20
Views
9
CrossRef citations to date
0
Altmetric
Research Article

Drug-metabolizing Enzymes as Evolutionary Probes

Pages 379-430 | Published online: 22 Sep 2008

References

  • Fothergill P. G. Historical Aspects of Organic Evolution. Hollis and Carter, London 1952
  • Anfinsen C. B. The Molecular Basis of Evolution. Wiley, New York 1959
  • Gould G. J. Ontogeny and Phytogeny. Belknap Press, Harvard Univ. Press, Cambridge 1977
  • Freeman R. Classification of the Animal Kingdom. Lion Library, London 1975
  • Monod J. Chance and Necessity. Collins, London 1972; 98–113
  • Calvin M. Chemical Evolution. Clarendon, Oxford 1969; 121–223
  • Eigen M., Winkler R. Das Spiel, Naturgesetze steuern den Zufall. Piper Vlg., Munich/Zurich 1975; 87–152
  • Racker E. Assembly of intracellular structures. Fed. Proc 1972; 31: 10–11
  • Nomura M. Assembly of bacterial ribosomes, Fed. Proc. 1972; 31: 18–20
  • Karnofslcy D. A., Young C. W. Comparative aspects of the pharmacology of the antimetabolites, Fed. Proc 1967; 26: 1139–1145
  • Dayhoff M. O., Eck R. V. Tracing biochemical evolution, in Atlas of Protein Sequence and Structure, M. O. Dayhoff. National Biomedical Research Foundation, Georgetown Univ. Medical Center, Washington, D.C. 1972; Vol. 5: 1–5, 1972
  • Klug J A. ldquo;Assembly of tobacco mosaic virus”. Fed. Proc 1972; 31: 30–42
  • Dayhoff M. O., Park C. M., McLaughlin P. J. Building a phylogenetic tree: Cytochrome C, in Atlas of Protein Sequence and Structure, M. O. Dayhoff. National Biochemical Research Foundation, Georgetown Univ. Medical Center, Washington, D.C. 1972; Vol. 5: 7–16
  • Albert A. ldquo;The special significance of a heterocyclic nucleus in biologically active substances”. Intra-Science Chem. Rept 1974; 8: 55–66
  • Wald G. ldquo;The origins of life”. Proc. Nat. Acad. Sci. 1964; 52: 595–611
  • Eigen M., Schuster P. The hypercycle, a principle of natural self-organization, Part A: Emergence of the hypercycle. Naturwiss 1977; 64: 541–565
  • Eigen J M., Schuster P. The hypercycle, a principle of natural self-organization, Part B: The abstract hypercycle. Naturwiss 1978; 65: 7–41
  • Eigen M., Schuster P. The hypercycle, a principle of natural self-organization, Part C: The realistic hypercycle. Naturwiss 1978; 65: 341–369
  • Prigogine I. Time, structure, and fluctuations. Science 1978; 201: 777–785
  • Stucki J. W. ldquo;Stability analysis of biochemical systems-A practical guide”. Prog. Biophys. Molec. Biol 1978; 33: 99–187
  • Dayhoff M. O., Eck R. V., Park C. M. A model of evolutionary change in Proteins. Atlas of Protein Sequence and Structure, M. O. Dayhoff. National Biomedical Research Foundation, Georgetown Univ. Medical Center, Washington, D.C. 1972; Vol. 5: 89–99, 1972
  • Dayhoff M. O., McLaughlin P. J. Early evolution: Transfer RNA, in Atlas of Protein Sequence and Structure, M. O. Dayhoff. National Biomedical Research Foundation, Georgetown Univ. Medical Center, Washington, D.C. 1972; Vol. 5: 111–118, 1972
  • Brodie B. B., Axelrod J., Cooper J. R., Gaudette L., La Du B. N., Mitoma C., Udenfriend S. ldquo;Detoxication of drugs and other foreign compounds by liver microsomes”. Science 1955; 121: 603–604
  • Cooper J. R., Axelrod J., Brodie B. B. ldquo;Inhibitory effects of β-diethylaminoethyl diphenyl propylacetate on a variety of drug metabolic pathways in vitro”. J. Pharmacol. Exp. Ther 1954; 112: 55–63
  • Axelrod J. ldquo;The enzymatic deamination of amphetamine (benzedrine)”. J. Biol. Chem 1955; 214: 753–763
  • Brodie B. B. ldquo;Pathways of drug metabolism”. J. Pharm. Pharmacol 1956; 8: 1–17
  • Williams R. T. Detoxication Mechanisms. Chapman and Hall, London 1947
  • Young L. The metabolism of foreign compounds-history and development, in Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 1–11
  • Conti A., Bickel M. H. ldquo;History of drug metabolism: Discovery of the major pathways in the 19th century”. Drug Metab. Rev. 1977; 6: 1–50
  • Brodie B. B., Maickel R. P., Jondorf W. R. ldquo;Termination of drug action by enzymatic inactivation”. Fed. Proc 1958; 17: 1163–1174
  • Brodie B. B., Maickel R. P. Comparative biochemistry of drug metabolism. Proceedings of the First International Pharmacological Meeting, B. B. Brodie, E. G. Erdos. Pergamon, London 1962; Vol. VI: 299–324
  • Brodie J B.B., Hogben C. A. M. ldquo;Some physico-chemical factors in drug action”. J. Pharm. Pharmacol 1957; 9: 345–380
  • Gaudette L. E., Brodie B. B. ldquo;Relationship between the lipid solubility of drugs and their oxidation by liver microsomes”. Biochem. Pharmacol 1959; 2: 89–96
  • Risebrough R. W., Rieche P., Peakall D. B., Herman S. G., Kirven M. N. ldquo;Polychlorinated biphenyls in the global ecosystem”. Nature 1968; 220: 1098–1102
  • Hutzinger O., Nash D. M., Safe S., De Freitas A. S. W., Norstrom R. J., Wildish D. J., Zitko V. Polychlorinated Biphenyls: Metabolic behaviour of pure isomers in pigeons, rats, and brook trout. Science 1972; 178: 312–314
  • Metcalf R. L., Sanborn J. R., Lu P.-Y., Nye D. (1976) Laboratory model ecosystem studies of the degradation and fate of radiolabeled tri-, tetra-, and pentrachlorobiphenyl compared with DDE. National Conference on Polychlorinated Biphenyis, Chicago, November, 19–211975. Environmental Protection Agency Office of Toxic Substances, Washington, D.C., 243–253, Conference Proceedings EPA-560/6–75-004
  • Bickel M. H. Persistent environmental chemicals as a means of understanding the physiological role of drug enzymes. Industrial and Environmental Xenobiotics, J. R. Fouts, I. Gut. Excerpta Medica, Amsterdam 1978; 156–160
  • Jondorf W. R., Maickel R. P., Brodie B. B. Ontogenetic development of enzymes for metabolism of drug and other foreign compounds. Fed. Proc 1959; 18: 407
  • Bennett T. P., Frieden E. Metamorphosis and biochemical adaptation in amphibia. Comparative Biochemistry, M. Florkin, H. S. Mason. Academic, New York 1962; Vol. 4: 483–556
  • Weber R. The biochemistry of amphibian metamorphosis. Biochemistry of Animal Development, R. Weber. Academic, New York 1967; Vol. 2: 227–301
  • Frieden E., Just J. J. Hormonal responses in amphibian metamorphosis. Biochemical Actions of Hormones, G. Litwack. Academic, New York 1970; Vol. 1: 1–52
  • Tata J. R. Protein synthesis during amphibian metamorphosis. Current Topics in Developmental Biology, A. A. Moscona, A. Monroy. Academic, New York 1971; Vol. 6: 79–110
  • Nicoll C. S., Bern H. A. On the actions of prolactin among the vertebrates: Is there a common denominator?. Lactogenic Hormones, G. E. W. Wolstenholme, J. Knight. Churchill Livingstone, Edinburgh 1972; 299–317
  • Jondorf W. R. Tadpoles, drugs, and toxicities. Trends Biochem. Sci. 1979; 4: 141–143
  • Gaudette L. E., Maickel R. P., Brodie B. B. Oxidative metabolism of drugs by vertebrates. Fed. Proc 1958; 17: 370
  • Mandel H. G. ldquo;The physiological disposition of some anticancer agents”. Pharmacol. Rev. 1969; 11: 743–838
  • Mandel H. G. The metabolism of analogs of endogenous substrates: Wider application of a limited concept. Handbook of Experimental Pharmacology, B. B. Brodie, J. R. Gillette. Springer Verlag, Berlin 1971; Vol. 28: 654–683, Part 2
  • Conney A. H., Schneidman K., Jacobson M., Kuntzman R. ldquo;Drug-induced changes in steroid metabolism”. Ann. N.Y. Acad. Sci. 1965; 123: 98–109
  • Conney A. H., Kuntzman R. Metabolism of normal body constituents of drug-metabolizing enzymes in liver microsomes. Handbook of Experimental Pharmacology, B. B. Brodie, J. R. Gillette. Springer Verlag, Berlin 1971; Vol. 28: 401–421, Part 2
  • Williams R. T. ldquo;Comparative patterns of drug metabolism”. Fed. Proc 1967; 26: 1029–1039
  • Brodie B. B., Gillette J. R., La Du B. N. ldquo;Enzymatic metabolism of drugs and other foreign compounds”. Ann. Rev. Biochem 1958; 27: 427–454
  • Gillette J. R. Metabolism of drugs and other foreign compounds by enzymatic mechanisms. Progress in Drug Research, E. Jucker. Birkhauser Verlag, Basel 1993; Vol. 6: 11–73
  • Goldstein A., Aronow L., Kalman G. M. Principles of Drug Action. Harper & Row, New York 1969; 206–279
  • Williams R. T. Introduction: Pathways of drug metabolism. Handbook of Experimental Pharmacology, B. B. Brodie, J. R. Gillette. Springer Verlag, Berlin 1971; Vol. 28: 226–242, Part 2
  • Ullrich V. Model systems for drug oxidations. Industrial and Environmental Xenobiotics, J. R. Fouts, I. Gut. Excerpta Medica, Amsterdam 1978; 3–8
  • Symposium: Electron transport systems in microsomes. Fed. Proc 1965; 24: 1153–1199
  • Coon M. J., Strobel H. W., Boyer F. ldquo;On the mechanism of hydroxylation reactions catalyzed by cytochrome P-450”. Drug Metab. Dispos 1973; 1: 92–97
  • Estabrook R. W., Matsubara T., Mason J. I., Werringloer J., Baron J. Studies on the molecular function of cytochrome P-450 during drug metabolism. Drug Metab. Dispos 1973; 1: 98–109
  • Orrenius S. Reaction mechanisms of cytochrome P-450. Proceedings of the Sixth International Congress of Pharmacology, N. T. Karki. Pergamon, Oxford 1976; Vol. 6: 39–52
  • Ullrich V., Staudinger H. Model systems in studies of the chemistry and the enzymatic activation of oxygen. Handbook of Experimental Pharmacology, B. B. Brodie, J. R. Gillette. Springer Verlag, Berlin 1971; Vol. 28: 251–262, Part 2
  • Fridovich I. ldquo;The biology of oxygen radicals”. Science 1978; 201: 875–880
  • Paine A. J. Excited states of oxygen in biology: Their possible involvement in cytochrome P-450 linked oxidations as well as in the induction of the P 450 system by many diverse compounds. Biochem. Pharmacol 1978; 217: 1805–1813
  • Gillette J. R. Reductive enzymes. Handbook of Experimental Pharmacology, B. B. Brodie, J. R. Gillette. Springer Verlag, Berlin 1971; Vol. 28: 349–361, Part 2
  • Trefouel J., Trefouel J., Nitti F., Bovet D. ldquo;Activite du p-aminophenyl sulfamide sur les infections streptococciques experimentales de la souris et du lapin”. C.R. Soc. Biol 1935; 120: 756–758
  • Henschler D. Wichtige Gifte und Vergiftungen. Allgemeine und spezielle Pharmalkologie und Toxikologie, 2nd ed., W. Forth, D. Henschler, W. Hummel. Biblio-graphisches Institut Wissenschaftsverlag, Mannheim 1977; 572–642
  • Kiese M. ldquo;Relationship of drug metabolism to methamoglobin formation”. Ann. N.Y. Acad. Sci. 1965; 123: 141–155
  • Ro Adamson H., Dixon R. L., Francis F. L., Rail D. P. ldquo;Comparative biochemistry of drug metabolism by azo and nitro reductase”. Proc. Nat. Acad. Sci. 1969; 54: 1386–1391
  • Buhler D. R., Rasmusson M. E. Reduction of p-nitrobenzoic acid by fishes. Arch. Biochem. Biophys 1968; 124: 582–595
  • Sieber S. M., Adamson R. H. The metabolism of xeno-biotics by fish. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 233–245
  • Etkin W., Gona A. G. Evolution of thyroid function in poikilothermic vertebrates. Handbook of Physiology, M. A. Green, D. H. Solomon. American Physiological Society, Washington, D.C. 1974; Vol. 3: 5–20, Section 7
  • Lam T. J. Prolactin and hydromineral regulation in fishes. Gen. Comp. Endocrinol., Suppl 1972; 3: 328–338
  • So Nicoll C. Physiological actions of prolactin. Handbook of Physiology, E. Knobil, W. H. Sawyer. American Physiological Society, Washington, D.C. 1974; Vol.,4: 253–292, Section 7, Part 2
  • Maetz J., Lahlou B. Actions of neurohypophyseal hormones in fishes. Handbook of Physiology, E. Knobil, W. H. Sawyer. American Physiological Society, Washington, D.C. 1974; Vol. 4: 521–544, Section 7, Part 1
  • Hirano T., Mayer-Gostan N. Endocrine control of osmoregulation in fish. Comparative Endocrinology, P. J. Gaillard, H. H. Boer. Elsevier/North Holland, Amsterdam 1978; 209–212
  • Wald G. ldquo;The significance of vertebrate metamorphosis”. Science 1958; 128: 1481–1490
  • Wald G. ldquo;The molecular basis of visual excitation”. Nature 1968; 219: 800–807
  • Bray H. G., Hybs Z., James S. P., Thorpe W. V. ldquo;The metabolism of 2:3:5:6- and 2:3:4:5-tetrachloronitrobenzenes in the rabbit and the reduction of aromatic nitro compounds in the intestine”. Biochem. J. 1953; 53: 266–273
  • Thompson R. Q., Sturtevant M., Bird O. D., Glazko A. J. ldquo;The effect of metabolites of chloramphenicol (Chloromycetin) on the thyroid of the rat”. Endocrinol 1954; 55: 665–681
  • Saz A. K., Slie R. B. ldquo;Reversal of aureomycin inhibition of bacterial cell-free nitro reductase by manganese”. J. Biol. Chem 1954; 210: 407–412
  • Saz A. K., Slie R. B. The inhibition of organic nitro reductase by aureomycin in cell-free extracts; II Cofactor requirements for the nitro reductase enzyme complex. Arch. Biochem. Biophys 1954; 51: 5–16
  • Saz A. K., Martinez L. M. Enzymatic basis of resistance to aureomycin, 1: Differences between flavoprotein nitro reductases of sensitive and resistant Escherichia coli. J. Biol. Chem 1956; 223: 285–292
  • Scheline R. R. ldquo;Drug metabolism by intestinal microorganisms”. J. Pharmaceut. Sci. 1968; 57: 2021–2037
  • Drasar B. S., Hill M. J., Williams R. E. O. The significance of the gut flora in the safety testing of food additives. Metabolic Aspects of Food Safety, F. J. C. Roe. Blackwell, Oxford 1970; 245–255
  • Williams R. T. ldquo;Toxicological implications of biotransformation by intestinal microflora”. Toxicol. Appl. Pharmacol 1972; 23: 769–781
  • Goldman P. ldquo;Biochemical pharmacology of the intestinal flora”. Ann. Rev. Pharmacol. Toxicol 1978; 18: 523–539
  • Doelle H. W. Anaerobic respiration. Bacterial Metabolism, 2nd ed., H. W. Doelle. Academic, New York 1975; 157–206
  • Wheeler L. A., Soderberg F. B., Goldman P. ldquo;The relationship between nitro group reduction and the intestinal microflora”. J. Pharmacol. Exp. Ther 1975; 194: 135–144
  • Reddy B. G., Pohl L. R., Krishna G. ldquo;The requirement of the gut flora in nitrobenzene-induced methemoglobinemia in rats”. Biochem. Pharmacol 1976; 25: 1119–1122
  • Roxon J. J., Ryan A. J., Wright S. E. Reduction of tartrazine by a proteus species isolated from rats. Food Cosmet. Toxicol 1966; 4: 419–426
  • Roxon J. J., Ryan A. J., Wright S. E. ldquo;Enzymatic reduction of water-soluble azo dyes by intestinal bacteria”. Food Cosmet. Toxicol 1967; 5: 367–370
  • Roxon J. J., Ryan A. J., Wright S. E. ldquo;Enzymatic reduction of tartrazine by proteus vulgaris from rats”. Food Cosmet. Toxicol 1967; 5: 645–656
  • Gingell R., Bridges J. W., Williams R. T. ldquo;The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat”. Xenobiotica 1971; 1: 143–156
  • Seheline R. R. ldquo;Metabolism of foreign compounds by gastrointestinal micro-organisms”. Pharmacol. Rev. 1973; 25: 451–523
  • Arnon D. I., Losada M., Nozaki M., Tagana K. Photo-production of hydrogen, photofixation of nitrogen, and a unified concept of photosynthesis. Nature 1961; 190: 601–606
  • Losada M., Whatley F. R., Arnon D. I. ldquo;Separation of two light reactions in noncyclic photo-phosphorylation of green plants”. Nature 1961; 190: 606–610
  • Arnon D. I., Tsujimoto H. Y., McSwain B. D. ldquo;Photo-synthetic phosphorylation and electron transport”. Nature 1965; 207: 1367–1372
  • Candau P., Manzano C., Losada M. Bioconversion of light energy into chemical energy through reduction with water of nitrate to ammonia. Nature 1976; 262: 715–717
  • Nicholas D. J. D., Nason A. ldquo;Mechanism of action of nitrate reductase from Neurospora”. J. Biol. Chem 1954; 211: 183–197
  • Garrett R. H., Nason A. ldquo;Involvement of a b-type cytochrome in the assimilatory nitrate reductase of Neurospora crassa”. Proc. Nat. Acad. Sci. 1967; 58: 1603–1610
  • Garrett R. H., Nason A. ldquo;Further purification and properties of Neurospora nitrate reductase”. J. Biol. Chem 1969; 244: 2870–2882
  • Stouthamer A. H. ldquo;Bioenergetic studies on Paracoccus de-nitrificans”. Trends Biochem. Sci. 1980; 5: 164–166
  • Jackson E. K., Parshall G. W., Hardy R. W. F. ldquo;Hydrogen reactions of nitrogenase: Formation of the molecule HD by nitrogenase and by an inorganic model”. J. Biol. Chem 1968; 243: 4952–4958
  • Dutton G. J. Phase II metabolic reactions in man. Drug Metabolism in Man, J. W. Gorrod, A. H. Beckett. Taylor and Francis, London 1978; 81–96
  • Dutton G. J. The biosynthesis of glucuronides. Glucuronic Acid Free and Combined, G. J. Dutton. Academic, New York 1966; 185–299
  • Schmid R., Lester R. Implication of conjugation of endogenous compounds-bibirubin. Glucuronic Acid Free and Combined, G. J. Dutton. Academic, New York 1966; 403–506
  • Jayle F. L., Pasqualini J. R. Implication of conjugation of endogenous compounds-steroids and thyroxine. Glucuronic Acid Free and Combined, G. J. Dutton. Academic, New York 1966; 507–544
  • De Meio R. H. Sulfate activation and transfer. Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd ed, D. M. Greenberg. Academic, New York 1975; 287–358
  • Dodgson K. S., Rose F. A. Sulfohydrolases. Metabolic Pathways, Vol. VII, Metabolism of Sulfur Compounds, 3rd ed, D. M. Greenberg. Academic, New York 1975; 359–431
  • Dodgson K. S. Conjugation with sulphate. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 91–104
  • Chasseaud L. F. ldquo;The nature and distribution of enzymes catalyzing the conjugation of glutathione with foreign compounds”. Drug Metab. Rev. 1973; 2: 185–220
  • Smith G. J., Litwack G. Roles of ligandin and the gluta-thione-S-transferases in binding steroid metabolites, carcinogens, and other compounds. Reviews in Biochemical Toxicology, Vol. 2, E. Hodgson, J. R. Bend, R. M. Philpot. Elsevier/North Holland, New York 1980; 1–47
  • Hirom P. C., Idle J. R., Millburn P. Comparative aspects of the biosynthesis and excretion of xenobiotic conjugates by non-primate mammals. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 299–329
  • Pan H. P., Fouts J. R. ldquo;Drug Metabolism in birds”. Drug Metab. Rev. 1978; 7: 1–253
  • Maickel R. P., Jondorf W. R., Brodie B. B. The conjugation of foreign phenols with glucuronic acid in lower ver-tegrates. Fed. Proc 1959; 18: 418
  • Charreau E. H., Tesone M. ldquo;Biosynthesis and metabolism of estrogens in Jenynsia iineata”. J. Steroid Biochem 1974; 5: 65–67
  • Eales J. G., Sinclair D. A. R. Enterohepatic cycling of thyroxine in starved and fed brook trout, Salvelinus fontinalis (Mitchill). Comp. Biochem. Physiol 1974; 49A: 661–672
  • Huang K.-C., Collins S. F. ldquo;Conjugation and excretion of aminobenzoic acid isomers in marine fishes”. J. Cell Comp. Physiol 1962; 60: 49–52
  • Adamson R. H., Guarino A. M. The effect of foreign compounds on elasmobranchs and the effect of elasmobranches on foreign compounds. Comp. Biochem. Physiol 1972; 42A: 171–182
  • Guarino A. M, Anderson J. B. ldquo;Excretion of phenol red and its glucuromide in the dogfish shark”. Xenobiotica 1976; 6: 1–13
  • Dutton G. J., Montgomery J. P. Glucuromide synthesis in fish and the influence of temperature. Biochem. J. 1958; 70: 17P
  • Lech J. J. ldquo;Isolation and identification of 3-trifluoromethyl-4- nitro-phenyl glucuronide from bile of rainbow trout exposed to 3-trifluoromethyl-4-nitrophenol”. Toxicol. Appl. Pharmacol 1973; 24: 114–124
  • Maickel R. P., Jondorf W. R., Brodie B. B. Conjugation and excretion of foreign phenols by fish and amphibia. Fed. Proc 1958; 17: 390
  • Salseduc M. M. ldquo;Influence of drugs on liver-ascorbic acid in fish”. Biochem. Pharmacol 1968; 17: 1163–1172
  • Spencer B. ldquo;Endogenous sulphate acceptors in rat liver”. Biochem. J. 1960; 77: 294–304
  • Holcenberg J. G., Rosen S. W. ldquo;Enzymatic sulfation of steroids by bovine tissues”. Arch. Biochem. Biophys 1965; 110: 551–557
  • Smith J. N. Comparative biochemistry of detoxification. Comparative Biochemistry, Vol. 6, M. Florkin, H. S. Mason. Academic, New York 1964; 403–457
  • Scully M. F., Dodgson K. S., Rose F. A. Sulphation of simple aliphatic alcohols and bile alcohols by the toad Xenopus laevis. Biochem. J. 1970; 119: 29P–30P
  • Smith J. N. Comparative detoxication, 4: Ethereal sulphate and glucoside conjugation in insects. Biochem. J. 1955; 60: 436–442
  • Smith J. N. ldquo;Detoxication mechanisms in insects”. Biol. Rev. 1955; 30: 455–475
  • Goldberg I. H., Delbrück A. Transfer of sulfate from 3-phosphoadenosine-5-phosphosulfate to lipids, mucopolysaccharides, and aminoalkyl phenols. Fed. Proc 1959; 18: 235
  • Robbins P. W., Lipmann F. ldquo;Isolation and identification of active sulfate”. J. Biol. Chem 1957; 229: 837–851
  • Anderson I. G., Briggs T., Haslewood G. A. D. Comparative studies of “bile salts,” 18: The chemistry of cyprinol. Biochem. J. 1964; 90: 303–308
  • Haslewood G. A. D. Comparative studies of bile salts: Myxinol disulphate, the principal bile salt of hagfish (Myxinidae). Biochem. J. 1966; 100: 233–237
  • Anderson I. G., Haslewood G. A. D., Cross A. D., Tökés L. New evidence for the structure of Myxinol. Biochem 1967; 104: 1061–1063
  • Anderson I. G., Haslewood G. A. D. Comparative studies of “bile salts,” 20: Bile salts of the coelacanth, Latimeria chalumnae Smith. Biochem. J. 1964; 93: 34–39
  • Bridgwater R. J., Ryan D. A. Sulphate conjugation with ranol and other steroid alcohols in liver homogenates from Rana temporaria. Biochem. J. 1957; 65: 24P–25P
  • Haslewood G. A. D. Comparative studies of “bile salts,” 19: The chemistry of ranol. Biochem. J. 1964; 90: 309–313
  • Laatikainen T., Peltokallio P., Vihko R. ldquo;Steroid sulfates in human bile”. Steroids 1968; 12: 407–421
  • Hutehins R. F. N., Kaplanis J. N. ldquo;Steroid sulfates in an insect”. Steroids 1969; 13: 605–614
  • Yang R. S. H., Wilkinson C. F. ldquo;Enzymic sulphation of p-nitrophenol and steroids by larval gut tissues of the southern armyworm (Prodonia eridania Carter)”. Biochem. J. 1972; 130: 487–493
  • Koolman J., Hoffmann J. A., Karlson P. ldquo;Sulfate esters as inactivation products of ecdysone in Locusta migratoria”. Hoppe-Seyler's Z. Physiol. Chem 1973; 354: 1043–1048
  • Nose Y., Lipmann F. ldquo;Separation of steroid sulfokinases”. J. Biol. Chem 1958; 233: 1348–1351
  • Suzuki S., Strominger J. L. Enzymic sulfation of mucopolysaccharides in hen oviduct, I: Transfer of sulfate from 3′-phosphoadenosine 5′-phosphosulfate to mucopolysaccharides. J. Biol. Chem 1960; 235: 257–266
  • Suzuki S., Strominger J. L. Enzymic sulfation of mucopolysaccharides in hen oviduct, III: Mechanism of sulfation of chondroitin and chondroitin sulfate A. J. Biol. Chem 1960; 235: 274–281
  • Balasubramanian A. S., Bachhawat B. K. ldquo;Formation of cerebroside sulphate from 3′-phosphoadenosine 5′-phospho-sulphate in sheep brain”. Biochim. Biophys. Acta 1965; 106: 218–220
  • Cumar F. A., Barra H. S., Maccioni H. J., Caputto R. ldquo;Sulfation of glycosphingolipids and related carbohydrates by brain preparations from young rats”. J. Biol. Chem 1968; 243: 3807–3816
  • Boyland E. Mercapturic acid conjugation. Handbook of Experimental Pharmacology, Vol. 28, Part 2, B. B. Brodie, J. R. Gillette. Springer Verlag, Berlin 1971; 584–608
  • Grover P. L. Conjugations with glutathione. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 105–122
  • Litwack G., Ketterer B., Arias I. M. Ligandin: A hepatic protein which binds steroids and bilirubin, carcinogens, and a number of exogenous organic anions. Nature 1971; 234: 466–467
  • Habig W. H., Pabst M. J., Fleischner G., Gatmaitan Z., Arias I. M., Jakoby W. B. The identity of glutathione S-transferase B with ligandin, a major binding protein of liver. Proc. Nat. Acad. Sci. 1974; 71: 3879–3882
  • Levine R. I., Reyes H., Levi A. J., Gatmaitan Z., Arias I. M. ldquo;Phylogenetic study of organic anion transfer from plasma into the liver”. Nature New Biol 1971; 231: 277–279
  • Semenza G. ldquo;Chromatographic purification of cysteinyl-glycinase”. Biochim. Biophys. Acta 1957; 24: 401–413
  • Bray H. G., Franklin T. J., James S. P. The formation of mercapturic acids, 2: The possible role of glutathione. Biochem. J. 1959; 71: 690–696
  • Suga T., Kumaoka H., Akagi M. ldquo;Studies on mercapturic acids: Participation of glutathionase in the conversion of glutathione derivatives to cysteine derivatives”. J. Biochem 1966; 60: 133–139
  • Elce J. S. ldquo;Metabolism of glutathione conjugate of 2-hydroxy-oestradiol by rat liver and kidney preparations in vitro”. Biochem. J. 1970; 116: 913–917
  • Green R. M., Elce J. S. ldquo;Acetylation of S-substituted cysteines by a rat liver and kidney microsomal N-acetyl-transferase”. Biochem. J. 1975; 147: 283–289
  • Clark A. G., Smith J. N., Speir T. W. Cross Specificity in some vertebrate and insect glutathione-transferases with methyl parathion (dimethyl p-nitrophenyl phos-phorothionate), l-chloro-2,4-dinitrobenzene, and S-crotonyl-N-acetylcysteamine as substrates. Biochem. J. 1973; 135: 385–392
  • Boyland E., Williams K. A new enzyme, catalysing the conjugations of epoxides. Biochem. J. 1965; 94: 190–197
  • Cohen A. J., Smith J. N. ldquo;Fate of aldrin and dieldrin in locusts”. Nature 1961; 189: 600–601
  • Sims P., Grover P. L. ldquo;Conjugations with glutathione: The enzymic conjugation of some chlorocyclohexanes”. Biochem. J. 1965; 95: 156–160
  • Motoyama N., Dauterman W. C. Glutathiones-transferases: Their role in the metabolism of organophosphorus insecticides. Reviews in Biochemical Toxicology, Vol. 2, E. Hodgson, J. R. Bend, R. M. Philpot. Elsevier, North Holland, New York 1980; 49–69
  • Anderson P. M. ldquo;Glutamine- and N-acetylglutamate-dependent carbamoyl phosphate synthetase in elasmobranchs”. Science 1980; 208: 291–293
  • Webb J. T., Brown G. W. ldquo;Glutamine synthetase: As-similatory role in liver as related to urea retention in marine chondrichthyes”. Science 1980; 208: 293–295
  • Jondorf W. R. Developmental aspects of the metabolism and toxicity of drugs. Drug Toxicity, J. W. Gorrod. Taylor and Francis, London 1979; 25–50
  • Futterman S. Metabolism of the retina, III: The role of reduced triphosphopyridine nucleotide in the visual cycle. J. Biol. Chem 1963; 238: 1145–1150
  • Bathe R., Sachsse K., Ullmann L., Hormann W. D., Zak F., Hess R. The evaluation of fish toxicity in the laboratory. Proc. Eur. Soc. Toxicol 1975; j6: 113–124
  • Metcalf R. L. Changing role of insecticides in crop protection. Ann. Rev. Entomol 1980; M: 219–256
  • Reinboth R. In vitro studies on steroid metabolism of testicular tissue in ambisexual teleost fish. J. Steroid, Biochem 1975; 6: 341–344
  • Pohl R. J., Bend J. R., Guarino A. M., Fouts J. R. Hepatic microsomal mixed-function oxidase activity of several marine species from Coastal Maine. Drug Metab. Dispos 1974; 2: 545–555
  • Bend J. R., Hart L. G., Guarino A. M., Rail D. P., Fouts J. R. (1976) Distribution and excretion of (14C)-2, 4,5,2′5′-pentachlorobiphenyl in the lobster and the dog fish shark. National Conference on Polychlorinated Biphenyls, Chicago, Nov., 19–211975. Environmental Protection Agency Office of Toxic Substances, Washington, D. C, 292–301, Conference Proceedings EPA-560/6–75-004
  • Rasmussen F. Studies on the Mammary Excretion and Absorption of Drugs. Mortensen, Copenhagen 1966
  • Munro A. F. ldquo;The ammonia and urea excretion of different species of amphibia during their development and metamorphosis”. Biochem. J. 1953; 54: 29–36
  • Brown G. W., Brown W. R., Cohen P. P. Comparative biochemistry of urea synthesis, II: Levels of urea cycle enzymes in metamorphosing Rana catesbeina tadpoles. J. Biol. Chem 1959; 235: 1775–1780
  • Tata J. R. Growth and developmental action of thyroid hormones at the cellular level. Handbook of Physiology, M. A. Greer, D. H. Solomon. American Physiological Society, Washington, D. C 1974; Vol. 3: 469–478, Section 7
  • Hoch F. L. Metabolic effects of thyroid hormones. Handbook of Physiology, M. A. Greer, D. H. Solomon. American Physiological Society, Washington, D.C. 1974; Vol. 3: 391–411, Section 7
  • Grant W. C., Cooper C. ldquo;Behavioural and integumentary changes associated with induced metamorphosis in Diemictylus”. Biol. Bull 1965; 128: 510–522
  • Shome B., Parlow A. F. ldquo;Human pituitary prolactin (hPRL): The entire linear amino acid sequence”. J. Clin. Endocrinol 1977; 45: 1112–1115
  • Niall H. D., Hogan M. L., Tregear G. W., Segre G. V., Hwang P., Friesen H. ldquo;The chemistry of growth hormone and the lactogenic hormones”. Rec. Progr. Hormone Res. 1973; 29: 387–416
  • Li C. H. Chemistry of ovine prolactin. Handbook of Physiology, E. Knobil, W. H. Sawyer. American Physiological Society, Washington, D.C. 1974; Vol. 4: 103–110, Section 7, Part 2
  • Reinwein D., Rail J. E. ldquo;Nonenzymatic deiodination of thyroid hormones by flavin mononucleotide and light”. J. Biol. Chem 1966; 241: 1636–1643
  • Visser T. J., van der Does-Tobe I., Docter R., Hennemann G. ldquo;Conversion of thyroxine into tri-iodo-thyronine by rat liver homogenate”. Biochem. J. 1975; 150: 489–493
  • Kato R., Takashahi A. ldquo;Thyroid hormone and activities of drug-metabolizing enzymes and electron-transport systems of rat liver microsomes”. Mol. Pharmacol 1968; 4: 109–120
  • Vesell E. S. ldquo;Genetic and environmental factors affecting drug disposition in man”. Clin. Pharmacol. Ther 1977; 22: 659–679
  • Fishman J., Bradlow H. L. Effect of malnutrition on the metabolism of sex hormones in man. Clin. Pharmacol. Ther 1977; 22j: 721–728
  • Chopra I. J., Solomon D. H., Chopra U., Wu S.-Y., Fisher D. A., Nakamura Y. ldquo;Pathways of metabolism of thyroid hormones”. Rec. Progr. Hormone Res. 1978; 34: 521–556
  • Abou-Donia M. B., Menzel D. B. Chick microsomal oxidases: Isolation, properties, and stimulation by embryonic exposure to 1,1, l-trichloro-2,2-bis(p-chlorophenyl)ethane. Biochemistry 1968; 7: 3788–3794
  • Powis G., Drummond A. H., Maclntyre D. E., Jondorf W. R. ldquo;Development of liver microsomal oxidations in the chick”. Xenobiotica 1976; 6: 69–81
  • Wit J. G. Drug metabolism in avian species. Drug Metab-olism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 247–261
  • Mathur R. S., Common R. H., Collins D. C., Layne D. S. Steroid estrogen conjugates of hen's urine: Formation in vivo of steroid estrogen monosulphates and disulphates from injected estradiol-17β. Biochim. Biophys. Acta 1969; 176: 394–402
  • Robinson A. R., Henneberry G. O., Common R. H. Steroid estrogen conjugates of hen's urine: Identification of radioactive estron-β-glucuronide, estradiol-17β-3-β-glue-uronide, estradiol-17a-3-β-glucuronide, estrone sulphate, estradiol-17β -3-sulphate, and estradiol-17a-3-sulphate, as metabolites of injected (14C) estrone. Biochim. Biophys. Acta 1973; 326: 93–102
  • Bailey S., Bunyan P. J. ldquo;Interpretation of persistence and effects of polychlorinated biphenyls in birds”. Nature 1972; 236: 34–36
  • Peakall D. B. ldquo;Pesticide-induced breakdown of steroids in birds”. Nature 1967; 216: 505–506
  • Davison K. L., Sell J. L. Dieldrin and DDT effects on reproduction and some hepatic mixed-function oxidase in the mallard duck. Arch. Environ. Contam. Toxicol 1974; 2: 302–314
  • Newton I., Bogan J. Organochlorine residues, eggshell thinning, and hatching success in British sparrowhawks. Nature 1974; 249: 582–583
  • Brandt I., Hogman P.-G., Larsson Y., Olsson S. ldquo;Tissue localisation of DDT and two PCB isomers (octa- and tetra-chlorobiphenyl) in laying quails”. Acta Vet. Scand 1978; 19: 368–370
  • Dutton G. J., Wishart G. J., Leakey J. E. A., Goheer M. A. Conjugation with glucuronic acid and other sugars. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 71–90
  • Strittmatter C. F., Umberger F. T. ldquo;Oxidative enzyme components of avian liver microsomes: Changes during embryonic development and the effects of phenobarbital administration”. Biochim. Biophys. Acta 1969; 180: 18–27
  • Koeman J. H., Oudejans R. C. H. M., Huisman E. A. ldquo;Danger of chlorinated hydrocarbon insecticides in birds' eggs”. Nature 1967; 215: 1094–1096
  • Jondorf W. R. Some evolutionary considerations regarding metabolism of drugs and hormones. Proc. Seventh Eur. Workshop Drug Metab. 1980, Abst. 205
  • Welch R. M., Levin W., Conney A. H. Effect of chlorinated insecticides on steroid metabolism. Chemical Fallout: Current Research on Persistent Pesticides, M. W. Miller, G. C. Berg. Thomas, Springfield, Ill. 1969; 390–407
  • Rockstein M. The Physiology of Insecta, Vols. 1–6, 2nd ed. Academic, New York 1974
  • Rees H. H. Insect Biochemistry. Chapman and Hall, London 1977
  • Staal G. B. ldquo;Insect growth regulators with juvenile hormone activity”. Ann. Rev. Entomol 1975; 20: 417–460
  • HoUingworth R. M. The biochemical basis of selective toxicity. Insecticide Biochemistry and Physiology, C. F. Wilkinson. Plenum, New York 1976; 431–506
  • Plapp F. W. ldquo;Biochemical genetics of insecticide resistance”. Ann. Rev. Entomol 1976; 21: 179–197
  • Oppenoorth F. J., Welling W. Biochemistry and Physiology of Resistance. Insecticide Biochemistry and Physiology, C. F. Wilkinson. Plenum, New York 1976; 507–551
  • Slama K., Romanuk M., Sorm F. Insect Hormones and Bioanalogues. Springer Verlag, Vienna 1974
  • Keely L. L. ldquo;Endocrine regulation of fat body development and function”. Ann. Rev. Entomol 1978; 23: 329–352
  • Thompson M. J., Kaplanis J. N., Robbins W. E., Svoboda J. A. ldquo;Metabolism of steroids in insects”. Advan. Lipid Res. 1973; 11: 219–265
  • Svoboda J. A., Kaplanis J. N., Robbins W. E., Thompson M. J. ldquo;Recent developments in insect steroid metabolism”. Ann. Rev. Entomol 1975; 20: 209–220
  • Wilkinson C. F., Brattsten L. B. ldquo;Microsomal drug metabolizing enzymes in insects”. Drug Metab. Rev. 1972; 1: 153–228
  • Agosin M., Perry A. S. Microsomal mixed-function oxidases, The Physiology of Insecta, Vol. 5, 2nd ed., M. Rock-Stein. Academic, New York 1974; 537–596
  • Nakatsugawa T., Morelli M. A. Microsomal oxidation and insecticide metabolism. Insecticide Biochemistry and Physiology, C. F. Wilkinson. Plenum, New York 1976; 61–114
  • Yang R. S. H. Enzymatic conjugation and insecticide metabolism. Insecticide Biochemistry and Physiology, C. F. Wilkinson. Plenum, New York 1976; 177–225
  • Wilkinson C. F. The metabolism of xenobiotics: A study in biochemical evolution. The Scientific Basis of Toxicity Assessment, H. R. Witschi. Elsevier/North Holland, Amsterdam 1980; 251–268
  • Dauterman W. C. Extramicrosomal metabolism of insecticides. Insecticide Biochemistry and Physiology, C. F. Wilkinson. Plenum, New York 1976; 149–176
  • Smith J. N. Comparative detoxication of invertebrates. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 219–232
  • Perry A. S., Agosin M. The physiology of insecticide resistance by insects. The Physiology of Insecta, Vol. 6, 2nd ed., M. Rockstein. Academic, New York 1974; 3–121
  • Krieger R. I., Feeny P. P., Wilkinson C. F. ldquo;Detoxica-tion enzymes in the guts of caterpillars: An evolutionary answer to plant defenses?”. Science 1971; 172: 579–581
  • Karlson P., Hoffmeister H. Zur Biogenese des Ecdysons, I: Umwandlung von Cholesterin in Ecdyson. Z. Physiol. Chem 1963; 331: 298–300
  • Galbraith M. N., Horn D. H. S., Middleton E. J., Thomson J. A. Biosynthesis of crustecdysone in the blowfly Calli-phora stygia. J. Chem. Soc 1970; 179–180
  • Willig A., Rees H. H., Goodwin T. W. ldquo;Biosynthesis of insect moulting hormones in isolated ring glands and whole larvae of Calliphora”. J. Insect Physiol 1971; 17: 2317–2326
  • Heinrich G., Hoffmeister H. Insect-molting hormones and their mode of action: Formation of hormone glycosides as in-activation mechanism in Calliphora erythrocephala. Z. Natur-forsch 1970; 25b: 358–361
  • Bowers W. S. Juvenile hormones. Naturally Occurring Insecticides, M. Jacobson, D. G. Crosby. Marcel Dekker, New York 1971; 307–332
  • Slade M., Zibitt C. H. Metabolism of cecropia juvenile hormone in insects and in mammals. Insect Juvenile Hormones, J. J. Menn, M. Beroza. Academic, New York 1972; 155–176
  • Bowers W. S., Ohta T., Cleere J. S., Marsella P. A. ldquo;Discovery of insect anti-juvenile hormones in plants”. Science 1976; 193: 542–547
  • Slade M., Wilkinson C. F. Degradation and conjugation of cecropia juvenile hormone by the southern armyworm (Prodenia eridania). Comp. Biochem. Physiol 1974; 49B: 99–103
  • Sanburg L. L., Kramer K. J., Kezdy F. J., Law J. H., Oberlander H. ldquo;Role of juvenile hormone esterases and carrier proteins in insect development”. Nature 1975; 253: 266–267
  • Pratt G. E., Jennings R. C., Hamnett A. F., Brooks G. T. ldquo;Lethal metabolism of precocene-I to a reactive epoxide by locust corpora allata”. Nature 1980; 284: 320–323
  • Giannotti O., Metcalf R. L., March R. B. ldquo;Action of aldrin and dieldrin in Periplaneta americana”. Ann. Entomol. Soc. Amer 1956; 49: 588–592
  • Perry A. S., Pearce G. W., Buckner A. J. Absorption distribution and fate of aldrin-14C and dieldrin-14C by susceptible and resistant houseflies. J. Econ. Entomol 1964; 57: 867–872
  • Bowman M. C., Acree F., Lofgren C. S., Beroza M. ldquo;Chlorinated insecticides: Fate in aqueous suspensions containing mosquito larvae”. Science 1964; 146: 1480–1481
  • Gerolt P. ldquo;The fate of dieldrin in insects”. J. Econ. Entomol 1965; 58: 849–857
  • Perry A. S., Mattson A. M., Buckner A. J. The metabolism of heptachlor by resistant and susceptible houseflies. J. Econ. Entomol 1958; jl: 346–351
  • Ray J. W. ldquo;The epoxidation of aldrin by housefly microsomes and its inhibition by carbon monoxide”. Biochem. Pharmacol 1967; 16: 99–107
  • Williamson R. L., Schechter M. S. ldquo;Microsomal epoxidation of aldrin in lepidopterous larvae”. Biochem. Pharmacol 1970; 19: 1719–1727
  • Singh G. J. P., Thornhill R. A. Metabolic fate of (14C) dieldrin in Schistocerca gregaria with particular reference to the nervous system. Xenobiotica 1980; 10: 57–63
  • Daly J. W., Jerina D. M., Witkop B. Arene oxides and the NIH shift: The metabolism, toxicity, and carcinogenicity of aromatic compounds. Experientia 1972; 28: 1129–1149
  • Jerina D. M., Daly J. W. Oxidation at carbon. Drug Metabolism-from Microbe to Man, D. V. Parke, R. L. Smith. Taylor and Francis, London 1977; 13–32
  • Schonbrod R. D., Philleo W. W., Terriere L. C. Hydroxylation as a factor in resistance in houseflies and blowflies. J. Econ. Entomol 1965; 58: 74–77
  • Boose R. B., Terriere L. C. Quantitative aspects of the detoxication of naphthalene by resistant and susceptible house-flies. J. Econ. Entomol 1967; 60: 580–586
  • Khan M. A. Q., Terriere L. C. ldquo;DDT-dehydrochlorinase activity in housefly strains resistant to various groups of insecticides”. J. Econ. Entomol 1968; 51: 732–736
  • Khan M. A. Q. Biochemical characteristics of the microsomal cyclodiene epoxidase system and its inheritance in the housefly. J. Econ. Entomol 1969; 62: 388–392
  • Benke G. M., Wilkinson C. F., Telford J. N. ldquo;Microsomal oxidases in a cockroach Gromphadorania portentosa”. J. Econ. Entomol 1972; 65: 1221–1229
  • Krieger R. I., Wilkinson C. F. Microsomal mixed-function oxidases in insects, I: Localization and properties of an enzyme system affecting aldrin epoxidation in larvae of the southern armyworm (Prodenia eridania). Biochem. Pharmacol 1969; IjJ: 1403–1415
  • Taurog A. ldquo;Thyroid peroxidase and thyroxine biosynthesis”. Rec. Progr. Hormone Res. 1970; 26: 189–247
  • Taurog A. Biosynthesis of iodoamino acids. Handbook of Physiology, M. A. Greer, D. H. Solomon. American Physiological Society, Washington, D.C 1974; Vol. 3: 101–133, Section 7
  • Sterling K., Lazarus J. H. ldquo;The thyroid and its control”. Ann. Rev. Physiol 1977; 39: 349–371
  • Robinson J., Richardson A., Crabtree A. N., Coulson J. C., Potts G. R. ldquo;Organochlorine residues in marine organisms”. Nature 1967; 214: 1307–1311
  • O'Tatton J. G., Ruzicka J. H. A. ldquo;Organochlorine pesticides in Antarctica”. Nature 1967; 215: 346–348
  • Holden A. V., Marsden K. ldquo;Organochlorine pesticides in seals and porpoises”. Nature 1967; 216: 1274–1280
  • Koeman J. H., ten Noever de Brauw M. C., De Vos R. H. Chlorinated biphenyls in fish, mussels, and birds from the River Rhine in the Netherlands coastal area. Nature 1969; 221: 1126–1128
  • Bickel M. H., Muhlebach S. ldquo;Parmacokinetics and eco- disposition of polyhalogenated hydrocarbons: Aspects and concerns”. Drug Metab. Rev. 1980; 11: 149–190
  • Nelson B. Herbicides: Order on 2, 4, 5-T issued at unusually high level. Science 1969; 166: 977–979
  • Courtney K. D., Gaylor D. W., Hogan M. D., Falk H. L., Bates R. R., Mitchell I. Teratogenic evaluation of 2,4, 5-T. Science 1970; 168: 864–866
  • Shapley D. ldquo;Herbides: AAAS study finds dioxin in Vietnamese fish”. Science 1973; 180: 285–286
  • Holmes D. C., Simmons J. H., O'Tatton J. G. ldquo;Chlorinated hydrocarbons in British wildlife”. Nature 1967; 216: 227–229
  • Jondorf W. R., Parke D. V., Williams R. T. Studies in detoxication, 66: The metabolism of halogenobenzenes 1:2:3-, 1:2:4-, and l:3:5-trichlorobenzenes. Biochem. J. 1955; 61: 512–521
  • Jondorf W. R., Parke D. V., Williams R. T. Studies in detoxication, 76: The metabolism of halogenobenzenes 1:2:3:4-, 1:2:3:5-, and l:2:4:5-tetrachlorobenzenes. Biochem. J. 1958; 69: 181–189
  • Parke D. V., Williams R. T. Studies in Detoxication, 81: The metabolism of halogenobenzenes; (a) penta- and hexachlorobenzenes; (b) further observations on l:3:5-trichlorobenzene. Biochem. J. 1960; 74: 5–9
  • Ockner R. K., Schmid R. Acquired porphyria in man and rat due to hexachlorobenzene intoxication. Nature 1961; 189: 499
  • De Matteis F., Prior B. E., Rimington C. ldquo;Nervous and biochemical disturbances following hexachlorobenzene intoxication”. Nature 1961; 191: 363–366
  • Higuchi K. PCB Poisoning and Pollution. Kodansha, Tokyo 1976
  • Brilliant L. B., Van Amburg G., Isbister J., Humphrey H., Wilcox K., Eyster J., Bloomer A. W., Price H. ldquo;Breast-milk monitoring to measure Michigan's contamination with polybrominated biphenyls”. Lancet 1978; 2: 643–646
  • Hay A. ldquo;Toxic cloud over Seveso”. Nature 1976; 262: 636–638
  • Marver H. S., Schmid R. The porphyrias. The Metabolic Basis of Inherited Disease, 3rd ed., J. B. Stanbury, J. B. Wyngaarden, D. S. Frederickson. McGraw-Hill, New York 1972; 1087–1140
  • Sweeney G. D., Jones K. G. On the mechanism of porphyria due to chlorinated hydrocarbons. Industrial and Environmental Xenobiotics, J. R. Fouts, I. Gut. Excerpta Medica, Amsterdam 1978; 229–231
  • Poland A., Glover E. Chlorinated dibenzo-p-dioxins: Potent inducers of 6-aminolevulinic acid synthetase and aryl hydrocarbon hydroxylase, II: A study of the structure-activity relationship. Mol. Pharmacol 1973; 9: 736–747
  • Poland A., Glover E. Chlorinated biphenyl induction of aryl hydrocarbon hydroxylase activity: A study of structure-activity relationship. Mol. Pharmacol 1977; 13: 924–938
  • Matthews H. B., Domanski J. J., Guthrie F. E. ldquo;Hair and associated lipids as an excretory pathway for chlorinated hydrocarbons”. Xenobiotica 1976; 6: 425–429
  • Bowes G. W., Mulvihill M. J., Simoneit B. R. T., Burlingame A. L., Risebrough R. W. ldquo;Identification of chlorinated dibenzofurans in American polychlorinated biphenyls”. Nature 1975; 256: 305–307
  • Goldstein J. A., Hass J. R., Linko P., Harvan D. J. 2, 3,7,8-Tetrachlorodibenzofuran in a commercially available 99% pure polychlorinated biphenyl isomer identified as the inducer of hepatic cytochrome P-448 and aryl hydrocarbon hydroxylase in the rat. Drug Metab. Dispos 1978; 6: 258–264
  • Poland A., Smith D., Kuntzman R., Jacobson M., Conney A. H. ldquo;Effect of intensive occupational exposure to DDT on phenylbutazone and Cortisol metabolism in human subjects”. Clin. Pharmacol. Ther 1970; 11: 724–732
  • Welch R. M., Levin W., Kuntzman R., Jacobson M., Conney A. H. ldquo;Effect of halogenated hydrocarbon insecticides on the metabolism and uterotropic action of estrogens in rats and mice”. Toxicol. Appl. Pharmacol 1971; 19: 234–246
  • Fishbein L. ldquo;Toxicity of chlorinated biphenyls”. Ann. Rev. Pharmacol 1974; 14: 139–156
  • Allen J. R. ldquo;Response of the nonhuman primate to polychlor-inated biphenyl exposure”. Fed. Proc 1975; 34: 1675–1679
  • Sleight S. D., Mangkoewidjojo S., Akoso B. T., Sanger V. L. Polybrominated biphenyl toxicosis in rats fed an iodine-deficient, iodine-adequate, or iodine-excess diet. Environ. Health Perspect 1978; 23: 341–346

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.