1,283
Views
54
CrossRef citations to date
0
Altmetric
Review Article

Substrate inhibition kinetics in drug metabolism reactions

Pages 440-456 | Received 23 May 2011, Accepted 11 Aug 2011, Published online: 30 Sep 2011

References

  • Allali-Hassani A, Pan PW, Dombrovski L, Najmanovich R, Tempel W, Dong A, et al. (2007). Structural and chemical profiling of the human cytosolic sulfotransferases. PLoS Biol 5: e97.
  • Alonen A. Finel M. Kostiainen R. (2008). The human UDP-glucuronosyltransferase UGT1A3 is highly selective towards N2 in the tetrazole ring of losartan, candesartan, and zolarsartan. Biochem Pharmacol 76:763–772.
  • Aprile S. Del Grosso E. Grosa G. (2010). Identification of the human UDP-glucuronosyltransferases involved in the glucuronidation of combretastatin A-4. Drug Metab Dispos 38:1141–1146.
  • Atkins W. M. Wang R. W. Lu A. Y. (2001). Allosteric behavior in cytochrome p450-dependent in vitro drug-drug interactions: a prospective based on conformational dynamics. Chem Res Toxicol 14:338–347.
  • Atkins W. M. (2005). Non-Michaelis-Menten kinetics in cytochrome P450-catalyzed reactions. Annu Rev Pharmacol Toxicol 45:291–310.
  • Atkins W. M. (2006). Current views on the fundamental mechanisms of cytochrome P450 allosterism. Expert Opin Drug Metab Toxicol 2:573–579.
  • Barnett A. C. Tsvetanov S. Gamage N. Martin J. L. Duggleby R. G. McManus M. E. (2004). Active site mutations and substrate inhibition in human sulfotransferase 1A1 and 1A3. J Biol Chem 279:18799–18805.
  • Bourcier K. Hyland R. Kempshall S. Jones R. Maximilien J. Irvine N. et al. (2010). Investigation into UDP-glucuronosyltransferase (UGT) enzyme kinetics of imidazole- and triazole-containing antifungal drugs in human liver microsomes and recombinant UGT enzymes. Drug Metab Dispos 38:923–929.
  • Chang H. J. Shi R. Rehse P. Lin S. X. (2004). Identifying androsterone (ADT) as a cognate substrate for human dehydroepiandrosterone sulfotransferase (DHEA-ST) important for steroid homeostasis: structure of the enzyme-ADT complex. J Biol Chem 279:2689–2696.
  • Chang J. H. Yoo P. Lee T. Klopf W. Takao D. (2009). The role of pH in the glucuronidation of raloxifene, mycophenolic acid, and ezetimibe. Mol Pharm 6:1216–1227.
  • Chapman E. Best M. D. Hanson S. R. Wong C. H. (2004). Sulfotransferases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 43:3526–3548.
  • Chen M. LeDuc B. Kerr S. Howe D. Williams D. A. (2010). Identification of human UGT2B7 as the major isoform involved in the O-glucuronidation of chloramphenicol. Drug Metab Dispos 38:368–375.
  • Cook I. T. Leyh T. S. Kadlubar S. A. Falany C. N. (2010). Structural rearrangement of SULT2A1: effects on dehydroepiandrosterone and raloxifene sulfation. Horm Mol Biol Clin Invest 1:81–87.
  • Cupp-Vickery J. Anderson R. Hatziris Z. (2000). Crystal structures of ligand complexes of P450eryF exhibiting homotropic cooperativity. Proc Natl Acad Sci U S A 97:3050–3055.
  • Davydov D. R. Fernando H. Baas B. J. Sligar S. G. Halpert J. R. (2005). Kinetics of dithionite-dependent reduction of cytochrome P450 3A4: heterogeneity of the enzyme caused by its oligomerization. Biochemistry 44:13902–13913.
  • Davydov D. R. Halpert J. R. (2008). Allosteric P450 mechanisms: multiple binding sites, multiple conformers, or both? Expert Opin Drug Metab Toxicol 4:1523–1535.
  • Dombrovski L. Dong A. Bochkarev A. Plotnikov A. N. (2006). Crystal structures of human sulfotransferases SULT1B1 and SULT1C1 complexed with the cofactor product adenosine-3’-5’-diphosphate (PAP). Proteins 64:1091–1094.
  • Ekroos M. Sjögren T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. Proc Natl Acad Sci U S A 103:13682–13687.
  • Falany C. N. (1997). Enzymology of human cytosolic sulfotransferases. FASEB J 11:206–216.
  • Fernando H. Halpert J. R. Davydov D. R. (2008). Kinetics of electron transfer in the complex of cytochrome P450 3A4 with the flavin domain of cytochrome P450BM-3 as evidence of functional heterogeneity of the heme protein. Arch Biochem Biophys 471:20–31.
  • Galetin A. Clarke S. E. Houston J. B. (2002). Quinidine and haloperidol as modifiers of CYP3A4 activity: multisite kinetic model approach. Drug Metab Dispos 30:1512–1522.
  • Galetin A. Clarke S. E. Houston J. B. (2003). Multisite kinetic analysis of interactions between prototypical CYP3A4 subgroup substrates: midazolam, testosterone, and nifedipine. Drug Metab Dispos 31:1108–1116.
  • Gamage N. Barnett A. Hempel N. Duggleby R. G. Windmill K. F. Martin J. L. et al. (2006). Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22.
  • Gamage N. U. Duggleby R. G. Barnett A. C. Tresillian M. Latham C. F. Liyou N. E. et al. (2003). Structure of a human carcinogen-converting enzyme, SULT1A1. Structural and kinetic implications of substrate inhibition. J Biol Chem 278:7655–7662.
  • Gamage N. U. Tsvetanov S. Duggleby R. G. McManus M. E. Martin J. L. (2005). The structure of human SULT1A1 crystallized with estradiol. An insight into active site plasticity and substrate inhibition with multi-ring substrates. J Biol Chem 280:41482–41486.
  • Gulcan H. O. Duffel M. W. (2011). Substrate inhibition in human hydroxysteroid sulfotransferase SULT2A1: studies on the formation of catalytically non-productive enzyme complexes. Arch Biochem Biophys 507:232–240.
  • Hallifax D. Rawden H. C. Hakooz N. Houston J. B. (2005). Prediction of metabolic clearance using cryopreserved human hepatocytes: kinetic characteristics for five benzodiazepines. Drug Metab Dispos 33:1852–1858.
  • Harlow G. R. Halpert J. R. (1998). Analysis of human cytochrome P450 3A4 cooperativity: construction and characterization of a site-directed mutant that displays hyperbolic steroid hydroxylation kinetics. Proc Natl Acad Sci U S A 95:6636–6641.
  • Hoff R. H. Czyryca P. G. Sun M. Leyh T. S. Hengge A. C. (2006). Transition state of the sulfuryl transfer reaction of estrogen sulfotransferase. J Biol Chem 281:30645–30649.
  • Houston J. B. Galetin A. (2005). Modelling atypical CYP3A4 kinetics: principles and pragmatism. Arch Biochem Biophys 433:351–360.
  • Houston J. B. Kenworthy K. E. (2000) In vitro-in vivo scaling of CYP kinetic data not consistent with the classical Michaelis-Menten model. Drug Metab Dispos 28:246–254.
  • Huang C. Chen Y. Zhou T. Chen G. (2009). Sulfation of dietary flavonoids by human sulfotransferases. Xenobiotica 39:312–322.
  • Hutzler J. M. Tracy T. S. (2002). Atypical kinetic profiles in drug metabolism reactions. Drug Metab Dispos 30:355–362.
  • Hyland R. Osborne T. Payne A. Kempshall S. Logan Y. R. Ezzeddine K. et al. (2009). In vitro and in vivo glucuronidation of midazolam in humans. Br J Clin Pharmacol 67:445–454.
  • Isin E. M. Guengerich F. P. (2008). Substrate binding to cytochromes P450. Anal Bioanal Chem 392:1019–1030.
  • Itäaho K. Alakurtti S. Yli-Kauhaluoma J. Taskinen J. Coughtrie M. W. Kostiainen R. (2007). Regioselective sulfonation of dopamine by SULT1A3 in vitro provides a molecular explanation for the preponderance of dopamine-3-O-sulfate in human blood circulation. Biochem Pharmacol 74:504–510.
  • Iwuchukwu O. F. Nagar S. (2008). Resveratrol (trans-resveratrol, 3,5,4’-trihydroxy-trans-stilbene) glucuronidation exhibits atypical enzyme kinetics in various protein sources. Drug Metab Dispos 36:322–330.
  • Iwuchukwu O. F. Nagar S. (2010). Cis-resveratrol glucuronidation kinetics in human and recombinant UGT1A sources. Xenobiotica 40:102–108.
  • Kaivosaari S. Finel M. Koskinen M. (2011). N-glucuronidation of drugs and other xenobiotics by human and animal UDP-glucuronosyltransferases. Xenobiotica 41:652–669.
  • Kemp D. C. Fan P. W. Stevens J. C. (2002). Characterization of raloxifene glucuronidation in vitro: contribution of intestinal metabolism to presystemic clearance. Drug Metab Dispos 30:694–700.
  • Kenworthy K. E. Clarke S. E. Andrews J. Houston J. B. (2001). Multisite kinetic models for CYP3A4: simultaneous activation and inhibition of diazepam and testosterone metabolism. Drug Metab Dispos 29:1644–1651.
  • Kerdpin O. Knights K. M. Elliot D. J. Miners J. O. (2008). In vitro characterisation of human renal and hepatic frusemide glucuronidation and identification of the UDP-glucuronosyltransferase enzymes involved in this pathway. Biochem Pharmacol 76:249–257.
  • Kerdpin O. Mackenzie P. I. Bowalgaha K. Finel M. Miners J. O. (2009). Influence of N-terminal domain histidine and proline residues on the substrate selectivities of human UDP-glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metab Dispos 37:1948–1955.
  • Korzekwa K. R. Krishnamachary N. Shou M. Ogai A. Parise R. A. Rettie A. E. Gonzalez F. J. et al. (1998). Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites. Biochemistry 37:4137–4147.
  • Lautala P. Ethell B. T. Taskinen J. Burchell B. (2000). The specificity of glucuronidation of entacapone and tolcapone by recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos 28:1385–1389.
  • Lee G. M. Craik C. S. (2009). Trapping moving targets with small molecules. Science 324:213–215.
  • Lee H. S. Ji H. Y. Park E. J. Kim S. Y. (2007). In vitro metabolism of eupatilin by multiple cytochrome P450 and UDP-glucuronosyltransferase enzymes. Xenobiotica 37:803–817.
  • Lee K. A. Fuda H. Lee Y. C. Negishi M. Strott C. A. Pedersen L. C. (2003). Crystal structure of human cholesterol sulfotransferase (SULT2B1b) in the presence of pregnenolone and 3´-phosphoadenosine 5´-phosphate. Rationale for specificity differences between prototypical SULT2A1 and the SULT2BG1 isoforms. J Biol Chem 278:44593–44599.
  • Lewis B. C. Mackenzie P. I. Elliot D. J. Burchell B. Bhasker C. R. Miners J. O. (2007). Amino terminal domains of human UDP-glucuronosyltransferases (UGT) 2B7 and 2B15 associated with substrate selectivity and autoactivation. Biochem Pharmacol 73:1463–1473.
  • Li D. Fournel-Gigleux S. Barré L. Mulliert G. Netter P. Magdalou J. et al. (2007). Identification of aspartic acid and histidine residues mediating the reaction mechanism and the substrate specificity of the human UDP-glucuronosyltransferases 1A. J Biol Chem 282:36514–36524.
  • Lin Y. Lu P. Tang C. Mei Q. Sandig G. Rodrigues A. D. et al. (2001). Substrate inhibition kinetics for cytochrome P450-catalyzed reactions. Drug Metab Dispos 29:368–374.
  • Lu J. Li H. Zhang J. Li M. Liu M. Y. An X. et al. (2010). Crystal structures of SULT1A2 and SULT1A1 *3: insights into the substrate inhibition and the role of Tyr149 in SULT1A2. Biochem Biophys Res Commun 396:429–434.
  • Lu J. H. Li H. T. Liu M. C. Zhang J. P. Li M. An X. M. et al. (2005). Crystal structure of human sulfotransferase SULT1A3 in complex with dopamine and 3’-phosphoadenosine 5’-phosphate. Biochem Biophys Res Commun 335:417–423.
  • Lu L. Y. Hsieh Y. C. Liu M. Y. Lin Y. H. Chen C. J. Yang Y. S. (2008). Identification and characterization of two amino acids critical for the substrate inhibition of human dehydroepiandrosterone sulfotransferase (SULT2A1). Mol Pharmacol 73:660–668.
  • Lu Y. Zhu J. Chen X. Li N. Fu F. He J. et al. (2009). Identification of human UDP-glucuronosyltransferase isoforms responsible for the glucuronidation of glycyrrhetinic acid. Drug Metab Pharmacokinet 24:523–528.
  • Luukkanen L. Taskinen J. Kurkela M. Kostiainen R. Hirvonen J. Finel M. (2005). Kinetic characterization of the 1A subfamily of recombinant human UDP-glucuronosyltransferases. Drug Metab Dispos 33:1017–1026.
  • Maier-Salamon A. Böhmdorfer M. Reznicek G. Thalhammer T. Szekeres T. Jaeger W. (2011). Hepatic glucuronidation of resveratrol: interspecies comparison of enzyme kinetic profiles in human, mouse, rat, and dog. Drug Metab Pharmacokinet Apr 22. [Epub ahead of print]
  • Manevski N. Kurkela M. Höglund C. Mauriala T. Court M. H. Yli-Kauhaluoma J. et al. (2010). Glucuronidation of psilocin and 4-hydroxyindole by the human UDP-glucuronosyltransferases. Drug Metab Dispos 38:386–395.
  • Mano Y. Usui T. Kamimura H. (2006). Identification of human UDP-glucuronosyltransferase responsible for the glucuronidation of niflumic acid in human liver. Pharm Res 23:1502–1508.
  • Mano Y. Usui T. Kamimura H. (2007). Contribution of UDP-glucuronosyltransferases 1A9 and 2B7 to the glucuronidation of indomethacin in the human liver. Eur J Clin Pharmacol 63:289–296.
  • Marshall A. D. Darbyshire J. F. Hunter A. P. McPhie P. Jakoby W. B. (1997). Control of activity through oxidative modification at the conserved residue Cys66 of aryl sulfotransferase IV. J Biol Chem 272:9153–9160.
  • Marshall A. D. McPhie P. Jakoby W. B. (2000). Redox control of aryl sulfotransferase specificity. Arch Biochem Biophys 382:95–104.
  • Maul R. Siegl D. Kulling S. E. (2011). Glucuronidation of the red clover isoflavone irilone by liver microsomes from different species and human UDP-glucuronosyltransferases. Drug Metab Dispos 39:610–616.
  • Miksits M. Maier-Salamon A. Vo T. P. Sulyok M. Schuhmacher R. Szekeres T. et al. (2010). Glucuronidation of piceatannol by human liver microsomes: major role of UGT1A1, UGT1A8, and UGT1A10. J Pharm Pharmacol 62:47–54.
  • Miksits M. Sulyok M. Schuhmacher R. Szekeres T. Jäger W. (2009). In-vitro sulfation of piceatannol by human liver cytosol and recombinant sulfotransferases. J Pharm Pharmacol 61:185–191.
  • Miley M. J. Zielinska A. K. Keenan J. E. Bratton S. M. Radominska-Pandya A. Redinbo M. R. (2007). Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J Mol Biol 369:498–511.
  • Miners J. O. Mackenzie P. I. Knights K. M. (2010). The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and in vitro-in vivo extrapolation of drug clearance and drug-drug interaction potential. Drug Metab Rev 42:196–208.
  • Mutlib A. E. Goosen T. C. Bauman J. N. Williams J. A. Kulkarni S. Kostrubsky S. (2006). Kinetics of acetaminophen glucuronidation by UDP-glucuronosyltransferases 1A1, 1A6, 1A9, and 2B15. Potential implications in acetaminophen-induced hepatotoxicity. Chem Res Toxicol 19:701–709.
  • Nakano H.;, Ogura K. Takahashi E. Harada T. Nishiyama T. Muro K. et al. (2004). Regioselective monosulfation and disulfation of the phytoestrogens daidzein and genistein by human liver sulfotransferases. Drug Metab Pharmacokinet 19:216–226.
  • Negishi M. Pedersen L. G. Petrotchenko E. Shevtsov S. Gorokhov A. Kakuta Y. et al. (2001). Structure and function of sulfotransferases. Arch Biochem Biophys 390:149–157.
  • Ohno S. Kawana K. Nakajin S. (2008). Contribution of UDP-glucuronosyltransferase 1A1 and 1A8 to morphine-6-glucuronidation and its kinetic properties. Drug Metab Dispos 36:688–694.
  • Patana A. S. Kurkela M. Goldman A. Finel M. (2007). The human UDP-glucuronosyltransferase: identification of key residues within the nucleotide-sugar binding site. Mol Pharmacol 72:604–611.
  • Pedersen L. C. Petrotchenko E. Shevtsov S. Negishi M. (2002). Crystal structure of the human estrogen sulfotransferase-PAPS complex: evidence for catalytic role of Ser137 in the sulfuryl transfer reaction. J Biol Chem 277:17928–17932.
  • Pedersen L. C. Petrotchenko E. V. Negishi M. 2000. Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. FEBS Lett 475:61–64.
  • Pietsch C. A. Scanlan T. S. Anderson R. J. (2007). Thyronamines are substrates for human liver sulfotransferases. Endocrinology 148:1921–1927.
  • Radominska-Pandya A. Bratton S. M. Redinbo M. R. Miley M. J. (2010). The crystal structure of human UDP-glucuronosyltransferase 2B7 C-terminal end is the first mammalian UGT target to be revealed: the significance for human UGTs from both the 1A and 2B families. Drug Metab Rev 42:128–139.
  • Radominska-Pandya A. Czernik P. J. Little J. M. Battaglia E. Mackenzie P. I. (1999). Structural and functional studies of UDP-glucuronosyltransferases. Drug Metab Rev 31:817–899.
  • Raungrut P. Uchaipichat V. Elliot D. J. Janchawee B. Somogyi A. A. Miners J. O. (2010). In vitro-in vivo extrapolation predicts drug-drug interactions arising from inhibition of codeine glucuronidation by dextropropoxyphene, fluconazole, ketoconazole, and methadone in humans. J Pharmacol Exp Ther 334:609–618.
  • Rehse P. H. Zhou M. Lin S. X. (2002). Crystal structure of human dehydroepiandrosterone sulphotransferase in complex with substrate. Biochem J 364:165–171.
  • Rowland A. Elliot D. J. Williams J. A. Mackenzie P. I. Dickinson R. G. Miners J. O. (2006a). In vitro characterization of lamotrigine N2-glucuronidation and the lamotrigine-valproic acid interaction. Drug Metab Dispos 34:1055–1062.
  • Rowland P. Blaney F. E. Smyth M. G. Jones J. J. Leydon V. R. Oxbrow A. K. et al. (2006b). Crystal structure of human cytochrome P450 2D6. J Biol Chem 281:7614–7622.
  • Sahai J. Gallicano K. Pakuts A. Cameron D. W. (1994). Effect of fluconazole on zidovudine pharmacokinetics in patients infected with human immunodeficiency virus. J Infect Dis 169:1103–1107.
  • Sansen S. Yano J. K. Reynald R. L. Schoch G. A. Griffin K. J. Stout C. D. et al. (2007). Adaptations for the oxidation of polycyclic aromatic hydrocarbons exhibited by the structure of human P450 1A2. J Biol Chem 282:14348–14355.
  • Scott E. E. Halpert J. R. (2005). Structures of cytochrome P450 3A4. Trends Biochem Sci 30:5–7.
  • Segel I. H. (1993). Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. New ed. New York: Wiley.
  • Sevrioukova I. F. Poulos T. L. (2010). Structure and mechanism of the complex between cytochrome P450 3A4 and ritonavir. Proc Natl Acad Sci U S A 107:18422–18427.
  • Shou M. Lin Y. Lu P. Tang C. Mei Q. Cui D. et al. (2001). Enzyme kinetics of cytochrome P450-mediated reactions. Curr Drug Metab 2:17–36.
  • Song W. Y. Ji H. Y. Baek N. I. Jeong T. S. Lee H S. (2010). In vitro metabolism of jaceosidin and characterization of cytochrome P450 and UDP-glucuronosyltransferase enzymes in human liver microsomes. Arch Pharm Res 33:1985–1996.
  • Staines A. G. Sindelar P. Coughtrie M. W. Burchell B. (2004). Farnesol is glucuronidated in human liver, kidney, and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1. Biochem J 384:637–645.
  • Sun H. Zhang L. Chow E. C. Lin G. Zuo Z. Pang K. S. (2008). A catenary model to study transport and conjugation of baicalein, a bioactive flavonoid, in the Caco-2 cell monolayer: demonstration of substrate inhibition. J Pharmacol Exp Ther 326:117–126.
  • Tang C. Shou M. Mei Q. Rushmore T. H. Rodrigues A. D. (2000). Major role of human liver microsomal cytochrome P450 2C9 (CYP2C9) in the oxidative metabolism of celecoxib, a novel cyclooxygenase-II inhibitor. J Pharmacol Exp Ther 293:453–459.
  • Tang L., Singh R. Liu Z. Hu M. (2009). Structure and concentration changes affect characterization of UGT isoform-specific metabolism of isoflavones. Mol Pharm 6:1466–1482.
  • Tracy T. S. Hummel M. A. (2004). Modeling kinetic data from in vitro drug metabolism enzyme experiments. Drug Metab Rev 36:231–242.
  • Tracy T. S. Hutzler J. M. Haining R. L. Rettie A. E. Hummel M. A. Dickmann L. J. (2002). Polymorphic variants (CYP2C9*3 and CYP2C9*5) and the F114L active site mutation of CYP2C9: effect on atypical kinetic metabolism profiles. Drug Metab Dispos 30:385–390.
  • Tracy T. S. (2003). Atypical enzyme kinetics: their effect on in vitro-in vivo pharmacokinetic predictions and drug interactions. Curr Drug Metab 4:341–346.
  • Tracy T. S. (2006). Atypical cytochrome p450 kinetics: implications for drug discovery. Drugs R D 7:349–363.
  • Tukey R. H. Strassburg C. P. (2000). Human UDP-glucuronosyltransferases: metabolism, expression, and disease. Annu Rev Pharmacol Toxicol 40:581–616.
  • Tyapochkin E. Cook P. F. Chen G. (2008). Isotope exchange at equilibrium indicates a steady state ordered kinetic mechanism for human sulfotransferase. Biochemistry 47:11894–11899.
  • Tyapochkin E. Cook P. F. Chen G. (2009). para-Nitrophenyl sulfate activation of human sulfotransferase 1A1 is consistent with intercepting the E[middle dot]PAP complex and reformation of E·PAPS. J Biol Chem 284:29357–29364.
  • Tyapochkin E. Kumar V. P. Cook P. F. Chen G. (2011). Reaction product affinity regulates activation of human sulfotransferase 1A1 PAP sulfation. Arch Biochem Biophys 506:137–141.
  • Uchaipichat V. Galetin A. Houston J. B. Mackenzie P. I. Williams J. A. Miners J. O. (2008). Kinetic modeling of the interactions between 4-methylumbelliferone, 1-naphthol, and zidovudine glucuronidation by udp-glucuronosyltransferase 2B7 (UGT2B7) provides evidence for multiple substrate binding and effector sites. Mol Pharmacol 741152–1162.
  • Uchaipichat V. Mackenzie P. I. Guo X. H. Gardner-Stephen D. Galetin A. Houston J. B. et al. (2004). Human udp-glucuronosyltransferases: isoform selectivity and kinetics of 4-methylumbelliferone and 1-naphthol glucuronidation, effects of organic solvents, and inhibition by diclofenac and probenecid. Drug Metab Dispos 32:413–423.
  • Uchaipichat V. Raungrut P. Chau N. Janchawee B. Evans A. M. Miners J. O. (2011). Effects of ketamine on human UDP-glucuronosyltransferases in vitro predict potential drug-drug interactions arising from ketamine inhibition of codeine and morphine glucuronidation. Drug Metab Dispos 39:1324–1328.
  • Uchaipichat V. Winner L. K. Mackenzie P. I. Elliot D. J. Williams J. A. Miners J. O. (2006). Quantitative prediction of in vivo inhibitory interactions involving glucuronidated drugs from in vitro data: the effect of fluconazole on zidovudine glucuronidation. Br J Clin Pharmacol 61:427–439.
  • Wang A. Savas U. Stout C. D. Johnson E. F. (2011). Structural characterization of the complex between alpha-naphthoflavone and human cytochrome P450 1B1. J Biol Chem 286:5736–5743.
  • Watanabe Y. Nakajima M. Yokoi T. (2002). Troglitazone glucuronidation in human liver and intestine microsomes: high catalytic activity of UGT1A8 and UGT1A10. Drug Metab Dispos 30:1462–1469.
  • Wen Z. Tallman M. N. Ali S. Y. Smith P. C. (2007). UDP-glucuronosyltransferase 1A1 is the principal enzyme responsible for etoposide glucuronidation in human liver and intestinal microsomes: structural characterization of phenolic and alcoholic glucuronides of etoposide and estimation of enzyme kinetics. Drug Metab Dispos 35:371–380.
  • Wester M. R. Yano J. K. Schoch G. A. Yang C. Griffin K. J. Stout C. D. et al. (2004). The structure of human cytochrome P450 2C9 complexed with flurbiprofen at 2.0-A resolution. J Biol Chem 279:35630–35637.
  • Wienkers L. C. (2002). Factors confounding the successful extrapolation of in vitro CYP3A inhibition information to the in vivo condition. Eur J Pharm Sci 15:239–242.
  • Williams J. A. Hyland R. Jones B. C. Smith D. A. Hurst S. Goosen T. C. et al. (2004a). Drug-drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (AUCi/AUC) ratios. Drug Metab Dispos 32:1201–1208.
  • Williams P. A. Cosme J. Vinkovic D. M. Ward A. Angove H. C. Day P. J. et al. (2004b). Crystal structures of human cytochrome P450 3A4 bound to metyrapone and progesterone. Science 305:683–686.
  • Williams P. A. Cosme J. Ward A. Angove H. C. Matak Vinković D. Jhoti H. (2003). Crystal structure of human cytochrome P450 2C9 with bound warfarin. Nature 424:464–468.
  • Wu B. Kulkarni K. Basu S. Zhang S. Hu M. (2011a). First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J Pharm Sci 100:3655–3681.
  • Wu B. Xu B. Hu M. (2011b). Regioselective glucuronidation of flavonols by six human UGT1A isoforms. Pharm Res 28:1905–1918.
  • Yano J. K. Wester M. R. Schoch G. A. Griffin K. J. Stout C. D. Johnson E. F. (2004). The structure of human microsomal cytochrome P450 3A4 determined by X-ray crystallography to 2.05-A resolution. J Biol Chem 279:38091–38094.
  • Yin H. Bennett G. Jones J. P. (1994). Mechanistic studies of uridine diphosphate glucuronosyltransferase. Chem Biol Interact 90:47–58.
  • Yoon M. Y. Campbell A. P. Atkins W. M. (2004). “Allosterism” in the elementary steps of the cytochrome P450 reaction cycle. Drug Metab Rev 36:219–230.
  • Yoshinari K. Petrotchenko E. V. Pedersen L. C. Negishi M. (2001). Crystal structure-based studies of cytosolic sulfotransferase. J Biochem Mol Toxicol 15:67–75.
  • Yu L. Qian M. Liu Y. Yao T. Zeng S. (2010). Stereoselective metabolism of propranolol glucuronidation by human UDP-glucuronosyltransferases 2B7 and 1A9. Chirality 22:456–461.
  • Zhang H. Varlamova O. Vargas F. M. Falany C. N. Leyh T. S. (1998). Sulfuryl transfer: the catalytic mechanism of human estrogen sulfotransferase. J Biol Chem 273:10888–10892.
  • Zhang L. Lin G. Zuo Z. (2007). Involvement of UDP-glucuronosyltransferases in the extensive liver and intestinal first-pass metabolism of flavonoid baicalein. Pharm Res 24:81–89.
  • Zhou J. Tracy T. S. Remmel R. P. (2010a). Glucuronidation of dihydrotestosterone and trans-androsterone by recombinant UDP-glucuronosyltransferase (UGT) 1A4: evidence for multiple UGT1A4 aglycone binding sites. Drug Metab Dispos 38:431–440.
  • Zhou Q. Zheng Z. Xia B. Tang L. Lv C. Liu W. et al. (2010b). Use of isoform-specific UGT metabolism to determine and describe rates and profiles of glucuronidation of wogonin and oroxylin A by human liver and intestinal microsomes. Pharm Res 27:1568–1583.
  • Zielinska A. Lichti C. F. Bratton S. Mitchell N. C. Gallus-Zawada A. Le V. H. et al. (2008). Glucuronidation of monohydroxylated warfarin metabolites by human liver microsomes and human recombinant UDP-glucuronosyltransferases. J Pharmacol Exp Ther 324:139–148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.