709
Views
56
CrossRef citations to date
0
Altmetric
Review Article

The fourth mammalian molybdenum enzyme mARC: current state of research

, &
Pages 524-539 | Received 19 Apr 2011, Accepted 25 Jul 2011, Published online: 26 Sep 2011

References

  • Abbenante, G., Fairlie D. P. (2005). Protease inhibitors in the clinic. Med Chem 1:71–104.
  • Aberg K., Adkins D. E., Bukszar J., Webb B. T., Caroff S. N., Miller del D., et al. (2010). Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 67:279–282.
  • Altuve A., Silchenko S., Lee K. H., Kuczera K., Terzyan S., Zhang X., et al. (2001). Probing the differences between rat liver outer mitochondrial membrane cytochrome b5 and microsomal cytochromes b5. Biochemistry 40:9469–9483.
  • Anantharaman, V., Aravind L. (2002). MOSC domains, ancient, predicted sulfur-carrier domains, present in diverse metal-sulfur cluster biosynthesis proteins including Molybdenum cofactor sulfurases. FEMS Microbiol Lett 207:55–61.
  • Andersson S., Hofmann Y., Nordling A., Li X. Q., Nivelius S., Andersson T. B., et al. (2005). Characterization and partial purification of the rat and human enzyme systems active in the reduction of N-hydroxymelagatran and benzamidoxime. Drug Metab Dispos 33:570–578.
  • Ansede, J. H., Voyksner, R. D., Ismail, M. A., Boykin, D. W., Tidwell, R. R., Hall J. E. (2005). In vitro metabolism of an orally active O-methyl amidoxime prodrug for the treatment of CNS trypanosomiasis. Xenobiotica 35:211–226.
  • Barbier, G. G., Joshi, R. C., Campbell, E. R., Campbell W. H. (2004). Purification and biochemical characterization of simplified eukaryotic nitrate reductase expressed in Pichia pastoris. Protein Expr Purif 37:61–71.
  • Barham, H. M., Stratford I. J. (1996). Enzymology of the reduction of the novel fused pyrazine mono-n-oxide bioreductive drug, RB90740 roles for P450 reductase and cytochrome b5 reductase. Biochem Pharmacol 51:829–837.
  • Beedham C. (1985). Molybdenum hydroxylases as drug-metabolizing enzymes. Drug Metab Rev 16:119–156.
  • Beedham C. (1997). The role of non-P450 enzymes in drug oxidation. Pharm World Sci 19:255–263.
  • Bernardi, P., Azzone G. F. (1981). Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256:7187–7192.
  • Berndt, C., Lillig, C. H., Holmgren A. (2007). Thiol-based mechanisms of the thioredoxin and glutaredoxin systems, implications for diseases in the cardiovascular system. Am J Physiol Heart Circ Physiol 292:H1227–H1236.
  • Bernheim M. L. (1969). The hydroxylamine reductase of mitochondria. Arch Biochem Biophys 134:408–413.
  • Bernheim M. L. (1972). The reduction of hydroxylamine and some aryl hydroxamates by liver mitochondria from mammals and birds. Enzymologia 43:167–176.
  • Bernheim, M. L., Hochstein P. (1968). Reduction of hydroxylamine by rat liver mitochondria. Arch Biochem Biophys 124:436–442.
  • Bittner, F., Oreb, M., Mendel R. R. (2001). ABA3 is a molybdenum cofactor sulfurase required for activation of aldehyde oxidase and xanthine dehydrogenase in Arabidopsis thaliana. J Biol Chem 276:40381–40384.
  • Borgese, N., D’Arrigo, A., De Silvestris, M., Pietrini G. (1993). NADH-cytochrome b5 reductase and cytochrome b5 isoforms as models for the study of post-translational targeting to the endoplasmic reticulum. FEBS Lett 325:70–75.
  • Borgese, N., Gazzoni, I., Barberi, M., Colombo, S., Pedrazzini E. (2001). Targeting of a tail-anchored protein to endoplasmic reticulum and mitochondrial outer membrane by independent but competing pathways. Mol Biol Cell 12:2482–2496.
  • Bulbarelli, A., Valentini, A., DeSilvestris, M., Cappellini, M. D., Borgese N. (1998). An erythroid-specific transcript generates the soluble form of NADH-cytochrome b5 reductase in humans. Blood 92:310–319.
  • Burgess, B. K., Lowe D. J. (1996). Mechanism of molybdenum nitrogenase. Chem Rev 96:2983–2912.
  • Campbell W. H. (1999). Nitrate reductase structure, function, and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303.
  • Chen X., Li X., Wang P., Liu Y., Zhang Z., Zhao G., et al. (2010). Novel association strategy with copy number variation for identifying new risk Loci of human diseases. PLoS One. Available at: http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0012185. Accessed on August 20, 2010.
  • Clement B. (1993). Inventor. Methoden zur Behandlung und Prophylaxe der Pneumocystis carinii pneumonie (PCP) und anderen Erkrankungen sowie Verbindungen und Formulierungen zum Gebrauch bei besagten Methoden. German patent P 4321444.4, PCT/DE 94/00756 (1994); U.S. patent 5,786,383 (1998 July 28); European patent 0708640 (1998 September 16).
  • Clement B. (2002). Reduction of N-hydroxylated compounds: amidoximes (N-hydroxyamidines) as pro-drugs of amidines. Drug Metab Rev 34:565–579.
  • Clement, B., Behrens, D., Möller, W., Cashman J. R. (2000). Reduction of amphetamine hydroxylamine and other aliphatic hydroxylamines by benzamidoxime reductase and human liver microsomes. Chem Res Toxicol 13:1037–1045.
  • Clement, B., Bürenheide, A., Rieckert, W., Schwarz J.(2006). Diacetyldiamidoximeester of pentamidine, a prodrug for treatment of protozoal diseases: synthesis, in vitro and in vivo biotransformation. ChemMedChem 1:1260–1267.
  • Clement, B., Christiansen, K., Girreser U. (2001). Phase 2 metabolites of N-hydroxylated amidines (amidoximes): synthesis, in vitro formation by pig hepatocytes, and mutagenicity testing. Chem Res Toxicol 14:319–326.
  • Clement, B., Havemeyer, A., Krischkowski, C., Bittner, F., Mendel R. (2010). The newly discovered molybdenum-containing enzyme mARC is a novel extrahepatic drug metabolizing enzyme. Drug Metab Rev 42(Suppl 1):1–323.
  • Clement, B., Immel, M., Terlinden, R., Wingen F. J. (1992). Reduction of amidoxime derivatives to pentamidine in vivo. Arch Pharm (Weinheim) 325:61–62.
  • Clement, B., Jung F. (1994). N-hydroxylation of the antiprotozoal drug pentamidine catalyzed by rabbit liver cytochrome P-450 2C3 or human liver microsomes, microsomal retroreduction, and further oxidative transformation of the formed amidoximes. Possible relationship to the biological oxidation of arginine to NG-hydroxyarginine, citrulline, and nitric oxide. Drug Metab Dispos 22:486–497.
  • Clement, B., Kunze T. (1992). The reduction of 6-N-hydroxylaminopurine to adenine by xanthine oxidase. Biochem Pharmacol 44:1501–1509.
  • Clement, B., Lomb, R., Moller W. (1997). Isolation and characterization of the protein components of the liver microsomal O2-insensitive NADH-benzamidoxime reductase. J Biol Chem 272:19615–19620.
  • Clement, B., Lopian K. (2003). Characterization of in vitro biotransformation of new, orally active, direct thrombin inhibitor ximelagatran, an amidoxime and ester prodrug. Drug Metab Dispos 31:645–651.
  • Clement, B., Mau, S., Deters, S., Havemeyer A. (2005). Hepatic, extrahepatic, microsomal, and mitochondrial activation of the N-hydroxylated prodrugs benzamidoxime, guanoxabenz, and Ro 48-3656 ([[1-[(2s)-2-[[4-[(hydroxyamino)iminomethyl]benzoyl]amino]-1-oxopropyl]-4- piperidinyl]oxy]-acetic acid). Drug Metab Dispos 33:1740–1747.
  • Clement, B., Raether W. (1985). Amidoximes of pentamidine, synthesis, trypanocidal, and leishmanicidal activity. Arzneimittelforschung 35:1009–1014.
  • Colombo S., Longhi R., Alcaro S., Ortuso F., Sprocati T., Flora A., et al. (2005). N-myristoylation determines dual targeting of mammalian NADH-cytochrome b5 reductase to ER and mitochondrial outer membranes by a mechanism of kinetic partitioning. J Cell Biol 168:735–745.
  • Cribb, A. E., Spielberg, S. P., Griffin G. P. (1995). N4-hydroxylation of sulfamethoxazole by cytochrome P450 of the cytochrome P4502C subfamily and reduction of sulfamethoxazole hydroxylamine in human and rat hepatic microsomes. Drug Metab Dispos 23:406–414.
  • Da Cruz, S., Xenarios, I., Langridge, J., Vilbois, F., Parone, P. A., Martinou J. C. (2003). Proteomic analysis of the mouse liver mitochondrial inner membrane. J Biol Chem 278:41566–41571.
  • Dambrova, M., Uhlen, S., Welch, C. J., Wikberg J. E. (1998). Identification of an N-hydroxyguanidine reducing activity of xanthine oxidase. Eur J Biochem 257:178–184.
  • D’Arrigo, A., Manera, E., Longhi, R., Borgese N. (1993). The specific subcellular localization of two isoforms of cytochrome b5 suggests novel targeting pathways. J Biol Chem 268:2802–2808.
  • Dick, R. A., Kanne, D. B., Casida JE. (2006). Substrate specificity of rabbit aldehyde oxidase for nitroguanidine and nitromethylene neonicotinoid insecticides. Chem Res Toxicol 19:38–43.
  • Dmitriev L. F. (2001). Activity of key enzymes in microsomal and mitochondrial membranes depends on the redox reactions involving lipid radicals. Membr Cell Biol 14:649–662.
  • Dmitriev L. F. (2007). Shortage of lipid-radical cycles in membranes as a possible prime cause of energetic failure in aging and Alzheimer disease. Neurochem Res 32:1278–1291.
  • Ettmayer, P., Amidon, G. L., Clement, B., Testa B. (2004). Lessons learned from marketed and investigational prodrugs. J Med Chem 47:2393–2404.
  • Finn R. D., McLaughlin L. A., Ronseaux S., Rosewell I., Houston J. B., Henderson C. J., et al. (2008). Defining the in vivo role for cytochrome b5 in cytochrome P450 function through the conditional hepatic deletion of microsomal cytochrome b5. J Biol Chem 283:31385–31393.
  • Fischer, K., Barbier, G. G. Hecht, H. J., Mendel, R. R., Campbell, W. H., Schwarz G. (2005). Structural basis of eukaryotic nitrate reduction: crystal structures of the nitrate reductase active site. Plant Cell 17:1167–1179.
  • Fischer K., Llamas A., Tejada-Jimenez M., Schrader N., Kuper J., Ataya F. S., et al. (2006). Function and structure of the molybdenum cofactor carrier protein from Chlamydomonas reinhardtii. J Biol Chem 281:30186–30194.
  • Fitzsimmons, S. A., Lewis, A. D., Riley, R. J., Workman P. (1994). Reduction of 3-amino-1,2,4-benzotriazine-1,4-di-N-oxide (tirapazamine, WIN 59075, SR 4233) to a DNA-damaging species: a direct role for NADPH:cytochrome P450 oxidoreductase. Carcinogenesis 15:1503–1510.
  • Fuller A. T. (1947). Antibacterial action of some aromatic amines, amidines, amidoximes, guanidines, and diguanides. Biochem J 41:403–408.
  • Groebke Zbinden K., Banner D. W., Hilpert K., Himber J., Lave T., Riederer M. A., et al. (2006). Dose-dependent antithrombotic activity of an orally active tissue factor/factor VIIa inhibitor without concomitant enhancement of bleeding propensity. Bioorg Med Chem 14:5357–5369.
  • Gruenewald S., Wahl B., Bittner F., Hungeling H., Kanzow S., Kotthaus J., et al. (2008). The fourth molybdenum containing enzyme mARC: cloning and involvement in the activation of N-hydroxylated prodrugs. J Med Chem 51:8173–8177.
  • Gustafsson, D., Elg M. (2003). The pharmacodynamics and pharmacokinetics of the oral direct thrombin inhibitor ximelagatran and its active metabolite melagatran: a mini-review. Thromb Res 109(Suppl 1):9–15.
  • Gustafsson D., Nystrom J., Carlsson S., Bredberg U., Eriksson U., Gyzander E., et al. (2001). The direct thrombin inhibitor melagatran and its oral prodrug H 376/95: intestinal absorption properties, biochemical and pharmacodynamic effects. Thromb Res 101:171–181.
  • Hall J. E., Kerrigan J. E., Ramachandran K., Bender B. C., Stanko J. P., Jones S. K., et al. (1998). Anti-Pneumocystis activities of aromatic diamidoxime prodrugs. Antimicrob Agents Chemother 42:666–674.
  • Harrison R. (2004). Physiological roles of xanthine oxidoreductase. Drug Metab Rev 36:363–375.
  • Hauptmann, J., Paintz, M., Kaiser, B., Richter M. (1988). Reduction of a benzamidoxime derivative to the corresponding benzamidine in vivo and in vitro. Pharmazie 43:559–560.
  • Havemeyer, A., Bittner, F., Wollers, S., Mendel, R., Kunze, T., Clement B. (2006). Identification of the missing component in the mitochondrial benzamidoxime prodrug-converting system as a novel molybdenum enzyme. J Biol Chem 281:34796–34802.
  • Havemeyer A., Grunewald S., Wahl B., Bittner F., Mendel R., Erdelyi P., et al. (2010). Reduction of N-hydroxy-sulfonamides, including N-hydroxy-valdecoxib, by the molybdenum-containing enzyme mARC. Drug Metab Dispos 38:1917–1921.
  • Heidenreich, T., Wollers, S., Mendel, R. R., Bittner F. (2005). Characterization of the NifS-like domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 280:4213–4218.
  • Higuchi, S., Matsushita, S., Murayama, M., Takagi, S., Hayashida M. (1995). Alcohol and aldehyde dehydrogenase polymorphisms and the risk for alcoholism. Am J Psychiatry 152;1219–1221.
  • Hille R. (1996). The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816.
  • Hille, R., Nishino, T., Bittner F. (2011). Molybdenum enzymes in higher organism. Coord Chem Rev 255:1179–1205.
  • Hipkin, C. R., Kau, D. A., Cannons A. C. (1993). Further characterization of the assimilatory nitrate reductase from the yeast Candida nitratophila. J Gen Microbiol 139:473–478.
  • Hirsch, P. F., Kaplan N. O. (1961). The conversion of pyridine hydroxamic acids to amides by mouse liver mitochondria. J Biol Chem 236:926–930.
  • Huang T. L., Bacchi C. J., Kode N. R., Zhang Q., Wang G., Yartlet N., et al. (2007). Trypanocidal activity of piperazine-linked bisbenzamidines and bisbenzamidoxime, an orally active prodrug. Int J Antimicrob Agents 30:555–561.
  • Ichida, K., Matsumura, T., Sakuma, R., Hosoya, T., Nishino T. (2001). Mutation of human molybdenum cofactor sulfurase gene is responsible for classical xanthinuria type II. Biochem Biophys Res Commun 282:1194–1200.
  • Islinger, M., Luers, G. H., Li, K. W., Loos, M., Volkl A. (2007). Rat liver peroxisomes after fibrate treatment. A survey using quantitative mass spectrometry. J Biol Chem 282:23055–23069.
  • Ito A. (1980). Cytochrome b5-like hemoprotein of outer mitochondrial membrane; OM cytochrome b. I. Purification of OM cytochrome b from rat liver mitochondria and comparison of its molecular properties with those of cytochrome b5. J Biochem (Tokyo) 87:63–71.
  • Ito, A., Hayashi, S., Yoshida T. (1981). Participation of a cytochrome b5-like hemoprotein of outer mitochondrial membrane (OM cytochrome b) in NADH-semidehydroascorbic acid reductase activity of rat liver. Biochem Biophys Res Commun 101:591–598.
  • Iyanagi, T., Watanabe, S., Anan K. F. (1984). One-electron oxidation-reduction properties of hepatic NADH-cytochrome b5 reductase. Biochemistry 23:1418–1425.
  • Jana, S., Mandlekar, S., Marathe P. (2010). Prodrug design to improve pharmacokinetic and drug delivery properties: challenges to the discovery scientists. Curr Med Chem 17:3874–3908.
  • Johansson, L. C., Andersson, M., Fager, G., Gustafsson, D., Eriksson U. G. (2003). No influence of ethnic origin on the pharmacokinetics and pharmacodynamics of melagatran following oral administration of ximelagatran, a novel oral direct thrombin inhibitor, to healthy male volunteers. Clin Pharmacokinet 42:475–484.
  • Josephy, P. D., Palcic, B., Skarsgard L. D. (1981). Reduction of misonidazole and its derivatives by xanthine oxidase. Biochem Pharmacol 30:849–853.
  • Kadlubar, F. F., Ziegler D. M. (1974). Properties of a NADH-dependent N-hydroxy amine reductase isolated from pig liver microsomes. Arch Biochem Biophys 162:83–92.
  • Kadlubar, F. F., McKee, E. M., Ziegler D. M. (1973). Reduced pyridine nucleotide-dependent N-hydroxy amine oxidase and reductase activities of hepatic microsomes. Arch Biochem Biophys 156:46–57.
  • Keisu, M., Andersson T. B. (2010). Drug-induced liver injury in humans: the case of ximelagatran. Handb Exp Pharmacol 196:407–418.
  • Ketchum, P. A., Cambier, H. Y., Frazier W. A., 3rd, Madansky C. H., Nason A. (1970). In vitro assembly of Neurospora assimilatory nitrate reductase from protein subunits of a Neurospora mutant and the xanthine oxidizing or aldehyde oxidase systems of higher animals. Proc Natl Acad Sci U S A 66:1016–1023.
  • Kimura, S., Kawamura, M., Iyanagi T. (2003). Role of Thr(66) in porcine NADH-cytochrome b5 reductase in catalysis and control of the rate-limiting step in electron transfer. J Biol Chem 278:3580–3589.
  • Kindmark A., Jawaid A., Harbron C. G., Barratt B. J., Bengtsson O. F., Andersson T. B., et al. (2008). Genome-wide pharmacogenetic investigation of a hepatic adverse event without clinical signs of immunopathology suggests an underlying immune pathogenesis. Pharmacogenomics J 8:186–195.
  • Kitamura, S., Tatsumi K. (1983). Azoreductase activity of liver aldehyde oxidase. Chem Pharm Bull (Tokyo) 31:3334–3337.
  • Kitamura, S., Sugihara, K., Ohta S. (2006). Drug-metabolizing ability of molybdenum hydroxylases. Drug Metab Pharmacokinet 21:83–98.
  • Kitamura, S., Sugihara, K., Tatsumi K. (1994). Reductase activity of aldehyde oxidase toward the carcinogen N-hydroxy-2-acetylaminofluorene and the related hydroxamic acids. Biochem Mol Biol Int 34:1197–1203.
  • Kotthaus J., Wahl B., Havemeyer A., Kotthaus J., Schade D., Garbe-Schonberg D., et al. (2010). Reduction of N(omega)-hydroxy-L-arginine by the mitochondrial amidoxime reducing component (mARC). Biochem J 433:383–391.
  • Kozmin, S. G., Leroy, P., Pavlov, Y. I., Schaaper R. M. (2008). YcbX and yiiM, two novel determinants for resistance of Escherichia coli to N-hydroxylated base analogues. Mol Microbiol 68:51–65.
  • Kozmin, S. G., Wang, J., Schaaper R. M. (2010). Role for CysJ flavin reductase in molybdenum cofactor-dependent resistance of Escherichia coli to 6-N-hydroxylaminopurine. J Bacteriol 192:2026–2033.
  • Kurian, J. R., Bajad, S. U., Miller, J. L., Chin, N. A., Trepanier L. A. (2004). NADH cytochrome b5 reductase and cytochrome b5 catalyze the microsomal reduction of xenobiotic hydroxylamines and amidoximes in humans. J Pharmacol Exp Ther 311:1171–1178.
  • Kurian, J. R., Chin, N. A., Longlais, B. J., Hayes, K. L., Trepanier L. A. (2006). Reductive detoxification of arylhydroxylamine carcinogens by human NADH cytochrome b5 reductase and cytochrome b5. Chem Res Toxicol 19:1366–1373.
  • Lederer, F., Ghrir, R., Guiard, B., Cortial, S., Ito A. (1983). Two homologous cytochromes b5 in a single cell. Eur J Biochem 132:95–102.
  • Lee, K. H., Kuczera K. (2003). Molecular dynamics simulation studies of cytochrome b5 from outer mitochondrial and microsomal membrane. Biopolymers 69:260–269.
  • Leroux, A., Mota Vieira, L., Kahn A. (2001). Transcriptional and translational mechanisms of cytochrome b5 reductase isoenzyme generation in humans. Biochem J 355:529–535.
  • Liederer, B. M., Borchardt R. T. (2006). Enzymes involved in the bioconversion of ester-based prodrugs. J Pharm Sci 95:1177–1195.
  • Lip G. Y., Rasmussen L. H., Olsson S. B., Jensen E. C., Persson A. L., Eriksson U., et al. (2009). Oral direct thrombin inhibitor AZD0837 for the prevention of stroke and systemic embolism in patients with non-valvular atrial fibrillation: a randomized dose-guiding, safety, and tolerability study of four doses of AZD0837 vs. vitamin K antagonists. Eur Heart J 30:2897–2907.
  • Malik, A. N., Rossios, C., Al-Kafaji, G., Shah, A., Page R. A. (2007). Glucose regulation of CDK7, a putative thiol related gene, in experimental diabetic nephropathy. Biochem Biophys Res Commun 357:237–244.
  • Matsson E. M., Palm J. E., Eriksson U. G., Bottner P., Lundahl A., Knutson L., et al. (2010). Effects of ketoconazole on the in vivo biotransformation and hepatobiliary transport of the thrombin inhibitor AZD0837 in pigs. Drug Metab Dispos 39:239–246.
  • Mehrotra, M. M., Heath, J. A., Smyth, M. S., Pandey, A., Rose, J. W., Seroogy J. M., et al. (2004). Discovery of novel 2,8-diazaspiro[4.5]decanes as orally active glycoprotein IIb-IIIa antagonists. J Med Chem 47:2037–2061.
  • Mendel, R. R., Bittner F. (2006). Cell biology of molybdenum. Biochim Biophys Acta 1763:621–635.
  • Meyer J. E., Brocks C., Graefe H., Mala C., Thans N., Burgle M., et al. (2008). The oral serine protease inhibitor WX-671—first experience in patients with advanced head and neck carcinoma. Breast Care (Basel) 3:20–24.
  • Mikula, M., Rubel, T., Karczmarski, J., Goryca, K., Dadlez, M., Ostrowski J. (2011). Integrating proteomic and transcriptomic high-throughput surveys for search of new biomarkers of colon tumors. Funct Integr Genomics 11:215–224.
  • Mitani, F., Ogishima, T., Mukai, K., Hoshino, R., Watanabe, K., Suematsu M. (2004). Possible participation of outer mitochondrial membrane cytonchrome B5 in steroidogenesis in zona glomerulosa of rat adrenal cortex. Endocr Res 30:639–644.
  • Molavi A. (1989). Pentamidine for the prevention and treatment of P. carinii pneumonia. Am Fam Physician 40:195–200.
  • Mootha V. K., Bunkenborg J., Olsen J. V., Hjerrild M., Wisniewski J. R., Stahl E., et al. (2003). Integrated analysis of protein composition, tissue diversity, and gene regulation in mouse mitochondria. Cell 115:629–640.
  • Mota Vieira, L., Kaplan, J. C., Kahn, A., Leroux A. (1994). Heterogeneity of the rat NADH-cytochrome-b5-reductase transcripts resulting from multiple alternative first exons. Eur J Biochem 220:729–737.
  • Murray, K. N., Chaykin S. (1966). The reduction of nicotinamide N-oxide by xanthine oxidase. J Biol Chem 241:3468–3473.
  • Nason, A., Lee, K. Y., Pan, S. S., Ketchum, P. A., Lamberti, A., DeVries J. (1971). In vitro formation of assimilatory reduced nicotinamide adenine dinucleotide phosphate: nitrate reductase from a Neurospora mutant and a component of molybdenum-enzymes. Proc Natl Acad Sci U S A 68:3242–3246.
  • Nishida, C. R., Lee, M., de Montellano P. R. (2010). Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol Pharmacol 78:497–502.
  • Nishino, H., Ito A. (1986). Subcellular distribution of OM cytochrome b-mediated NADH-semidehydroascorbate reductase activity in rat liver. J Biochem 100:1523–1531.
  • Ogishima, T., Kinoshita, J. Y., Mitani, F., Suematsu, M., Ito A. (2003). Identification of outer mitochondrial membrane cytochrome b5 as a modulator for androgen synthesis in Leydig cells. J Biol Chem 278:21204–21211.
  • Ouattara, M., Wein, S., Calas, M., Hoang, Y. V., Vial, H., Escale R. (2007). Synthesis and antimalarial activity of new 1,12-bis(N,N’-acetamidinyl)dodecane derivatives. Bioorg Med Chem Lett 17:593–596.
  • Ouattara M., Wein S., Denoyelle S., Ortial S., Durand T., Escale R., et al. (2009). Design and synthesis of amidoxime derivatives for orally potent C-alkylamidine-based antimalarial agents. Bioorg Med Chem Lett 19:624–626.
  • Ozols, J., Carr, S. A., Strittmatter P. (1984). Identification of the NH2-terminal blocking group of NADH-cytochrome b5 reductase as myristic acid and the complete amino acid sequence of the membrane-binding domain. J Biol Chem 259:13349–13354.
  • Page, R., Morris, C., Williams, J., von Ruhland, C., Malik A. N. (1997). Isolation of diabetes-associated kidney genes using differential display. Biochem Biophys Res Commun 232:49–53.
  • Pagliarini D. J., Calvo S. E., Chang B., Sheth S. A., Vafai S. B., Ong S. E., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–123.
  • Panoutsopoulos, G. I., Beedham C. (2004). Kinetics and specificity of guinea pig liver aldehyde oxidase and bovine milk xanthine oxidase towards substituted benzaldehydes. Acta Biochim Pol 51:649–663.
  • Passon, P. G., Hultquist D. E. (1972). Soluble cytochrome b5 reductase from human erythrocytes. Biochim Biophys Acta 275:62–73.
  • Patrick D. A., Hall J. E., Bender B. C., McCurdy D. R., Wilson W. D., Tanious F. A., et al. (1999). Synthesis and anti-Pneumocystis carinii pneumonia activity of novel dicationic dibenzothiophenes and orally active prodrugs. Eur J Med Chem 34:575–583.
  • Peterlin-Masic, L., Cesar, J., Zega A. (2006). Metabolism-directed optimisation of antithrombotics: the prodrug principle. Curr Pharm Des 12:73–91.
  • Pienkos, P. T., Shah, V. K., Brill W. J. (1977). Molybdenum cofactors from molybdoenzymes and in vitro reconstitution of nitrogenase and nitrate reductase. Proc Natl Acad Sci U S A 74:5468–5471.
  • Porter T. D. (2002). The roles of cytochrome b5 in cytochrome P450 reactions. J Biochem Mol Toxicol 16:311–316.
  • Powis, G., Wincentsen L. (1980). Pyridine nucleotide cofactor requirements of indicine N-oxide reduction by hepatic microsomal cytochrome P-450. Biochem Pharmacol 29:347–351.
  • Pryde, D. C., Dalvie, D., Hu, Q., Jones, P., Obach, R. S., Tran T. D. (2010). Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem 53:8441–8460.
  • Rahmathullah, S. M., Hall, J. E., Bender, B. C., McCurdy, D. R., Tidwell, R. R., Boykin D. W. (1999). Prodrugs for amidines: synthesis and anti-Pneumocystis carinii activity of carbamates of 2,5-bis(4-amidinophenyl)furan. J Med Chem 42:3994–4000.
  • Rajagopalan, K. V., Johnson J. L. (1992). The pterin molybdenum cofactors. J Biol Chem 267:10199–10202.
  • Rapaport D. (2003). Finding the right organelle. Targeting signals in mitochondrial outer-membrane proteins. EMBO Rep 4:948–952.
  • Rautio J., Kumpulainen H., Heimbach T., Oliyai R., Oh D., Jarvinen T., et al. (2008). Prodrugs: design and clinical applications. Nat Rev Drug Discov 7:255–270.
  • Riggs J. R., Kolesnikov A., Hendrix J., Young W. B., Shrader W. D., Vijaykumar D., et al. (2006). Factor VIIa inhibitors: a prodrug strategy to improve oral bioavailability. Bioorg Med Chem Lett 16:2224–2228.
  • Rivera, M., Barillas-Mury, C., Christensen, K. A., Little, J. W., Wells, M. A., Walker F. A. (1992). Gene synthesis, bacterial expression, and 1H NMR spectroscopic studies of the rat outer mitochondrial membrane cytochrome b5. Biochemistry 31:12233–12240.
  • Rivera, M., Wells, M. A., Walker F. A. (1994). Cation-promoted cyclic voltammetry of recombinant rat outer mitochondrial membrane cytochrome b5 at a gold electrode modified with beta-mercaptopropionic acid. Biochemistry 33:2161–2170.
  • Rodriguez-Maranon M. J., Qiu F., Stark R. E., White S. P., Zhang X., Foundling S. I., et al. (1996). 13C NMR spectroscopic and X-ray crystallographic study of the role played by mitochondrial cytochrome b5 heme propionates in the electrostatic binding to cytochrome c. Biochemistry 35:16378–16390.
  • Romao M. J. (2009). Molybdenum and tungsten enzymes: a crystallographic and mechanistic overview. Dalton Trans 41:4053–4068.
  • Saido H., Watanabe F., Tamura Y., Miyatake K., Ito A., Yubisui T., et al. (1994). Cytochrome b5-like hemoprotein/cytochrome b5 reductase complex in rat liver mitochondria has NADH-linked aquacobalamin reductase activity. J Nutr 124:1037–1040.
  • Salom-Roig, X. J., Hamze, A., Calas, M., Vial H. J. (2005). Dual molecules as new antimalarials. Comb Chem High Throughput Screen 8:49–62.
  • Saulter J. Y., Kurian J. R., Trepanier L. A., Tidwell R. R., Bridges A. S., Boykin D. W., et al. (2005). Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase. Drug Metab Dispos 33:1886–1893.
  • Shirabe, K., Landi, M. T., Takeshita, M., Uziel, G., Fedrizzi, E., Borgese N. (1995). A novel point mutation in a 3’ splice site of the NADH-cytochrome b5 reductase gene results in immunologically undetectable enzyme and impaired NADH-dependent ascorbate regeneration in cultured fibroblasts of a patient with type II hereditary methemoglobinemia. Am J Hum Genet 57:302–310.
  • Shirk, R. A., Vlasuk G. P. (2007). Inhibitors of factor VIIa/tissue factor. Arterioscler Thromb Vasc Biol 27:1895–1900.
  • Skalova, L., Nobilis, M., Szotakova, B., Wsol, V., Kvasnickova E. (1998). Induction and inhibition of cytochrome P450-catalysed reduction of biologically active benfluron N-oxide. Drug Metabol Drug Interact 14:221–233.
  • Slaughter, S. R., Williams, C. H., Hultquist D. E. (1982). Demonstration that bovine erythrocyte cytochrome b5 is the hydrophilic segment of liver microsomal cytochrome b5. Biochim Biophys Acta 705:228–237.
  • Soeiro, M. N., de Castro, S. L., de Souza, E. M., Batista, D. G., Silva, C. F., Boykin D. W. (2008). Diamidine activity against trypanosomes: the state of the art. Curr Mol Pharmacol 1:151–161.
  • Song Y., Clizbe L., Bhakta C., Teng W., Wong P., Huang B., et al. (2003). Design and synthesis of factor Xa inhibitors and their prodrugs. Bioorg Med Chem Lett 13:297–300.
  • Squizzato, A., Dentali, F., Steidl, L., Ageno W. (2009). New direct thrombin inhibitors. Intern Emerg Med 4:479–484.
  • Stoddart, A. M., Levine W. G. (1992). Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol 43:2227–2235.
  • Stöhrer G. (1968). Reduction of hydroxylamine derivates by xanthine oxidase. Israel J Chem 6:845–846.
  • Strittmatter, P., Hackett, C. S., Korza, G., Ozols J. (1990). Characterization of the covalent cross-links of the active sites of amidinated cytochrome b5 and NADH:cytochrome b5 reductase. J Biol Chem 265:21709–21713.
  • Strittmatter, P., Spatz, L., Corcoran, D., Rogers, M. J., Setlow, B., Redline R. (1974). Purification and properties of rat liver microsomal stearyl coenzyme A desaturase. Proc Natl Acad Sci U S A 71:4565–4569.
  • Su A. I., Wiltshire T., Batalov S., Lapp H., Ching K. A., Block D., et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptones. PNAS 101:6062–6067.
  • Sugihara, K., Tatsumi K. (1986). Participation of liver aldehyde oxidase in reductive metabolism of hydroxamic acids to amides. Arch Biochem Biophys 247:289–293.
  • Sugiura, M., Iwasaki, K., Kato R. (1977). Reduced nicotinamide adenine dinucleotide-dependent reduction of tertiary amine N-oxide by liver microsomal cytochrome P-450. Biochem Pharmacol 26:489–495.
  • Takekawa, K., Sugihara, K., Kitamura, S., Ohta S. (2001). Enzymatic and non-enzymatic reduction of brucine N-oxide by aldehyde oxidase and catalase. Xenobiotica 31:769–782.
  • Tan W. H., Eichler F. S., Hoda S., Lee M. S., Baris H., Hanley C. A., et al. (2005). Isolated sulfite oxidase deficiency: a case report with a novel mutation and review of the literature. Pediatrics 116:757–766.
  • Tatsumi, K., Ishigai M. (1987). Oxime-metabolizing activity of liver aldehyde oxidase. Arch Biochem Biophys 253:413–418.
  • Tatsumi, K., Inoue, A., Yoshimura H. (1981). Mode of reactions between xanthine oxidase and aromatic nitro compounds. J Pharmacobiodyn 4:101–108.
  • Tatsumi, K., Yamada, H., Kitamura S. (1983a). Reductive metabolism of N-nitrosodiphenylamine to the corresponding hydrazine derivative. Arch Biochem Biophys 226:174–181.
  • Tatsumi, K., Yamada, H., Kitamura S. (1983b). Evidence for involvement of liver aldehyde oxidase in reduction of nitrosamines to the corresponding hydrazine. Chem Pharm Bull (Tokyo) 31:764–767.
  • Teslovich T. M., Musunuru K., Smith A. V., Edmondson A. C., Stylianou I. M., Koseki M, et al. (2010). Biological, clinical, and population relevance of 95 loci for blood lipids. Nature 466:707–713.
  • Tilley, J. W. (2007). Prodrugs of benzamidines. In: Stella V. J., Borchardt R. T., Hegeman M. J., Oliyai R., Maag H., Tilley J. W. (Eds.), Prodrugs: challenges and rewards. Part 2 ( pp. 190–222). New York: Springer Science.
  • Truong, H. N., Meyer, C., Daniel-Vedele F. (1991). Characteristics of Nicotiana tabacum nitrate reductase protein produced in Saccharomyces cerevisiae. Biochem J 278:393–397.
  • Uchida M., Okazaki K., Mukaiyama H., Isawa H., Kobayashi H., Shiohara H., et al. (2008). Orally active factor Xa inhibitors: investigation of a novel series of 3-amidinophenylsulfonamide derivatives using an amidoxime prodrug strategy. Bioorg Med Chem Lett 18:4682–4687.
  • Ueda, O., Sugihara, K., Ohta, S., Kitamura S. (2005). Involvement of molybdenum hydroxylases in reductive metabolism of nitro polycyclic aromatic hydrocarbons in mammalian skin. Drug Metab Dispos 33:1312–1318.
  • Uhl G. R., Drgon T., Lin Q., Johnson C., Walther D., Komiyama T., et al. (2008). Genome-wide association for methampetamine dependence. Arch Gen Psychiatry 65:345–355.
  • Vergères, G., Waskell L. (1995). Cytochrome b5: its functions, structure, and membrane topology. Biochimie 77:604–620.
  • Wahl B., Reichmann D., Niks D., Krompholz N., Havemeyer A., Clement B., et al. (2010). Biochemical and spectroscopic characterization of the human mitochondrial amidoxime reducing components human mARC-1 and human mARC-2 suggests the existence of a new molybdenum enzyme family in eukaryotes. J Biol Chem 285:37847–37859.
  • Walton, M. I., Wolf, C. R., Workman P. (1992). The role of cytochrome P450 and cytochrome P450 reductase in the reductive bioactivation of the novel benzotriazine di-N-oxide hypoxic cytotoxin 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233, WIN 59075) by mouse liver. Biochem Pharmacol 44:251–259.
  • Wang, L., Cowley, A. B., Benson D. R. (2007). Enhancing the thermal stability of mitochondrial cytochrome b5 by introducing a structural motif characteristic of the less stable microsomal isoform. Protein Eng Des Sel 20:511–520.
  • Wang M. Z., Saulter J. Y., Usuki E., Cheung Y. L., Hall M., Bridges A. S., et al. (2006). CYP4F enzymes are the major enzymes in human liver microsomes that catalyze the O-demethylation of the antiparasitic prodrug DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime]. Drug Metab Dispos 34:1985–1994.
  • Watanabe, F., Nakano Y. (1997). Purification and characterization of aquacobalamin reductases from mammals. Methods Enzymol 281:295–305.
  • Weller T., Alig L., Beresini M., Blackburn B., Bunting S., Hadvary P., et al. (1996). Orally active fibrinogen receptor antagonists 2. Amidoximes as prodrugs of amidines. J Med Chem 39:3139–3147.
  • Wen, B., Coe, K. J., Rademacher, P., Fitch, W. L., Monshouwer, M., Nelson S. D. (2008). Comparison of in vitro bioactivation of flutamide and its cyano analogue: evidence for reductive activation by human NADPH:cytochrome P450 reductase. Chem Res Toxicol 21:2393–2406
  • Wenzler, T., Boykin, D. W., Ismail, M. A., Hall, J. E., Tidwell, R. R., Brun R. (2009). New treatment option for second-stage African sleeping sickness: in vitro and in vivo efficacy of aza analogs of DB289. Antimicrob Agents Chemother 53:4185–4192.
  • Werbovetz K. (2006). Diamidines as antitrypanosomal, antileishmanial, and antimalarial agents. Curr Opin Investig Drugs 7:147–157.
  • Wiese S., Gronemeyer T., Ofman R., Kunze M., Grou C. P., Almeida J. A., et al. (2007). Proteomics characterization of mouse kidney peroxisomes by tandem mass spectrometry and protein correlation profiling. Mol Cell Proteomics 6:2045–2057.
  • Wittke, B., Mackie, I. J., Machin, S. J., Timm, U., Zell, M., Goggin T. (1999). Pharmacokinetics and pharmacodynamics of Ro 44-3888 after single ascending oral doses of sibrafiban, an oral platelet aggregation inhibitor, in healthy male volunteers. Br J Clin Pharmacol 47:521–530.
  • Wollers S., Heidenreich T., Zarepour M., Zachmann D., Kraft C., Zhao Y., et al. (2008). Binding of sulfurated molybdenum cofactor to the C-terminal domain of ABA3 from Arabidopsis thaliana provides insight into the mechanism of molybdenum cofactor sulfuration. J Biol Chem 283:9642–9650.
  • Yamada, H., Baba, T., Oguri, K., Yoshimura H. (1988). Enzymic reduction of N-hydroxyamphetamine: the role of electron transfer system containing cytochrome b5. Biochem Pharmacol 37:368–370.
  • Yubisui, T., Murakami, K., Takeshita, M., Takano T. (1988). Purification by hydrophobic chromatography of soluble cytochrome b5 of human erythrocytes. Biochim Biophys Acta 936:447–451.
  • Zega, A., Mlinsek, G., Solmajer, T., Trampus-Bakija, A., Stegnar, M., Urleb U. (2004). Thrombin inhibitors built on an azaphenylalanine scaffold. Bioorg Med Chem Lett 14:1563–1667.
  • Zhang, Y., Gladyshev V. N. (2008). Molybdoproteomes and evolution of molybdenum utilization. J Mol Biol 379:881–899.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.