. M., Omiecinski, C. J. (1993). Phenobarbital induction and tissue-specific expression of the rat CYP2B2 gene in transgenic mice. J Biol Chem 268:21722–21726.
  • Rangarajan, P. N., Padmanaban, G. (1989). Regulation of cytochrome P-450b/e gene expression by a heme- and phenobarbitone-modulated transcription factor. Proc Natl Acad Sci U S A 86:3963–3967.
  • Ravishankar, H., Padmanaban, G. (1985). Regulation of cytochrome P-450 gene expression. Studies with a cloned probe. J Biol Chem 260:1588–1592.
  • Regan, R. F., Chen, J., Benvenisti-Zarom, L. (2004). Heme oxygenase-2 gene deletion attenuates oxidative stress in neurons exposed to extracellular hemin. BMC Neurosci 5:34.
  • Ren, Y., Smith, A. (1995). Mechanism of metallothionein gene regulation by heme-hemopexin. Roles of protein kinase C, reactive oxygen species, and cis-acting elements. J Biol Chem 270:23988–23995.
  • Ren, S., Correia, M. A. (2000). Heme: a regulator of rat hepatic tryptophan 2,3-dioxygenase? Arch Biochem Biophys 377:195–203.
  • Rotenberg, M. O., Maines, M. D. (1990). isolation, characterization, and expression in Escherichia coli of a cDNA encoding rat heme oxygenase-2. J Biol Chem 265:7501–7506.
  • Ryan, G., Ades, I. Z. (1989). Coordinate elevations of liver delta-aminolevulinate synthase and cytochrome P-450 RNA by phenobarbital in chicken embryos: the effects of heme. Int J Biochem 21:1025–1031.
  • Sadano, H., Omura, T. (1983). Reversible transfer of heme between different molecular species of microsome-bound cytochrome P-450 in rat liver. Biochem Biophys Res Commun 116:1013–1019.
  • Sadano, H., Omura, T. (1985). Incorporation of heme to microsomal cytochrome P450 in the absence of protein biosynthesis. J Biochem 98:1321–1331.
  • Sakaguchi, M., Mibara, K., Sato, R. (1987). A short amino-terminal segment of microsomal cytochrome P-450 functions both as an insertion signal and as a stop-transfer sequence. EMBO J 6:2425–2431.
  • Sardana, M. K., Rajamanickam, C., Padmanaban, G. (1976). Differential role of heme in the synthesis of mitochondrial and microsomal hemoprotein. In: Doss, M. (Ed.), Porphyrins in human diseases. Proc 1st Int Porphyrin Meeting Freiburg, 1975 (pp 62–70). Basel, Switzerland: Karber.
  • Satoh, T., Satoh, H., Iwahara, S., Hrkal, Z., Peyton, D. H., Muller-Eberhard, U. (1994). Roles of heme iron-coordinating histidine residues of human hemopexin expressed in baculovirus-infected insect cells. Proc Natl Acad Sci U S A 91:8423–8427.
  • Scheuner, D., Patel, R., Wang, F., Lee, K., Kumar, K., Wu, J., et al. (2006). Double-stranded RNA-dependent protein kinase phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 mediates apoptosis. J Biol Chem 281:21458–21468.
  • Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., et al. (2001). Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell 7:1165–1176.
  • Schimke, R. T., Sweeney, E. W., Berlin, C. M. (1965). The roles of synthesis and degradation in the control of rat liver tryptophan pyrrolase. J Biol Chem 240:322–331.
  • Schneider, S., Marles-Wright, J., Sharp, K. H., Paoli, M. (2007). Diversity and conservation of interactions for binding heme in b-type heme proteins. Nat Prod Rep 24:621–630.
  • Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., Poulos, T. L. (1999). Crystal structure of human heme oxygenase-1. Nat Struct Biol 6:860–867.
  • Schutz, G., Chow, E., Feigelson, P. (1972). Regulatory properties of hepatic tryptophan oxygenase. J Biol Chem 247:5333–5337.
  • Sheftel, A. D., Kim, S. F., Ponka, P. (2007). Non-heme induction of heme oxygenase-1 does not alter cellular iron metabolism. J Biol Chem 282:10480–10486.
  • Shibahara, S. (2003). The heme oxygenase dilemma in cellular homeostasis: new insights for the feedback regulation of heme catabolism. Tohoku J Exp Med 200:167–186.
  • Shibahara, S., Muller, R., Taguchi, H., Yoshida, T. (1985). Cloning and expression of cDNA for rat heme oxygenase. Proc Natl Acad Sci U S A 82:7865–7869.
  • Sinclair, P. R., Granick, S. (1974). Uroporphyrin formation induced by chlorinated hydrocarbons (lindane, polychlorinated biphenyls, tetrachlorodibenzo-p-dioxin). Requirement for endogenous iron, protein synthesis, and drug-metabolizing activity. Biochem Biophys Res Commun 61:124–133.
  • Sinclair, P. R., Bement, W. J., Gorman, N., Liem, H. H., Wolkoff, A. W., Muller-Eberhard, U. (1988). Effect of serum proteins on haem uptake and metabolism in primary cultures of liver cells. Biochem J 256:159–165.
  • Sinclair, P.R., Gorman, N., Dalton, T., Walton, H. S., Bement, W. J., Sinclair, J. F., et al. (1998). Uroporphyria produced in mice by iron and 5-aminolaevulinic acid does not occur in Cyp1a2(–/–) null mutant mice. Biochem J 330:149–153.
  • Sinclair, P. R., Schuetz, E. G., Bement, W. J., Haugen, S. A., Sinclair, J. F., May, B. K., et al. (1990). Role of heme in phenobarbital induction of cytochromes P450 and 5-aminolevulinate synthase in cultured rat hepatocytes maintained on an extracellular matrix. Arch Biochem Biophys 282:386–392.
  • Smith, A. G., Francis, J. E. (1993). Genetic variation of iron-induced uroporphyria in mice. Biochem J 291:29–35.
  • Smith, A. G., Clothier, B., Carthew, P., Childs, N. L., Sinclair, P. R., Nebert, D. W., et al. (2001). Protection of the Cyp1a2(–/–) null mouse against uroporphyria and hepatic injury following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Appl Pharmacol 173:89–98.
  • Srivastava, G., Bawden, M. J., Hansen, A. J., May, B. K. (1989). Heme may not be a positive regulator of cytochrome-P450 gene expression. Eur J Biochem 178:689–692.
  • Srivastava, G., Borthwick, I. A., Maguire, D. J., Elferink, C. J., Bawden, M. J., Mercer, J. F., et al. (1988). Regulation of 5-aminolevulinate synthase mRNA in different rat tissues. J Biol Chem 263:5202–5209.
  • Srivastava, G., Hansen, A. J., Bawden, M. J., May, B. K. (1990). Hemin administration to rats reduces levels of hepatic mRNAs for phenobarbitone-inducible enzymes. Mol Pharmacol 38:486–493.
  • Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., Ames, B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046.
  • Stoltz, C., Anderson, A. (1999). Positive regulation of the rat CYP2B2 phenobarbital response unit by the nuclear receptor hexamer half-site.nuclear factor 1 complex. Biochem Pharmacol 57:1073–1076.
  • Stoltz, C., Vachon, M. H., Trottier, E., Dubois, S., Paquet, Y., Anderson, A. (1998). The CYP2B2 phenobarbital response unit contains an accessory factor element and a putative glucocorticoid response element essential for conferring maximal phenobarbital responsiveness. J Biol Chem 273:8528–8536.
  • Sugiyama, K., Yao, K., Rettie, A. E., Correia, M. A. (1989). Inactivation of rat hepatic cytochrome P-450 isozymes by 3,5-dicarbethoxy-2,6-dimethyl-4-ethyl-1,4-dihydropyridine. Chem Res Toxicol 2:400–410.
  • Sultana, S., Nirodi, C. S., Ram, N., Prabhu, L., Padmanaban, G. (1997). A 65-kDa protein mediates the positive role of heme in regulating the transcription of CYP2B1/B2 gene in rat liver. J Biol Chem 272:8895–8900.
  • Sun, J., Hoshino, H., Takaku, K., Nakajima, O., Muto, A., Suzuki, H., et al. (2002). Hemoprotein Bach1 regulates enhancer availability of heme oxygenase-1 gene. EMBO J 21:5216–5224.
  • Tahara, T., Sun, J., Nakanishi, K., Yamamoto, M., Mori, H., Saito, T., et al. (2004b). Heme positively regulates the expression of beta-globin at the locus control region via the transcriptional factor Bach1 in erythroid cells. J Biol Chem 279:5480–5487.
  • Tahara, T., Sun, J., Igarashi, K., Taketani, S. (2004a). Heme-dependent up-regulation of the alpha-globin gene expression by transcriptional repressor Bach1 in erythroid cells. Biochem Biophys Res Commun 324:77–85.
  • Tanaka, S., Kinoshita, J-Y., Kuroda, R., Ito, A. (2003). Integration of cytochrome b5 into endoplasmic reticulum membrane: participation of carboxy-terminal portion of the transmembrane domain. J Biochem 133:247–251.
  • Tenhunen, R., Marver, H., Schmid R. (1968). The enzymatic conversion of heme to bilirubin by microsomal heme oxygenase. Proc Natl Acad Sci U S A 61:748–755.
  • Tenhunen, R., Marver, H. S., Schmid, R. (1969). Microsomal heme oxygenase, characterization of the enzyme. J Biol Chem 244:6388–6394.
  • Tephly, T. R., Gibbs, A. H., De Matteis, F. (1979). Studies on the mechanism of experimental porphyria produced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine: role of a porphyrin-like inhibitor of protohaem ferro-lyase. Biochem J 180:241–244.
  • Tierney, D. J., Haas, A. L., Koop, D. R. (1992). Degradation of cytochrome P450 2E1: selective loss after labilization of the enzyme. Arch Biochem Biophys 293:9–16.
  • Timsit, Y. E., Negishi, M. (2007). CAR and PXR: the xenobiotic-sensing receptors. Steroids 72:231–246.
  • Tolosano, E., Altruda, F. (2002). Hemopexin: structure, function, and regulation. DNA Cell Biol 21:297–306.
  • Tomlinson, E. J., Ferguson, S. J. (2000). Conversion of a c type cytochrome to a b type that spontaneously forms in vitro from apoprotein and heme: implications for c type cytochrome biogenesis and folding. Proc Natl Acad Sci U S A 97:5156–5160.
  • Traugh, J. A. (1989). Heme regulation of hemoglobin synthesis. Sem Hematol 26:54–62.
  • Trawick, J. D., Wright, R. M., Poyton, R. O. (1989). Transcription of yeast COX6, the gene for cytochrome c oxidase subunit VI, is dependent on heme and on the HAP2 gene. J Biol Chem 264:7005–7008.
  • Trottier, E., Belzil, A., Stoltz, C., Anderson, A. (1995). Localization of a phenobarbital-responsive element (PBRE) in the 5′-flanking region of the rat CYP2B2 gene. Gene 158:263–268.
  • Unseld, A., De Matteis, F. (1978). Destruction of endogenous and exogenous haem by 2-allyl-2-isopropylacetamide: role of the liver cytochrome P450 which is inducible by phenobarbitone. Int J Biochem 9: 865–869.
  • Urquhart, A. J., Elder, G. H., Roberts, A. G., Lambrecht, R. W., Sinclair, P. R., Bement, W. J., et al. (1988). Uroporphyria produced in mice by 20-methylcholanthrene and 5-aminolaevulinic acid. Biochem J 253:357–362.
  • Venkateswar, V., Padmanaban, G. (1991). Involvement of heme in the transcriptional activation of CYPIIB1/B2 gene by phenobarbitone in rat liver—studies with succinylacetone. Arch Biochem Biophys 290:167–172.
  • Wang, H. F., Figueiredo Pereira, M. E., Correia, M. A. (1999). Cytochrome P450 3A degradation in isolated rat hepatocytes: 26S proteasome inhibitors as probes. Arch Biochem Biophys 365:45–53.
  • Wang, J., Ortiz de Montellano, P. R. (2003). The binding sites on human heme oxygenase-1 for cytochrome P450 reductase and biliverdin reductase. J Biol Chem 278:20069–20076.
  • Wang, W-H., Lu, J-X., Yao, P., Xie, Y., Huang, Z-X. (2003). The distinct heme coordination environments and heme-binding stabilities of His39Ser and His39Cys mutants of cytochrome b5. Prot Eng 16:1047–1054.
  • Watkins, P. B., Wrighton, S. A., Schuetz, E. G., Maurel, P., Guzelian, P. S. (1986). Macrolide antibiotics inhibit the degradation of the glucocorticoid-responsive cytochrome P-450 in rat hepatocytes in vivo and in primary monolayer culture. J Biol Chem 261:6264–6271.
  • Waxman, D. J., Azaroff, L. (1992). Phenobarbital induction of cytochrome P-450 gene expression. Biochem J 281:577–592.
  • Wek, R. C. (1994). eIF-2 kinases: regulators of general and gene-specific translation initiation. Trends Biochem Sci 19:491–496.
  • Wek, R. C., Jiang, H. Y., Anthony, T. G. (2006). Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans 34:7–11.
  • Whiting, M. J., Granick, S. (1976). Delta-aminolevulinic acid synthase from chick embryo liver mitochondria. I. Purification and some properties. J Biol Chem 251:1340–1346.
  • Wilks, A., Ortiz de Montellano, P. R. (1993). Rat liver heme oxygenase. High level expression of a truncated soluble form and nature of the meso-hydroxylating species. J Biol Chem 268:22357–22362.
  • Wilks, A., Black, S. M., Miller, W. L., Ortiz de Montellano, P. R. (1995). Expression and characterization of truncated human heme oxygenase (hHO-1) and a fusion protein of hHO-1 with human cytochrome P450 reductase. Biochemistry 34:4421–4427.
  • Williams, S. N., Dunham, E., Bradfield, C. A. (2005). Induction of cytochrome P450 enzymes. In: Ortiz de Montellano (Ed.), Cytochrome P450. Structure, mechanism, and biochemistry (pp 323–346, and references therein). New York: Plenum Press.
  • Winkler, H., Adam, G., Mattes, E., Schanz, M., Hartig, A., Ruis, H. (1988). Co-ordinate control of synthesis of mitochondrial and non-mitochondrial hemoproteins: a binding site for the HAP1 (CYP1) protein in the UAS region of the yeast catalase T gene (CTT1). EMBO J 7:1799–1804.
  • Woessmann, W., Mivechi, N. F. (2001). Role of ERK activation in growth and erythroid differentiation of K562 cells. Exp Cell Res 264:193–200.
  • Wyman, J. F., Gollan, J. L., Settle, W., Farell, G. C., Correia, M. A. (1986). Incorporation of haemoglobin haem into the rat hepatic haemoprotein tryptophan pyrrolase and cytochrome P-450. Biochem J 238:837–846.
  • Yamamoto, M., Hayashi, N., Kikuchi, G. (1982). Evidence for the transcriptional inhibition by heme of the synthesis of delta-aminolevulinate synthase in rat liver. Biochem Biophys Res Commun 105:985–990.
  • Yao, K., Correia, M. A. (1991). Enhanced proteolytic loss of rat hepatic tryptophan dioxygenase (TO) after drug-induced heme depletion. FASEB J 5:A1541.
  • Yin, L., Wu, N., Curtin, J. C., Qatanani, M., Szwergold, N. R., Reid, R. A., et al. (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789.
  • Yu, C-A., Gunsalus, I. C. (1974). Cytochrome P450cam. III. Removal and replacement of ferriprotoporphyrin IX. J Biol Chem 249:107–110.
  • Zgoda, V. G., Arison, B., Mkrtchian, S., Ingelman-Sundberg, M., Correia, M. A. (2002). Hemin-mediated restoration of allylisopropylacetamide-inactivated CYP2B1: a role for glutathione and GRP94in the heme–protein assembly. Arch Biochem Biophys 408:58–68.
  • Zhang, L., Guarente, L. (1995). Heme binds to a short sequence that serves a regulatory function in diverse proteins. EMBO J 14:313–320.
  • Zhang, P., McGrath, B., Li, S., Frank, A., Zambito, F., Reinert, J., et al. (2002a). The PERK eukaryotic initiation factor 2 alpha kinase is required for the development of the skeletal system, postnatal growth, and the function and viability of the pancreas. Mol Cell Biol 22:3864–3874.
  • Zhang, P., McGrath, B. C., Reinert, J., Olsen, D. S., Lei, L., Gill, S., et al. (2002b). The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. Mol Cell Biol 22:6681–6688.
  • Zhang, Y. K., Yeager, R. L., Klaassen, C. D. (2009). Circadian expression profiles of drug-processing genes and transcription factors in mouse liver. Drug Metab Dispos 37:106–115.
  • Zheng, J., Shan, Y., Lambrecht, R. W, Donohue, S. E., Bonkovsky, H. L. (2008). Differential regulation of human ALAS1 mRNA and protein levels by heme and cobalt protoporphyrin. Mol Cell Biochem 319:153–161.
  • Zhu, Y., Sun, Y., Jin, K., Greenberg, D. A. (2002b). Hemin induces neuroglobin expression in neural cells. Blood 100:2494–2498.
  • Zhu, Y., Silverman, R. B. (2008). Revisiting heme mechanisms. A perspective on the mechanisms of nitric oxide synthase (NOS), heme oxygenase (HO), and cytochrome P450s (CYP450s). Biochemistry 47:2231–2243.
  • Zhu, Y., Hon, T., Ye, W., Zhang, L. (2002a). Heme deficiency interferes with the Ras-mitogen–activated protein kinase signaling pathway and expression of a subset of neuronal genes. Cell Growth Differ 13:431–439.
  • Zhukov, A., Ingelman-Sundberg, M. (1999). Relationship between cytochrome P450 catalytic cycling and stability: fast degradation of ethanol-inducible cytochrome P450 2E1 (CYP2E1) in hepatoma cells is abolished by inactivation of its electron donor NADPH-cytochrome P450 reductase. Biochem J 340:453–458.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.