125
Views
7
CrossRef citations to date
0
Altmetric
Review Article

In quest of optimal drug-supported and targeted bone regeneration in the cranio facial area: a review of techniques and methods

, , , , , , , , , , , , & show all
Pages 455-469 | Received 01 Nov 2015, Accepted 23 Nov 2015, Published online: 21 Dec 2015

References

  • Adly AS, Haggag MH, Mostafa M-SM. (2014). Low intensity laser irradiation influence proliferation of mesenchymal stem cells: comparison of experimental data to intelligent agent-based model predictions. In: Liu L, Zhu Q, Cheng L, et al, eds. Applied methods and techniques for mechatronic systems. Lecture Notes in Control and Information Sciences 452. Berlin, Heidelberg: Springer-Verlag, 293–306
  • Akintoye SO, Lam T, Shi S, et al. (2006). Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone 38:758–768
  • Akita S, Fukui M, Nakagawa H, et al. (2004). Cranial bone defect healing is accelerated by mesenchymal stem cells induced by coadministration of bone morphogenetic protein-2 and basic fibroblast growth factor. Wound Repair Regen 12:252–259
  • Akkus O, Pujol J, Qi G. (2002). Bioactive sol-gel foams for tissue repair. J Biomed Mater Res 59:340–348
  • Al Ghamdi KM, Kumar A, Moussa NA. (2012). Low-level laser therapy: A useful technique for enhancing the proliferation of various cultured cells. Lasers Med Sci 27:237–249
  • Alm JJ, Koivu HMA, Heino TJ, et al. (2010). Circulating plastic adherent mesenchymal stem cells in aged hip fracture patients. J Orthop Res 28:1634–1642
  • Alongi DJ, Yamaza T, Song Y, et al. (2010). Stem/progenitor cells from inflamed human dental pulp retain tissue regeneration potential. Regen Med 5:617–631
  • Alwattar BJ, Schwarzkopf R, Kirsch T. (2011). Stem cells in orthopaedics and fracture healing. Bull NYU Hosp Joint Dis 69:6–10
  • Baciut M, Baciut G, Simon V, et al. (2007). Investigation of deer antler as a potential bone regenerating biomaterial. J Optoelectron Adv Mater 9:2547–2550
  • Bajada S, Mazakova I, Richardson JB, et al. (2008). Updates on stem cells and their applications in regenerative medicine. J Tissue Eng Regen Med 2:169–183
  • Ball MD, Bonzani IC, Bovis MJ, et al. (2011). Human periosteum is a source of cells for orthopaedic tissue engineering: A pilot study. Clin Orthop Related Res 469:3085–3093
  • Bartoš L, Schams D, Bubenik GA. (2009). Testosterone, but not IGF-1, LH, prolactin or cortisol, may serve as antler-stimulating hormone in red deer stags (Cervus elaphus). Bone 44:691–698
  • Battula VL, Treml S, Bareiss PM, et al. (2009). Isolation of functionally distinct mesenchymal stem cell subsets using antibodies against CD56, CD271, and mesenchymal stem cell antigen-1. Haematologica 94:173–184
  • Behr B, Tang C, Germann G, et al. (2011). Locally applied vascular endothelial growth factor A increases the osteogenic healing capacity of human adipose-derived stem cells by promoting osteogenic and endothelial differentiation. Stem Cells 29:286–296
  • Beresford JN, Bennett JH, Devlin C, et al. (1992). Evidence for an inverse relationship between the differentiation of adipocytic and osteogenic cells in rat marrow stromal cell cultures. J Cell Sci 102:341–351
  • Biris AR, Mahmood M, Lazar MD, et al. (2011). Novel multicomponent and biocompatible nanocomposite materials based on few-layer graphenes synthesized on a gold/hydroxyapatite catalytic system with applications in bone regeneration. J Phys Chem C 115:18967–18976
  • Bongso A, Fong CY. (2013). The therapeutic potential, challenges and future clinical directions of stem cells from the Wharton's jelly of the human umbilical cord. Stem Cell Rev 9:226–240
  • Borstlap WA, Heidbuchel KL, Freihofer HP, Kuijpers-Jagtman AM. (1990). Early secondary bone grafting of alveolar cleft defects. A comparison between chin and rib grafts. J Cranio-Maxillo-Facial Surg 18:201–205
  • Bradley A, Evans M, Kaufman MH, Robertson E. (1984). Formation of germ-line chimaeras from embryo-derived teratocarcinoma cell lines. Nature 309:255–256
  • Bulgin D, Hodzic E, Komljenovic-Blitva D. (2011). Advanced and prospective technologies for potential use in craniofacial tissues regeneration by stem cells and growth factors. J Craniofac Surg 22:342–348
  • Buttery LD, Bourne S, Xynos JD, et al. (2001). Differentiation of osteoblasts and in vitro bone formation from murine embryonic stem cells. Tissue Eng 7:89–99
  • Chen FM, Zhang J, Zhang M, et al. (2010). A review on endogenous regenerative technology in periodontal regenerative medicine. Biomaterials 31:7892–7927
  • Chen W, Yi P, Zhang Y, et al. (2011). Composites of aminodextran-coated Fe3O nanoparticles and graphene oxide for cellular magnetic resonance imaging. ACS Appl Mater Interfaces 3:4085–4091
  • Cheng H, Jiang W, Phillips FM, et al. (2003). Osteogenic activity of the fourteen types of human bone morphogenetic proteins (BMPs). J Bone Joint Surg 85A:1544–1552
  • Chung IH, Yamaza T, Zhao H, et al. (2009). Stem cell property of postmigratory cranial neural crest cells and their utility in alveolar bone regeneration and tooth development. Stem Cells 27:866–877
  • Coman V, Grecu R, Băciuţ MF, et al. (2007) Investigation of different bone matrices by vibrational spectroscopy. J Optoelectronics Adv Mater JOAM 9:3372–3375
  • Crisan B, Soritau O, Baciut M, et al. (2013a). Influence of three laser wavelengths on human fibroblasts cell culture. Lasers Med Sci 28:457–463
  • Crisan B, Soritau O, Baciut M, et al. (2013). Influence of different lasers wavelengths on nanoparticles components of human fibroblasts. Part Sci Tech 31:168–173
  • Crisan L, Crisan B, Soritau O, et al. (2015). In vitro study of biocompatibility of a graphene composite with gold nanoparticles (Au NPs) and hydroxyapatite (HA) on human osteoblasts. J Appl Toxicol 35:1200–1210
  • Dahlin C, Gottlow J, Linde A, Nyman S. (1990). Healing of maxillary and mandibular bone defects using a membrane technique. An experimental study in monkeys. Scand J Plast Reconstr Surg Hand Surg 24:13–19
  • Dahlin C, Linde A, Gottlow J, Nyman S. (1988). Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg 81:672–676
  • De Bari C, Dell’accio F, Vanlauwe J, et al. (2006). Mesenchymal multipotency of adult human periosteal cells demonstrated by single-cell lineage analysis. Arthritis Rheum 54:1209–1221
  • De Castro JLF, Pinheiro ALB, Werneck CE, Soares CP. (2005). The effect of laser therapy on the proliferation of oral KB carcinoma cells: An in vitro study. Photomed Laser Surg 23:586–589
  • de Jong DS, van Zoelen EJJ, Bauerschmidt S, et al. (2002). Microarray analysis of bone morphogenetic protein, transforming growth factor beta, and activin early response genes during osteoblastic cell differentiation. J Bone Miner Res 17:2119–2129
  • De Kok IJ, Peter SJ, Archambault M, et al. (2003). Investigation of allogeneic mesenchymal stem cell-based alveolar bone formation: Preliminary findings. Clin Oral Implants Res 14:481–489
  • Di Bella C, Farlie P, Penington AJ. (2008). Bone regeneration in a rabbit critical-sized skull defect using autologous adipose-derived cells. Tissue Eng Part A 14:483–490
  • Dominici M, Le Blanc K, Mueller I, et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317
  • Donovan MG, Dickerson NC, Hellstein JW, Hanson LJ. (1993). Autologous calvarial and iliac onlay bone grafts in miniature swine. J Oral Maxillofac Surg 51:898–903
  • Dorozhkin SV. (2011). Calcium orthophosphates: Occurrence, properties, biomineralization, pathological calcification and biomimetic applications. Biomatter 1:121–164
  • Ebara S, Nakayama K. (2002). Mechanism for the action of bone morphogenetic proteins and regulation of their activity. Spine 27(Supplement):S10–S15
  • Egusa H, Sonoyama W, Nishimura M, et al. (2012). Stem cells in dentistry – Part I: Stem cell sources. J Prosthodontic Res 56:151–165
  • Elias DC, Nair RR, Mohiuddin TM, et al. (2009). Control of graphene's properties by reversible hydrogenation: Evidence for graphane. Science 323:610–613
  • Evans DH, Abrahamse H. (2008). Efficacy of three laser wavelengths for in vitro wound healing. Photodermatol Photoimmunol Photomed 24:199–210
  • Evans MJ, Kaufman MH. (1981). Establishment in culture of pluripotentital cells from mouse embryos. Nature 292:154–156
  • Feng K, Sun H, Bradley Ma, et al. (2010). Novel antibacterial nanofibrous PLLA scaffolds. J Control Release 146:363–369
  • Fischer EM, Layrolle P, Van Blitterswijk CA, De Bruijn JD. (2003). Bone formation by mesenchymal progenitor cells cultured on dense and microporous hydroxyapatite particles. Tissue Eng 9:1179–1188
  • Friedenstein AJ, Chailakhyan RK, Latsinik NV, et al. (1974). Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 17:331–340
  • Fujihara NA, Hiraki KRN, Marques MM. (2006). Irradiation at 780 nm increases proliferation rate of osteoblasts independently of dexamethasone presence. Lasers Surg Med 38:332–336
  • Garavello I, Baranauskas V, da Cruz-Höfling MA. (2004). The effects of low laser irradiation on angiogenesis in injured rat tibiae. Histol Histopathol 19:3–48
  • George A, Ravindran S.(2010). Protein template in hard tissue engineering. Nano Today 5:254–266
  • Gimble JM, Katz AJ, Bunnell BA. (2007). Adipose-derived stem cells for regenerative medicine. Circ Res 100:1249–1260
  • Ginani F, Soares DM, Barreto MPV, Barboza CAG. (2015). Effect of low-level laser therapy on mesenchymal stem cell proliferation: A systematic review. Lasers Med Sci 30:2189–2194
  • Giuliani A, Manescu A, Langer M, et al. (2013). Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: Biological and clinical implications. Stem Cells Transl Med 2:316–324
  • Gotoh M, Notoya K, Ienaga Y, et al. (2002). Enhancement of osteogenesis in vitro by a novel osteoblast differentiation-promoting compound, TAK-778, partly through the expression of Msx2. Eur J Pharmacol 451:19–25
  • Govindasamy V, Ronald VS, Abdullah AN, et al. (2011). Differentiation of dental pulp stem cells into islet like aggregates. J Dental Res 90:646–652
  • Gronthos S, Mankani M, Brahim J, et al. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci USA 97:13625–13630
  • Gu W, Wu C, Chen J, Xiao Y. (2013). Nanotechnology in the targeted drug delivery for bone diseases and bone regeneration. Int J Nanomedicine 8:2305–2317
  • Hallman M, Thor A. (2008). Bone substitutes and growth factors as an alternative/complement to autogenous bone for grafting in implant dentistry. Periodontology 2000 47:172–192
  • Hämmerle CHF, Jung RE. (2003). Bone augmentation by means of barrier membranes. Periodontology 2000 33:36–53
  • Hawley RG, Sobieski DA. (2002). Somatic stem cell plasticity: To be or not to be. Stem Cells (Dayton, Ohio) 20:195–197
  • Hayashi O, Katsube Y, Hirose M, et al. (2008). Comparison of osteogenic ability of rat mesenchymal stem cells from bone marrow, periosteum, and adipose tissue. Calcif Tissue Int 82:238–247
  • Haynesworth SE, Goshima J, Goldberg VM, Caplan AI. (1992). Characterization of cells with osteogenic potential from human marrow. Bone 13:81–88
  • Heng BC, Cao T, Stanton LW, et al. (2004a). Strategies for directing the differentiation of stem cells into the osteogenic lineage in vitro. J Bone Miner Res 19:1379–1394
  • Heng BC, Haider HK, Sim EK, et al. (2004b). Strategies for directing the differentiation of stem cells into the cardiomyogenic lineage in vitro. Cardiovasc Res 62:34–42
  • Hoch AI, Leach JK. (2014). Concise review: Optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications. Stem Cells Transl Med 3:643–652
  • Holden C, Vogel G. (2002). Stem cells. Plasticity: Time for a reappraisal? Science (New York, NY) 296:2126–2129
  • Huang GTJ, Gronthos S, Shi S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources: Their biology and role in regenerative medicine. J Dental Res 88:792–806
  • Huertas RM, De Luna-Bertos E, Ramos-Torrecillas J, et al. (2013). Effect and clinical implications of the low-energy diode laser on bone cell proliferation. Biol Res Nurs 16:191–196
  • Huo YS, Huo H, Zhang J. (2014). The contribution of deer velvet antler research to the modern biological medicine. Chin J Integr Med 20:723–728
  • Hutmacher DW. (2000). Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543
  • Hutmacher DW, Schantz JT, Lam CXF, et al. (2007). State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med 1:245–260
  • Indrawattana N, Chen G, Tadokoro M, et al. (2004). Growth factor combination for chondrogenic induction from human mesenchymal stem cell. Biochem Biophys Res Commun 320:914–919
  • Iohara K, Zheng L, Ito M, et al. (2006). Side population cells isolated from porcine dental pulp tissue with self-renewal and multipotency for dentinogenesis, chondrogenesis, adipogenesis, and neurogenesis. Stem Cells (Dayton, Ohio) 24:2493–2503
  • Ishkitiev N, Yaegaki K, Calenic B, et al. (2010). Deciduous and permanent dental pulp mesenchymal cells acquire hepatic morphologic and functional features in vitro. J Endodontics 36:469–474
  • Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP. (1997). Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312
  • Jayakumar P, Di Silvio L. (2010). Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H 224:1415–1440
  • Jernigan TW, Croce MA, Cagiannos C, et al. (2004). Small intestinal submucosa for vascular reconstruction in the presence of gastrointestinal contamination. Ann Surg 239:733–738
  • Jiang X, Zhao J, Wang S, et al. (2009). Mandibular repair in rats with premineralized silk scaffolds and BMP-2-modified bMSCs. Biomaterials 30:4522–4532
  • Johnson EO, Troupis T, Soucacos PN. (2011). Tissue-engineered vascularized bone grafts: Basic science and clinical relevance to trauma and reconstructive microsurgery. Microsurgery 31:176–182
  • Jones JR, Sepulveda P, Hench LL. (2002). The effect of temperature on the processing and properties of macroporous bioactive glass foams. Key Eng Mater 68:36–44
  • Jukes JM, Van Blitterswijk CA, De Boer J. (2010). Skeletal tissue engineering using embryonic stem cells. J Tissue Eng Regen Med 4:165–180
  • Kamali F, Bayat M, Torkaman G, et al. (2007). The therapeutic effect of low-level laser on repair of osteochondral defects in rabbit knee. J Photochem Photobiol B 88:11–15
  • Kamegai A, Shimamura N, Naitou K, et al. (1994). Bone formation under the influence of bone morphogenetic protein/self-setting apatite cement composite as a delivery system. Biomed Mater Eng 4:291–307
  • Kaku M, Akiba Y, Akiyama K, et al. (2015). Cell-based bone regeneration for alveolar ridge augmentation–cell source, endogenous cell recruitment and immunomodulatory function. J Prosthodontic Res 59:96–112
  • Kelly KA, Gimble JM. (1998). 1,25-Dihydroxy vitamin D3 inhibits adipocyte differentiation and gene expression in murine bone marrow stromal cell clones and primary cultures. Endocrinology 139:2622–2628
  • Khadra M, Rønold HJ, Lyngstadaas SP, et al. (2004). Low-level laser therapy stimulates bone-implant interaction: An experimental study in rabbits. Clin Oral Implants Res 15:325–332
  • Kim J, Kim IS, Cho TH, et al. (2007). Bone regeneration using hyaluronic acid-based hydrogel with bone morphogenic protein-2 and human mesenchymal stem cells. Biomaterials 28:1830–1837
  • Kim S, Ku SH, Lim SY, et al. (2011). Graphene-biomineral hybrid materials. Adv Mater 23:2009–2014
  • Kim S-S, Park MS, Jeon O, et al. (2006). Poly(lactide-coglycolide)/hydro xyapatite composite scaffolds for bone tissue engineering. Biomaterials 27:1399–1409
  • Kishi T, Takao T, Fujita K, Taniguchi H. (2006). Clonal proliferation of multipotent stem/progenitor cells in the neonatal and adult salivary glands. Biochem Biophys Res Commun 340:544–552
  • Kitraki E, Zakkas S, Synolaki E, et al. (2014). Dental pulp cells enhance bone healing in a rat osteotomy model. Ann Orthop Rheumatol 2:1009
  • Kon E, Muraglia A, Corsi A, et al. (2000). Autologous bone marrow stromal cells loaded onto porous hydroxyapatite ceramic accelerate bone repair in critical-size defects of sheep long bones. J Biomed Mater Res 49:328–337
  • Koole R, Bosker H, van der Dussen FN. (1989). Late secondary autogenous bone grafting in cleft patients comparing mandibular (ectomesenchymal) and iliac crest (mesenchymal) grafts. J Cranio-Maxillo-Fac Surg 17Suppl1:28–30
  • Krampera M. (2011). Mesenchymal stromal cell “licensing”: A multistep process. Leukemia 25:1408–1414
  • Krampera M, Galipeau J, Shi Y, et al. (2013). Immunological characterization of multipotent mesenchymal stromal cells – The International Society for Cellular Therapy (ISCT) working proposal. Cytotherapy 15:1054–1061
  • Kuboki Y, Takita H, Kobayashi D, et al. (1998). BMP-induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: Topology of osteogenesis. J Biomed Mater Res 39:190–199
  • La Noce M, Mele L, Tirino V, et al. (2014a). Neural crest stem cell population in craniomaxillofacial development and tissue repair. Eur Cell Mater 28:348–357
  • La Noce M, Paino F, Spina A, et al. (2014b). Dental pulp stem cells: State of the art and suggestions for a true translation of research into therapy. J Dent 42:761–768
  • Langer R, Tirrell DA. (2004). Designing materials for biology and medicine. Nature 428:487–492
  • Langer R, Vacanti JP. (1993). Tissue engineering. Science 260:920–926
  • Lee C, Wei X, Kysar JW, Hone J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388
  • Leonida A, Paiusco A, Rossi G, et al. (2013). Effects of low-level laser irradiation on proliferation and osteoblastic differentiation of human mesenchymal stem cells seeded on a three-dimensional biomatrix: In vitro pilot study. Lasers Med Sci 28:125–132
  • Li M, Wang Y, Liu Q, et al. (2013). In situ synthesis and biocompatibility of nano hydroxyapatite on pristine and chitosan functionalized graphene oxide. J Mater Chem B 1:475–484
  • Liao J, Al Shahrani M, Al-Habib M, et al. (2011). Cells isolated from inflamed periapical tissue express mesenchymal stem cell markers and are highly osteogenic. J Endodont 37:1217–1224
  • Liu H, Xi P, Xie G, et al. (2012). Simultaneous reduction and surface functionalization of graphene oxide for hydroxyapatite mineralization. J Phys Chem C 116:3334–3341
  • Lucaciu O, Băciuţ M, Băciuţ G, et al. (2010). Tissue engineered bone versus alloplastic commercial biomaterials in craniofacial reconstruction. Rom J Morphol Embryol 51:129–136
  • Lucaciu OP, Soritau O, Baciut G, et al. (2014). The role of bone morphogenetic proteins in tissue engineering particulate bone grafts. Particul Sci Technol 32:377–383
  • Lutolf MP, Hubbell JA. (2005). Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23:47–55
  • Ma HB, Su WX, Tai ZX, et al. (2012). Preparation and cytocompatibility of polylactic acid/hydroxyapatite/graphene oxide nanocomposite fibrous membrane. Chinese Sci Bull 57:3051–3058
  • Mahmood M, Fejleh P, Karmakar A, et al. (2011). Enhanced bone cells growth and proliferation on TiO2 nanotubular substrates treated by RF plasma discharge. Adv Eng Mater 13:95–101
  • Mankani MH, Kuznetsov SA, Shannon B, et al. (2006). Canine cranial reconstruction using autologous bone marrow stromal cells. Am J Pathol 168:542–550
  • Mao JJ, Stosich MS, Moioli EK, et al. (2010). Facial reconstruction by biosurgery: Cell transplantation versus cell homing. Tissue Eng B Rev 16:257–262
  • Marrelli M, Paduano F, Tatullo M. (2013). Cells isolated from human periapical cysts express mesenchymal stem cell-like properties. Int J Biol Sci 9:1070–1078
  • Martin GR. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638
  • Martins A, Duarte ARC, Faria S, et al. (2010). Osteogenic induction of hBMSCs by electrospun scaffolds with dexamethasone release functionality. Biomaterials 31:5875–5885
  • Matsubara T, Suardita K, Ishii M, et al. (2005). Alveolar bone marrow as a cell source for regenerative medicine: Differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res 20:399–409
  • Matsumoto T, Holmes RH, Burdick CO, et al. (1966). The fate of the inverted segment of small bowel used for the replacement of major veins. Surgery 60:739–743
  • Medina-Huertas R, Manzano-Moreno FJ, De Luna-Bertos E, et al. (2014). The effects of low-level diode laser irradiation on differentiation, antigenic profile, and phagocytic capacity of osteoblast-like cells (MG-63). Lasers Med. Sci 29:1479–1484
  • Menaa F, Abdelghani A, Menaa B. (2014). Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: Impact for tissue engineering and regenerative medicine. J Tissue Eng Regen Med. http://www.ncbi.nlm.nih.gov/pubmed/24917559
  • Mendes SC, Tibbe JM, Veenhof M, et al. (2002). Bone tissue-engineered implants using human bone marrow stromal cells: Effect of culture conditions and donor age. Tissue Eng 8:911–920
  • Migliario M, Pittarella P, Fanuli M, et al. (2014). Laser-induced osteoblast proliferation is mediated by ROS production. Lasers Med Sci 29:1463–1467
  • Ming L, Qian L, Zhaojun J, et al. (2014). Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications. Carbon 67:185–197
  • Miura M, Gronthos S, Zhao M, et al. (2005). SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci USA 100:5807–5812
  • Moore P, Ridgway TD, Higbee RG, et al. (2005). Effect of wavelength on low-intensity laser irradiation stimulated cell proliferation in vitro. Lasers Surg Med 36:8–12
  • Morsczeck C, Götz W, Schierholz J, et al. (2005). Isolation of precursor cells (PCs) from human dental follicle of wisdom teeth. Matrix Biol 24:155–165
  • Mummery C. (2004). Stem cell research: Immortality or a healthy old age? Eur J Endocrinol 151:U7–U12
  • Mundy G, Garrett R, Harris S, et al. (1999). Stimulation of bone formation in vitro and in rodents by statins. Science (New York, NY) 286:1946–1949
  • Mvula B, Mathope T, Moore T, Abrahamse H. (2008). The effect of low level laser irradiation on adult human adipose derived stem cells. Lasers Med Sci 23:277–282
  • Nagy A, Gócza E, Diaz EM, et al. (1990). Embryonic stem cells alone are able to support fetal development in the mouse. Development (Cambridge, England) 110:815–821
  • Nasef A, Zhang YZ, Mazurier C, et al. (2009). Selected Stro-1-enriched bone marrow stromal cells display a major suppressive effect on lymphocyte proliferation. Int J Lab Hematol 31:9–19
  • Nayak TR, Jian L, Phua LC, et al. (2010). Thin films of functionalized multiwalled carbon nanotubes as suitable scaffold materials for stem cells proliferation and bone formation. ACS Nano 4:7717–7725
  • Neelgund GM, Oki A, Luo Z. (2013). In-situ deposition of hydroxyapatite on graphene nanosheets. Mater Res Bull 48:175–179
  • Notoya K, Nagai H, Oda T, et al. (1999). Enhancement of osteogenesis in vitro and in vivo by a novel osteoblast differentiation promoting compound, TAK-778. J Pharmacol Exp Ther 290:1054–1064
  • Otsuru S, Tamai K, Yamazaki T, et al. (2007). Bone marrow-derived osteoblast progenitor cells in circulating blood contribute to ectopic bone formation in mice. Biochem Biophys Res Commun 354:453–458
  • Pagkalos J, Cha JM, Kang Y, et al. (2010). Simvastatin induces osteogenic differentiation of murine embryonic stem cells. J Bone Miner Res 25:2470–2478
  • Park JC, Kim JM, Jung IH, et al. (2011). Isolation and characterization of human periodontal ligament (PDL) stem cells (PDLSCs) from the inflamed PDL tissue: In vitro and in vivo evaluations. J Clin Periodontol 38:721–731
  • Petridis X, Diamanti E, Trigas GC, et al. (2015). Bone regeneration in critical-size calvarial defects using human dental pulp cells in an extracellular matrix-based scaffold. J Cranio-Maxillofac Surg 43:483–490
  • Pieri F, Lucarelli E, Corinaldesi G, et al. (2010). Dose-dependent effect of adipose-derived adult stem cells on vertical bone regeneration in rabbit calvarium. Biomaterials 31:3527–3535
  • Pittenger MF, Mackay AM, Beck SC, et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science (New York, N.Y.) 284:143–147
  • Posten W, Wrone DA, Dover JS, et al. (2005). Low-level laser therapy for wound healing: Mechanism and efficacy. Dermatol Surg 31:334–340
  • Poulsom R, Alison MR, Forbes SJ, Wright NA. (2002). Adult stem cell plasticity. J Pathol 197:441–456
  • Presnell SC, Presnell SC, Petersen B, et al. (2002). Stem cells in adult tissues. Semin Cell Dev Biol 13:369–376
  • Price J, Allen S. (2004). Exploring the mechanisms regulating regeneration of deer antlers. Phil Trans R Soc Lond Ser B Biol Sci 359:809–822
  • Pryzhkova MV. (2013). Concise review: Carbon nanotechnology: Perspectives in stem cell research. Stem Cells Transl Med 2:376–383
  • Pyo SJ, Song WW, Kim IR, et al. (2013). Low-level laser therapy induces the expressions of BMP-2, osteocalcin, and TGF-β1 in hypoxic-cultured human osteoblasts. Lasers Med Sci 28:543–550
  • Quarto R, Mastrogiacomo M, Cancedda R, et al. (2001). Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386
  • Raff M. (2003). Adult stem cell plasticity: Fact or artifact? Annu Rev Cell Dev Biol 19:1–22
  • Raisz LG, Pilbeam CC, Fall PM. (1993). Prostaglandins: Mechanisms of action and regulation of production in bone. Osteoporos Int 3Suppl1:136–140
  • Rajan A, Eubanks E, Edwards S, et al. (2014). Optimized cell survival and seeding efficiency for craniofacial tissue engineering using clinical stem cell therapy. Stem Cells Transl Med 3:1495–1503
  • Renno A, McDonnell P, Crovace M, et al. (2010). Effect of 830 nm laser phototherapy on osteoblasts grown in vitro on Biosilicate scaffolds. Photomed Laser Surg 28:131–133
  • Retzepi M, Donos N. (2010). Guided bone regeneration: Biological principle and therapeutic applications. Clin Oral Implants Res 21:567–576
  • Reynolds AJ, Jahoda CAB. (2004). Cultured human and rat tooth papilla cells induce hair follicle regeneration and fiber growth. Differentiation 72:566–575
  • Ripamonti U, Ma S, Reddi AH. (1992). The critical role of geometry of porous hydroxyapatite delivery system in induction of bone by osteogenin, a bone morphogenetic protein. Matrix (Stuttgart, Germany) 12:202–212
  • Rippon HJ, Bishop AE. (2004). Embryonic stem cells. Cell Prolif 37:23–34
  • Romagnoli C, Brandi ML. (2014). Adipose mesenchymal stem cells in the field of bone tissue engineering. World J Stem Cells 6:144–152
  • Roseti L, Serra M, Bassi A. (2015). Standard operating procedure for the good manufacturing practice-compliant production of human bone marrow mesenchymal stem cells. Methods Mol Biol (Clifton, NJ) 1283:171–186
  • Samsonraj RM, Rai B, Sathiyanathan P, et al. (2015). Establishing criteria for human mesenchymal stem cell potency. Stem Cells (Dayton, Ohio) 33:1878–1891
  • Schindl A, Merwald H, Schindl L, et al. (2003). Direct stimulatory effect of low-intensity 670-nm laser irradiation on human endothelial cell proliferation. Br J Dermatol 148:334–336
  • Seo BM, Miura M, Gronthos S, et al. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149–155
  • Shi H, Yu T, Li Z, et al. (2015). Bone regeneration strategy inspired by the study of calcification behavior in deer antler. Mater Sci Eng C Mater Biol Appl 57:67–76
  • Soleimani M, Abbasnia E, Fathi M, et al. (2012). The effects of low-level laser irradiation on differentiation and proliferation of human bone marrow mesenchymal stem cells into neurons and osteoblasts—an in vitro study. Lasers Med Sci 27:423–430
  • Soares DM, Ginani F, Henriques AG, Barboza CAG. (2015). Effects of laser therapy on the proliferation of human periodontal ligament stem cells. Lasers Med Sci 30:1171–1174
  • Song C, Guo Z, Ma Q, et al. (2003). Simvastatin induces osteoblastic differentiation and inhibits adipocytic differentiation in mouse bone marrow stromal cells. Biochem Biophys Res Commun 308:458–462
  • Sonoyama W, Liu Y, Yamaza T, et al. (2008). Characterization of the apical papilla and its residing stem cells from human immature permanent teeth: A pilot study. J Endodontics 34:166–171
  • Spinella-Jaegle S, Roman-Roman S, Faucheu C, et al. (2001). Opposite effects of bone morphogenetic protein-2 and transforming growth factor-β1 on osteoblast differentiation. Bone 29:323–330
  • Srouji S, Kizhner T, Livne E. (2006). 3D scaffolds for bone marrow stem cell support in bone repair. Regen Med 1:519–528
  • Stenderup K, Justesen J, Eriksen EF, et al. (2001). Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16:1120–1129
  • Sugiyama M, Iohara K, Wakita H, et al. (2011). Dental pulp-derived CD31-/CD146- side population stem/progenitor cells enhance recovery of focal cerebral ischemia in rats . Tissue Eng. A 17:1303–1311
  • Tao D, Zhao J, Deng G, Jiao J. (2015). Relationship between velvet antler ossification and PTH and androgen serum levels in Tarim Red deer (Cervus elaphus). J Exp Zool 323A:696–703
  • Tare RS, Kanczler J, Aarvold A, et al. (2010). Skeletal stem cells and bone regeneration: Translational strategies from bench to clinic. Proc Inst Mech Eng H 224:1455–1470
  • Tatullo M, Marrelli M, Paduano F. (2015). The regenerative medicine in oral and maxillofacial surgery: The most important innovations in the clinical application of mesenchymal stem cells. Int J Med Sci 12:72–77
  • Tatullo M, Marrelli M, Shakesheff KM, White LJ. (2014). Dental pulp stem cells: Function, isolation and applications in regenerative medicine. J Tissue Eng Regen Med 9:1205–1216
  • Thian ES, Huang J, Best SM, et al. (2006). The response of osteoblasts to nanocrystalline silicon-substituted hydroxyapatite thin films. Biomaterials 27:2692–2698
  • Tonelli FM, Santos AK, Gomes KN, et al. (2012). Carbon nanotube interaction with extracellular matrix proteins producing scaffolds for tissue engineering. Int J Nanomed 7:4511–4529
  • Trounson A. (2006). The production and directed differentiation of human embryonic stem cells. Endocr Rev 27:208–219
  • Tseng SH, Sung CH, Chen LG, et al. (2014). Comparison of chemical compositions and osteoprotective effects of different sections of velvet antler. J Ethnopharmacol 151:352–360
  • Uccelli A, Moretta L, Pistoia V. (2008). Mesenchymal stem cells in health and disease. Nat Rev Immunol 8:726–736
  • Usami K, Mizuno H, Okada K, et al. (2009). Composite implantation of mesenchymal stem cells with endothelial progenitor cells enhances tissue-engineered bone formation. J Biomed Mater Res A90:730–741
  • Vats A, Tolley NS, Polak JM, Gough JE. (2003). Scaffolds and biomaterials for tissue engineering: A review of clinical applications. Clin Otolaryngol Allied Sci 28:165–172
  • Verfaillie CM, Pera MF, Lansdorp PM. (2002). Stem cells: Hype and reality. In: Hematology/the Education Program of the American Society of Hematology. Washington, DC: American Society of Hematology, 369–391
  • Wang S, Zhang Z, Xia L, et al. (2010). Systematic evaluation of a tissue-engineered bone for maxillary sinus augmentation in large animal canine model. Bone 46:91–100
  • Wang S, Zhang Z, Zhao J, et al. (2009). Vertical alveolar ridge augmentation with beta-tricalcium phosphate and autologous osteoblasts in canine mandible. Biomaterials 30:2489–2498
  • Warnke P, Springer I, Wiltfang PJ, et al. (2004). Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770
  • Weinreb M, Grosskopf A, Shir N. (1999). The anabolic effect of PGE2 in rat bone marrow cultures is mediated via the EP4 receptor subtype. Am J Physiol 276:E376–E383
  • Werneck CE, Pinheiro ALB, Pacheco MTT, et al. (2005). Laser light is capable of inducing proliferation of carcinoma cells in culture: A spectroscopic in vitro study. Photomed Laser Surg 23:300–303
  • Wobus AM, Boheler KR. (2005). Embryonic stem cells: Prospects for developmental biology and cell therapy. Physiol Rev 85:635–678
  • Wolfe M, Pochampally R, Swaney W, Reger RL. (2008). Isolation and culture of bone marrow-derived human multipotent stromal cells (hMSCs). Methods Mol Biol (Clifton, N.J.) 449:3–25
  • Wozney JM. (2002). Overview of bone morphogenetic proteins. Spine 27:S2–S8
  • Wu C, Chang J. (2012). Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application. Interface Focus 2:292–306
  • Wu C, Miron R, Sculean A, et al. (2011). Proliferation, differentiation and gene expression of osteoblasts in boron-containing associated with dexamethasone deliver from mesoporous bioactive glass scaffolds. Biomaterials 32:7068–7078
  • Wu Y-h, Wang J, Gong D-x, et al. (2012). Effects of low-level laser irradiation on mesenchymal stem cell proliferation: a microarray analysis. Lasers Med Sci 27:509–519
  • Xu RH, Chen X, Li DS, et al. (2002). BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264
  • Xynos ID, Edgar AJ, Buttery LDK, et al. (2000). Ionic products of bioactive glass dissolution increase proliferation of human osteoblasts and induce insulin-like growth factor II mRNA expression and protein synthesis. Biochem Biophys Res Commun 276:461–465
  • Yan X, Yu C, Zhou X, et al. (2004). Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angewandte Chemie (International Edition) 43:5980–5984
  • Yang R, Chen M, Lee CH, et al. (2010). Clones of ectopic stem cells in the regeneration of muscle defects in vivo. PLoS One 5:e13547
  • Zaidi N, Nixon AJ. (2007). Stem cell therapy in bone repair and regeneration. Ann N Y Acad Sci 1117:62–72
  • Zarrabi M, Mousavi SH, Abroun S, Sadeghi B. (2014). Potential uses for cord blood mesenchymal stem cells. Cell J 15:274–281
  • Zhang K, Wang Y, Hillmyer MA, Francis LF. (2004). Processing and properties of porous poly(L-lactide)/bioactive glass composites. Biomaterials 25:2489–2500
  • Zhang LZ, Xin JL, Zhang XP, et al. (2013). The anti-osteoporotic effect of velvet antler polypeptides from Cervus elaphus Linnaeus in ovariectomized rats. J Ethnopharmacol 150:181–186
  • Zhang Q, Shi S, Liu Y, et al. (2009). Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis. J Immunol 183:7787–7798
  • Zhang X, Zara J, Siu RK, et al. (2010a). The role of NELL-1, a growth factor associated with craniosynostosis, in promoting bone regeneration. J Dent Res 89:865–878
  • Zhang Y, Ali SF, Dervishi E, et al. (2010b). Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–3186
  • Zhang Y, Huang B. (2012). Peripheral blood stem cells: Phenotypic diversity and potential clinical applications. Stem Cell Rev 8:917–925
  • Zhang Z. (2011). Bone regeneration by stem cell and tissue engineering in oral and maxillofacial region. Front Med 5:401–413
  • Zhao S, Wehner R, Bornhäuser M, et al. (2010). Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19:607–614
  • Zhu J, Wong HM, Yeung KWK, Tjong SC. (2011). Spark plasma sintered hydroxyapatite/ graphite nanosheet and hydroxyapatite/multiwalled carbon nanotube composites: Mechanical and in vitro cellular proprierties. Adv. Eng. Mater 13:336–341
  • Zimmermann CE, Gierloff M, Hedderich J, et al. (2011). Survival of transplanted rat bone marrow-derived osteogenic stem cells in vivo. Tissue Eng A 17:1147–1156
  • Zins JE, Whitaker LA. (1983). Membranous versus endochondral bone: Implications for craniofacial reconstruction. Plast Reconstr Surg 72:778–785

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.