43
Views
52
CrossRef citations to date
0
Altmetric
Research Article

The Role of Metabolic Activation in Drug Toxicity

, &
Pages 395-412 | Published online: 22 Sep 2008

References

  • Miller E. C., Miller J. A. The presence and significance of bound aminoazo dyes in the livers of rats fed p-dimethylaminoazobenzene. Cancer Res. 1947; 7: 468–480
  • Miller J. A., Miller E. C. The carcinogenic aminoazo dyes. Adv. Cancer Res. 1953; 1: 339–396
  • Miller E. C., Miller J. A. Mechanisms of chemical carcinogenesis: Nature of proximate carcinogens and interactions with macromolecules. Pharmacol. Rev. 1966; 18: 805–838
  • Miller E. C. Some current perspectives on chemical carcinogenesis in humans and experimental animals: Presidential address. Cancer Res. 1978; 38: 1479–1496
  • Miller E. C., Miller J. A. Searches for ultimate chemical carcinogens and their reactions with cellular macromolecules. Cancer 1981; 47: 2327–2345
  • Beland F. A., Kadlubar F. F. Formation and persistence of ary-lamine DNA adducts in vivo. Environ. Health Perspectives 1985; 62: 19–30
  • Brodie B. B., Cho A. K., Krishna G. W.D. Reid Drug metabolism in man: Past, present, and future. Ann. NY Acad. Sci. 1971; 179: 11–18
  • Gillette J. R., Mitchell J. R., Brodie B. B. Biochemical mechanisms of drug toxicity. Ann. Rev. Pharmacol. 1974; 14: 271–288
  • Brodie B. B., Reid W. D., Cho A. K., Sipes G., Krishna G., Gillette J. R. Possible mechanism of liver necrosis caused by aromatic organic compounds. Proc. Natl. Acad. Sci. USA 1971; 68: 160–164
  • Jollow D. J., Mitchell J. R., Zampaglione N., Gillette J. R. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 1974; 11: 151–169
  • Zampaglione N., Jollow D. J., Mitchell J. R., Stripp B., Hamrick M., Gillette J. R. Role of detoxifying enzymes in bromobenzene-induced liver necrosis. J. Pharmacol. Exp. Ther. 1973; 187: 218–227
  • Boyd E. M., Bereczky G. M. Liver necrosis from paracetamol. Br. J. Pharmacol. 1966; 26: 606–614
  • Davidson D. G. D., Eastham W. N. Acute liver necrosis following overdose of paracetamol. Br. Med. J. 1966; 5512: 497–499
  • Thompson J. S., Prescott L. F. Liver damage and impaired glucose tolerance after paracetamol overdosage. Br. Med. J. 1966; 5512: 506–507
  • Mitchell J. R., Jollow D. J., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. I. Role of drug metabolism. J. Pharmacol. Exp. Ther. 1973; 187: 185–194
  • Jollow D. J., Mitchell J. R., Potter W. Z., Davis D. C., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. II. Role of covalent binding in vivo. J. Pharmacol. Exp. Ther. 1973; 187: 195–202
  • Potter W. Z., Davis D. C., Mitchell J. R., Jollow D. J., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. III. Cytochrome P-450-mediated covalent binding in vitro. J. Pharmacol. Exp. Ther. 1973; 187: 203–210
  • Mitchell J. R., Jollow D. J., Potter W. Z., Gillette J. R., Brodie B. B. Acetaminophen-induced hepatic necrosis. IV. Protective role of glutathione. J. Pharmacol. Exp. Ther. 1973; 187: 211–217
  • Jollow D. J., Thorgeirsson S. S., Potter W. Z., Hashimoto M., Mitchell J. R. Acetaminophen-induced hepatic necrosis. VI. Metabolic disposition of toxic and nontoxic doses of acetaminophen. Pharmacology 1974; 12: 251–271
  • Hinson J. A., Pohl L. R.T, Monks J., Gillette J. R. Acetaminophen-induced hepatotoxicity. Life Sci. 1981; 29: 107–116
  • Dahlin D. C., Miwa G. T., Lu A. Y. H., Nelson S. D. N-Acetyl-p-benzoquinone imine: A cytochrome P-450-mediated oxidation product of acetaminophen. Proc. Natl. Acad. Sci. USA 1984; 81: 1327–1331
  • Coon M. J., Koop D. R., Reeve L. E., Crump B. L. Alcohol metabolism and toxicity: Role of cytochrome P-450. Fundam. Appl. Toxicol. 1984; 4: 134–143
  • Harvison P. J., Guengerich F. P., Rashed M. S., Nelson S. D. Cytochrome P-450 isozyme selectivity in the oxidation of acetaminophen. Chem. Res. Toxicol. 1988; 1: 49–52
  • Raucy J. L., Lasker J. M., Lieber C. S., Black M. Acetaminophen activation by human liver cytochromes P450IIE1 and P450IA2. Arch. Biochem. Biophys. 1989; 271: 270–283
  • Lee C. A., Thummel K. E., Kalhorn T. F., Nelson S. D., Slattery J. T. Inhibition and activation of acetaminophen reactive metabolite formation by caffeine. Drug Metab. Dispos. 1991; 19: 348–353
  • Hinson J. A., Monks T. J., Hong M., Highet R. J., Pohl L. R. 3-(Glutathion-5-yl)acetaminophen: A biliary metabolite of acetaminophen. Drug Metab. Dispos. 1982; 10: 47–50
  • Coles B., Wilson I., Wardman P., Hinson J. A., Nelson S. D., Ketterer B. The spontaneous and enzymatic reaction of N-acetyl-/?-benzoquinonimine with glutathione: A stopped-flow kinetic study. Arch. Biochem. Biophys 1988; 264: 253–260
  • Prescott L. F. Paracetamol overdosage. Pharmacological considerations and clinical management. Drugs 1983; 25: 290–314
  • Nelson S. D., Pearson P. G. Covalent and noncovaient interactions in acute lethal cell injury caused by chemicals. Annu. Rev. Phar-amocol. Toxicol. 1990; 30: 169–195
  • Pohl L. R., Satoh H., Christ D. D. The immunologic and metabolic basis of drug hypersensitivities. Annu. Rev. Pharmacol. Toxicol. 1988; 28: 367–387
  • Hinson J. A., Roberts D. W. Role of covalent and noncovaient interactions in cell toxicity: Effects on proteins. Annu. Rev. Pharmacol. Toxicol. 1992; 32: 271–510
  • O'Brien P. J. Molecular mechanisms of quinone cytotoxicity. Chem.-Biol. Interact. 1991; 80: 1–41
  • Pumford N. R., Hinson J., Benson R. W., Roberts D. W. Immu-noblot analysis of protein containing 3-(cystein-S-yl)acetaminophen adducts in serum and subcellular liver fractions from acetaminophen-treated mice. Toxicol. Appl. Pharmacol. 1990; 104: 521–532
  • Bartolone J. B., Sparks K., Cohen S. D., Khairallah E. A. Immunochemical detection of acetaminophen-bound liver proteins. Bio-chem. Pharmacol. 1987; 36: 1193–1196
  • Pumford N. R., Martin B. M., Hinson J. A. A metabolite of acetaminophen covalently binds to the 56 kDa selenium binding protein. Biochem. Biophys. Res. Commun. 1992; 182: 1348–1355
  • Bartolone J. B., Birge R. B., Bulera S. J., Bruno M. K., Nis-hanian E. V., Cohen S. D., Khairallah E. A. Purification, antibody production, and partial amino acid sequence of the 58-kDa acetaminophen-binding liver proteins. Toxicol. Appl. Pharmacol. 1992; 113: 19–29
  • Bansal M. P., Mukhopadhyay T., Scott J., Cook R. G., Mukhopad-hyay R., Medina D. DNA sequencing of a mouse liver protein that binds selenium: Implications for selenium's mechanism of action in cancer prevention. Carcinogenesis 1990; 11: 2071–2073
  • Satoh H., Gillette J. R., Davies H. W., Schulick R. D., Pohl L. R. Immunochemical evidence of trifuloroacetylated cytochrome P-450 in the liver of halothane-treated rats. Mol. Pharmacol. 1985; 28: 468–474
  • Kenna J. G., Neuberger J., Williams R. Identification by immu-noblotting of three halothane-induced liver microsomal polypeptide antigens recognized by antibodies in sera from patients with halothane-associated hepatitis. J. Pharmacol. Exp. Ther. 1988; 242: 733–740
  • Kenna J. G., Satoh H., Christ D. D., Pohl L. R. Metabolic basis for a drug hypersensitivity: Antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the triflu-oroacetyl group derived from halothane. J. Pharmacol. Exp. Ther. 1988; 245: 1103–1109
  • Pohl L. R., Thomassen D., Pumford N. R., Butler L. E., Satoh H., Ferrans V. J., Perrone A., Martin B. M., Martin J. L. Hapten carrier conjugates associated with halothane hepatitis. Biological Reactive Intermediates IV., C. M. Witmer. Plenum Press, New York 1990; 111–120
  • Satoh H., Martin B. M., Schulick A. H., Christ D. D., Kenna J. G., Pohl L. R. Human anti-endoplasmic reticulum antibodies in sera of patients with halothane-induced hepatitis are directed against a tri-fluoroacetylated carboxylesterase. Proc. Natl. Acad. Sci. USA 1989; 86: 322–326
  • Martin J. L., Kenna J. G., Martin B. M., Pohl L. R. Trifuloro-acetylated protein disulfide isomerase is a halothane-induced neoanti-gen. Toxicologist 1989; 9: 5
  • Satoh H., Fukuda Y., Anderson D. K., Ferrans V. J., Gillette J. R., Pohl L. R. Immunological studies on the mechanism of halothane-induced hepatotoxicity: immunohistochemical evidence of trifluoroacetylated hepatocytes. J. Pharmacol. Exp. Ther. 1985; 233: 857–862
  • Rubin R. L., Uetrecht J. P., Jones J. E. Cytotoxicity of oxidative metabolites of procainamide. J. Pharmacol. Exp. Ther. 1987; 242: 833–841
  • Beaune P., Dansette P. M., Mansuy D., Kiffel L., Finck M., Amar C., Leroux J. P., Homburg J. C. Human anti-endoplasmic reticulum autoantibodies appearing in a drug-induced hepatitis are directed against a human liver cytochrome P-450 that hydroxylates the drug. Proc. Natl. Acad. Sci. USA 1987; 84: 551–555
  • Dansette P. M., Amar C., Valadon P., Pons C., Beaune P. H., Mansuy D. Hydroxylation and formation of electrophilic metabolites of tienilic acid and its isomer by human liver microsomes. Catalysis by a cytochrome P-450 IIC different from that responsible for mephenytoin hydroxylation. Biochem. Pharmacol. 1991; 41: 553–560
  • Pumford N. R., Myers T. G., Davila J. C., Highet R. J., Pohl L. R. Immunochemical detection of liver protein adducts of the nonsteroidal antiflammatory drug diclofenac. Chem. Res. Toxicol. 1993; 6: 147–150
  • Baron J., Redlick J. A., Guengerich F. P. An immunohistochemical study of the localizations and distributions of phenobarbital- and 3-methylcholanthrene-inducible cytochromes P-450 isozymes in rat ex-trahepatic tissues. Arch. Biochem. Biophys. 1981; 258: 519–534
  • Rich K. J., Sesardic D., Foster J. R., Davies D. S., Boobis A. R. Immunohistochemical localization of cytochrome P-450b/e in hepatic and extrahepatic tissues of the rat. Biochem. Pharmacol. 1989; 38: 3305–3322
  • Biichler R., Lindros K. O., Nordling A., Johansson I., Ingelman-Sundberg M. Zonation of cytochrome P450 isozyme expression and induction in rat liver. Eur. J. Biochem. 1992; 204: 407–412
  • Roberts D. W., Bucci T. J., Benson R. W., Warbritton A. R., McRae T. A., Pumford N. R., Hinson J. A. Immunohistochemical localization and quantification of the 3-(cystein-S-yl)acetaminophen protein adduct in acetaminophen hepatotoxicity. Am. J. Pathol. 1991; 138: 359–371
  • Newton J. F., Yoshimoto M., Bernstein J., Rush G. F., Hook J. B. Acetaminophen nephrotoxicity in the rat. I. Strain differences in nephrotoxicity and metabolism. Toxicol. Appl. Pharmacol. 1983; 69: 291–306
  • Newton J. F., Yoshimoto M. J., Bernstein G. F., Hook J. B. Acetaminophen nephrotoxicity in the rat. II. Strain differences in nephrotoxicity and metabolism and p-aminophenol, a metabolite of acetaminophen. Toxicol. Appl. Pharmacol. 1983; 69: 307–318
  • Newton J. F., Bailie M. B., Hook J. B. Acetaminophen nephrotoxicity in the rat. Renal metabolic activation in vitro. Toxicol. Appl. Pharmacol. 1983; 70: 433–444
  • Carpenter H. M., Mudge G. H. Acetaminophen nephrotoxicity: Studies on renal acetylation and deacetylation. J. Pharmacol. Exp. Ther. 1981; 218: 161–167
  • Pohl L. R., Bhooshan B., Whittaker N. F., Krishna G. Phosgene: A metabolite of chloroform. Biochem. Biophys. Res. Commun. 1977; 79: 684–691
  • Pohl L. R., Krishna G. Deuterium isotope effect in bioactivation and hepatotoxicity of chloroform. Life Sci. 1978; 23: 1067–1072
  • Pohl L. R., Martin J. L., George J. W. Mechanism of metabolic activation of chloroform by rat liver microsomes. Biochem. Pharmacol. 1980; 29: 3271–3276
  • Ilett K. F., Reid W. D., Sipes I. G., Krishna G. Chloroform toxicity in mice: Correlation of renal and hepatic necrosis with covalent binding of metabolites to tissue macromolecules. Exp. Mol. Pathol. 1973; 19: 215–229
  • Pohl L. R., George J. W., Satoh H. Strain and sex differences in chloroform-induced nephrotoxicity. Different rates of metabolism of chloroform to phosgene by the mouse kidney. Drug Metab. Dispos. 1984; 12: 304–308
  • Boyd M. R. Role of metabolic activation in the pathogenesis of chemically induced pulmonary disease: Mechanism of action of the lung-toxic furan, 4-ipomeanol. Environ. Health Persp. 1976; 16: 127–138
  • Ravindranath V., Burka L. T., Boyd M. R. Reactive metabolites from the bioactivation of toxic methylfurans. Science 1984; 224: 884–886
  • Boyd M. R. Evidence for the Clara cell as a site of cytochrome P450-dependent mixed function oxidase activity in lung. Nature 1977; 269: 713–715
  • Smith D., Heath Paraquat D. CRC Crit. Rev. Toxicol. 1976; 4: 411–445
  • Sandy M. S., Moldeus D., Ross D., Smith M. T. Role of redox cycling and lipid peroxidation in bipyridyl herbicide cytotoxicity. Bio-chem. Pharmacol. 1986; 35: 3095–3101
  • DiMonte D., Ross D., Bellomo G., Eklow L., Orrenius S. Alterations in intracellular thiol homeostasis during the metabolism of menadione by isolated rat hepatocytes. Arch. Biochem. Biophys. 1984; 235: 334–342
  • Moore M., Thor H., Moore G., Nelson S., Moldeus F, Orrenius S. The toxicity of acetaminophen and N-acetyl-/?-benzoquinone imine in isolated hepatocytes is associated with thiol depletion and increased cytosolic Ca2+. J. Biol. Chem. 1985; 260: 13035–13040
  • Thor H., Mirabelli F., Salis A., Cohen G. M., Bellomo G., Orrenius S. Alterations in hepatocyte cytoskeleton caused by redox cycling and alkylating quinones. Arch. Biochem. Biophys. 1988; 266: 397–407
  • Rundgren M., Harder S., Nelson S. D., Andersson B. S. Oxidant-induced changes in the cellular energy homeostasis. A study with 3,5-dimethyl N-acetyl-p-benzoquinone imine and isolated hepatocytes. Biochem. Pharmacol. 1990; 40: 239–242
  • Sager P. R., Matheson D. W. Mechanisms of neurotoxicity related to selective disruption of microtubules and intermediate filaments. Toxicology 1988; 49: 479–492
  • Ziegler D. M. role of reversible oxidation-reduction of enzyme thiols-disulfides in metabolic regulation. Ann. Rev. Biochem. 1985; 54: 305–329
  • Scheulen M. E., Kappus H. Metabolic activation of adriamycin by NADPH-cytochrome P-450 reductase, rat liver and heart microsomes and covalent protein binding of metabolites. Biological Reactive Intermediates 11 A, R. Snyder, D. V. Parke, J. J. Kocsis, D. J. Jollow, C. G. Gibson, C. M. Witmer. Plenum Press, New York 1982; 471–485
  • Ohno Y., Ormstad K., Ross D., Orrenius S. Mechanism of allyl alcohol toxicity and protective effects of low-molecular-weight thiols studied with isolated rat hepatocytes. Toxicol. Appl. Pharmacol. 1985; 78: 169–179
  • Silva J. M., O'Brien P. J. Allyl alcohol and acrolein-induced toxicity in isolated rat hepatocytes. Arch. Biochem. Biophys. 1989; 275: 551–558
  • Tunek A., Piatt K. L., Przybylski M., Oesch F. Multistep metabolic activation of benzene: Effect of superoxide dismutase on cova-lent binding to microsomal macromolecules, and identification of glutathione conjugates using high pressure liquid chromatography and field desorption mass spectrometry. Chem.-Biol. Interact. 1980; 33: 1–17
  • Lunte S. M., Kissinger P. T. Detection and identification of sulf-hydryl conjugates of p-benzoquinone in microsomal incubations of benzene and phenol. Chem.-Biol. Interact. 1983; 47: 195–212
  • Sawahata T., Neal R. A. Biotransformation of phenol to hydroqui-none and catechol by rat liver microsomes. Mol. Pharmacol. 1983; 23: 453–460
  • Smart R. C., Zannoni V. G. DT-Diaphorase and peroxidase influence the covalent binding of the metabolites of phenol, the major metabolite of benzene. Mol. Pharmacol. 1984; 26: 105–111
  • Nerland D. E., Pierce W. M. Identification of N-acetyl-S-(2,5-dihydroxyphenyl)-L-cysteine as a urinary metabolite of benzene, phenol, and hydroquinone. Drug Metab. Dispos. 1990; 18: 958–961
  • Kilkuskie R. E., MacDonald T. L., Hecht S. D. Bleomycin may be activated for DNA cleavage by NADPH-cytochrome P-450 reductase. Biochemistry 1984; 23: 6165–7171
  • Mahmutoglo I., Kappus H. Oxy radical formation during redox cycline of bleomycin-iron (III) complex by NADPH cytochrome P-450 reductase. Biochem. Pharmacol. 1985; 34: 3091–3094
  • Lau S. S., Monks T. J. The contribution of bromobenzene to our current understanding of chemically-induced toxicities. Life Sci. 1988; 42: 1259–1269
  • Witschi H., Malkinson A. M., Thompson J. A. Metabolism and pulmonary toxicity of butylated hydroxytoluene (BHT). Pharmacol. Ther. 1989; 42: 89–113
  • Thompson D. C., Y-Cha N., Trush M. A. The peroxidase-dependent activation of butylated hydroxyanisole and butylated hydroxytoluene (BHT) to reactive intermediates. Formation of BHT-quinone methide via a chemical-chemical interaction. J. Biol. Chem. 1989; 264: 3957–3965
  • Neal R. A., Halpert J. Toxicology of thionsulfur compounds. Annu. Rev. Pharmacol. Toxicol. 1982; 22: 321–329
  • Osawa Y., Highet R. J., Bax A., Pohl L. R. Covalent bonding of the prosthetic heme to protein: A potential mechanism for the suicide inactivation or activation of hemoproteins. Chem. Res. Toxicol. 1989; 2: 131–141
  • DeGroot H., Littauer A., Hugh-Wissemann D., Wissemann P., Noll T. Lipid peroxidation and cell viability in isolated hepatocytes in a redesigned oxystate system: Evaluation of the hypothesis that lipid peroxidation, preferentially induced at low oxygen partial pressures, is decisive for CC14 liver cell injury. Arch. Biochem. Biophys. 1988; 264: 591–599
  • Recknagel R. Carbon tetrachloride hepatotoxicity: Status quo and future prospects. Trends Pharmacol. Sci. 1983; 129–131
  • Pohl L. R., Martin J. L., George J. W. Mechanism of metabolic activation of chloroform by rat liver microsomes. Biochem. Pharmacol. 1980; 29: 3271–3276
  • Anders M. W., Lash L. H., Dekant W., Elfarra A. A., Dohn D. R. Biosynthesis and biotransformation of glutathione 5-conjugates to toxic metabolites. CRC Crit. Rev. Toxicol. 1988; 18: 311–341
  • Dekant W., Vamvakas S., Anders M. W. Bioactivation of nephrotoxic haloalkenes by glutathione conjugation: Formation of toxic and mutagenic intermediates by cysteine conjugate (3-lyase. Drug Metab. Rev. 1989; 20: 43–83
  • Monks T J., Anders M. W., Dekant W., Stevens J. L., Lau S. S., Van Bladeren P. J. Contemporary issues in toxicology. Glutathione conjugate mediated toxicities. Toxicol. Appl. Pharmacol. 1990; 106: 1–19
  • Dohn D. R., Leininger J. R., Lash L. H., Quebbemann A. J., Anders M. W. Nephrotoxicity of S-(2-chloro-1,1,2-trifluoroethyl) glutathione and S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine, the glutathione and cysteine conjugates of chlorotrifluoroethene. J. Pharmacol. Exp. Ther. 1985; 235: 851–857
  • Terracini B., Parker V. H. A pathological study on the toxicity of S-dichlorovinyl-L-cysteine. Food Cosmet. Toxicol. 1965; 3: 61–1A
  • Anderson P. M., Schultze M. O. Cleavage of 5-(1,2-dichlorovinyl)-L-cysteine by an enzyme of bovine origin. Arch. Biochem. Biophys. 1965; Ill: 593–602
  • Dekant W., Metzler M., Henschler D. Identification of 5–1,2-dichlorovinyl-N-acetyl-cysteine as a urinary metabolite of trichloro-ethylene: A possible explanation for its nephrocarcinogenicity. Biochem. Pharmacol. 1986; 35: 2455–2458
  • Spitznagle L. A., Wirth P. J., Boobis S. W., Thorgeirsson S. S., Nelson W. L. The role of biliary excretion in the hepatotoxicity of furosemide in the mouse. Toxicol. Appl. Pharmacol. 1977; 39: 283–294
  • Graham D. G., Anthony D. C., Boekelheide K., Maschmann N. A., Richards R. G., Wolfram J. W., Shaw B. R. Studies of the molecular pathogenesis of hexane neuropathy. II. Evidence that pyrrole derivatization of lysyl residues leads to protein crosslinking. Toxicol. Appl. Pharmacol. 1982; 64: 415–422
  • Genter M. B., Szakal-Quin G., Anderson C. W., Anthony D. C., Graham D. G. Evidence that pyrrole formation is a pathogenetic step in gamma-diketone neuropathy. Toxicol. Appl. Pharmacol. 1987; 87: 351–362
  • StClair M. B. G., Amarnath V., Moody M. A., Anthony D. C., Anderson D. W., Graham D. G. Pyrrole oxidation and protein cross-linking as necessary steps in the development of gamma-diketone neuropathy. Chem. Res. Toxicol. 1988; I: 179–185
  • Sioussat T. M., Miller F. J., Boekelheide K. 2,5-Hexanedione-treated tubulin microinjected into sea urchin zygotes induces mitotic abnormalities. Toxicol. Appl. Pharmacol. 1990; 104: 36–46
  • Boekelheide K. 2,5-Hexanedione alters microtubule assembly. II. Enhanced polymerization of crosslinked tubulin. Toxicol. Appl. Pharmacol. 1987; 88: 383–396
  • Nelson S. D., Mitchell J. R., Timbrell J. A., Snodgrass W. R., Corcoran G. B. Isoniazid and iproniazid: Activation of metabolites to toxic intermediates in man and rat. Science 1976; 193: 901–903
  • Nelson S. D., Mitchell J. R., Snodgrass W. R., Timbrell J. A. Hepatotoxicity and metabolism of iproniazid and hydrazine. J., Pharmacol. Exp. Ther. 1978; 206: 574–585
  • Timbrell J. A. The role of metabolism in the hepatotoxicity of isoniazid and iproniazid. Drug Metab. Rev. 1979; 10: 125–147
  • Timbrell J. A., Mitchell J. R., Snodgrass W. R., Nelson S. D. Isoniazid hepatotoxicity: The relationship between covalent binding and metabolism in vivo. J. Pharmacol. Exp. Ther. 1980; 213: 364–369
  • Ravindranath V., Boyd M. R. Metabolic activation of 2-methylfuran by rat microsomal systems. Toxicol. Appl. Pharmacol. 1985; 78: 370–376
  • Ravindranath V., Boyd M. R. Effect of modulators of glutathione synthesis on the hepatotoxicity of 2-methyl-furan. Biochem. Pharmacol. 1991; 41: 1311–1318
  • Nocerini M. R., Carlson J. R., Yost G. S. Glutathione adduct formation with microsomally activated metabolites of the pulmonary alkylating and cytotoxic agent, 3-methylindole. Toxicol. Appl. Pharmacol. 1985; 81: 75–84
  • Yost G. S., Kuntz D. J., McGill L. D. Organ-selective switching of 3-methylindole toxicity by glutathione depletion. Toxicol. Appl. Pharmacol. 1990; 103: 40–51
  • Norcerini M. R., Yost G. S., Carlson J. R., Liberato D. J., Breeze R. G. Structure of the glutathione adduct of activated 3-methylindole indicates that an imine methide is the electrophilic intermediate. Drug Metab. Dispos. 1985; 13: 690–694
  • Pearson P. G., Gescher A., Harpur E. S. Hepatotoxicity of N-methylformamide in mice I. Relationship to glutathione status. Bio-chem. Pharmacol. 1987; 36: 381–384
  • Pearson P. G., Gescher A., Harpur E. S., Threadgill M. D. Hepatotoxicity of N-methylformamide in mice. 2. Covalent binding of metabolites of [l4C]-labeled JV-methylformamide to hepatic proteins. Biochem. Pharmacol. 1987; 36: 385–390
  • Kenekal S., Plopper C., Morin D., Buckpitt A. Metabolism and cytotoxicity of naphthalene oxide in the isolated perfused mouse lung. J. Pharmacol. Exp. Ther. 1991; 256: 391–401
  • D'Arcy Doherty M., Cohen G. Metabolic activation of 1-naphthol by rat liver microsomes to 1,4-naphthaquinone and covalent binding species. Biochem. Pharmacol. 1984; 33: 543–549
  • Buckpitt A. R., Bahnson L. S., Franklin R. B. Evidence that 1-naphthol is not an obligate intermediate in the covalent binding and pulmonary bronchiolar necrosis by naphthalene. Biochem. Biophys. Res. Commun. 1985; 126: 1097–1103
  • Boyd M. R. Effects of oxygen on the disposition of nitrofurantoin in intact rat lung. Drug Metab. Dispos. 1984; 12: 787–789
  • Kedderis G. L., Miwa G. T. The metabolic activation of nitrohet-erocyclic therapeutic agents. Drug Metab. Rev. 1988; 19: 33–62
  • Estep J. E., Lame M. W., Morin D., Jones A. D., Wilson D. W., Segall H. J. [14C]Monocrotaline kinetics and metabolism in the rat. Drug Metab. Dispos. 1991; 19: 135–139
  • Lame M. W., Jones A. D., Morin D., Segall H. J. Metabolism of [l4C]monocrotaline by isolated perfused rat liver. Drug Metab. Dispos. 1991; 19: 516–524
  • Mattocks A. R., Jukes R. Recovery of the pyrrolic nucleus of pyrrolizidine alkaloid metabolites from sulphur conjugates in tissues and body fluids. Chem.-Biol. Interact. 1990; 75: 225–239
  • Dryoff M. C., Neal R. A. Identification of the major protein ad-duct formed in rat liver after thioacetamide administration. Cancer Res. 1981; 41: 3430–3435
  • Dryoff M. C., Neal R. A. Studies of the mechanism of metabolism of thioacetamide 5-oxide by rat liver microsomes. Mot. Pharmacol. 1983; 23: 219–227
  • Porubek D. J., Grillo M. D., Baillie T. A. The covalent binding to protein of valproic acid and its hepatotoxic metabolite, 2-N-propyl-4-pentenoic acid, in rats and in isolated hepatocytes. Drug Metab Dispos. 1989; 17: 123–130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.