228
Views
97
CrossRef citations to date
0
Altmetric
Research Article

The Metabolism and Pharmacokinetics of Acrylamide: Implications for Mechanisms of Toxicity and Human Risk Estimation

Pages 527-590 | Published online: 22 Sep 2008

References

  • Abou-Donia M. B., Ibrahim S. M., Corcoran J. J., Lack L., Friedman M. A., Lapadula D. M. Neurotoxicity of glycidamide, an acryiamide metabolite, following intraperitoneal injections in rat. J. Toxicol. Environ. Health 1993; 39: 447–464
  • Adler I.-D. Clastogenic effects of acryiamide in different germ-cell stages of male mice. Banbury Rep. 34: Biology of Mammalian Germ Cell Mutagensis. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY 1990
  • Agrawal A. K., Seth P. K., Squibb R. E., Tilson H. A., Uphouse L. L., Bondy S. C. Neurotransmitter receptors in brain regions of acrylamide-treated rats. I. Effects of a single exposure to acryiamide. Pharmacol. Biochem. Behav 1981; 14: 527–531
  • American Cyanamid Co. Final report: A life-time oncogenicity study in rats with acryiamide. Wayne, NJ 1989, June 27, Study No. 85033
  • Bachmann M., Myers J. E., Bezuidenhout S. S. Acryiamide monomer and peripheral neuropathy in chemical workers. Am. J. Ind. Med. 1992; 21: 217–222
  • Backer L. C., Dearfield K. L., Erexson G. L., Campbell J. A., West-brook-Collins B., Allen J. W. The effect of acryiamide on mouse germ-line and somatic cell chromosomes. Environ. Mol. Mutagen 1989; 13: 218–226
  • Bailey E., Farmer P. B., Bird I., Lamb J. H., Peal J. A. Monitoring exposure to acryiamide by the determination of S-(2-carboxyethyl)cysteine in hydrolyzed hemoglobin by gas chromatography-mass spectrometry. Anal. Biochem 1986; 157: 241–248
  • Banerjee S., Segal A. In vitro transformation of C3H/10T1/ 2 and NIH/3T3 cells by acrylonitrile and acryiamide. Cancer Lett 1986; 32: 293–304
  • Barfknecht T. R., Mecca D. J., Naismith R. W. The gen-otoxic activity of acrylamide. Environ. Mol. Mutagen. 1988; 11(Suppl. 11), Abstract 18
  • Beiswager C. M., Mandella R. D., Graessle T. R., Reuhl K. R., Lowndes H. E. Synergistic neurotoxic effects of styrene oxide and acrylamide: Glutathione-independent necrosis of cerebellar granule cells. Toxicol. Appl. Pharmacol 1993; 118: 233–244
  • Beranek D. T., Weis C. C., Swenson D. H. A comprehensive quantitative analysis of methylated and ethylated DNA using high pressure liquid chromatography. Carcinogenesis 1980; 1: 595–606
  • Bergmark E. Hemoglobin dosimetry and comparative toxicity of acrylamide and its metabolite glycidamide. Thesis, University of Stockholm. 1992
  • Bergmark E., Calleman C. J., Costa L. G. Formation of hemoglobin adducts of acrylamide and its epoxide metabolite glycidamide in the rat. Toxicol. Appl. Pharmacol 1991; 111: 352–363
  • Bergmark E., Calleman C. J., He F., Costa L. G. Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicol. Appl. Pharmacol 1993; 120: 45–54
  • Brat D. J., Brimijoin S. Acrylamide and glycidamide impair neurite outgrowth in differentiating N1E.115 neuroblastoma without disturbing rapid bidirectional transport of organellas observed by video microscopy. J. Neurochem 1993; 60: 2145–2152
  • Brismar T., Hildebrand C., Tegner R. Nodes of Ranvier in acrylamide neuropathy: Voltage clamp and electron microscopic analysis of rat sciatic nerve fibres at proximal levels. Brain Res 1987; 423: 135–143
  • Broxup B., Robinson K., Losos G., Beyroudy P. Correlations between behavioral and pathological changes in the evaluation of neurotoxicity. Toxicol. Appl. Pharmacol 1989; 101: 510–520
  • Bull R. J., Robinson M., Stober J. Carcinogenic activity of acrylamide in the skin and lung of Swiss-ICR mice. Cancer Lett 1984a; 24: 209–212
  • Bull R. J., Robinson M., Laurie R. D., Stoner G. D., Greisiger E., Meier J. R., Stober J. Carcinogenic effects of acrylamide in SENCAR and A/J mice. Cancer Res 1984b; 44: 107–111
  • Butterworth B. E., Eldridge S. R., Sprankle C. S., Working P. K., Bentley K. S., Hurtt M. E. Tissue-specific genotoxic effects of acrylamide and acrylonitrile. Environ. Mol. Mutagen 1992; 20: 148–155
  • Calleman C. J. In vivo dosimetry by means of alkylated hemoglobin–a tool in die design of tests for genotoxic effects. Banbury Rep. 13: Indicators of Genotoxic Exposures. 1982; 157–168
  • Calleman C. J. Hemoglobin as a dose monitor and its application to the risk estimation of ethylene oxide. Thesis, University of Stockholm. 1984
  • Calleman C. J., Bergmark E., Costa L. G. Acrylamide is metabolized to glycidamide in the rat: Evidence from hemoglobin ad-duct formation. Chem. Res. Toxicol 1990; 3: 406–412
  • Calleman C. J., Stern L. G., Bergmark E., Costa L. G. Linear versus nonlinear models for hemoglobin adduct formation by acrylamide and its metabolite glycidamide: Implications for risk estimation. Cancer Epidemiol. Biomarkers Prev 1992; 1: 361–368
  • Calleman C. J., Bergmark E., Stern L. G., Costa L. G. A nonlinear dosimetric model for hemoglobin adduct formation by the neurotoxic agent acrylamide and its genotoxic metabolite glycidamide. Env. Health Perspect 1993; 99: 221–223
  • Calleman C. J., Wu Y., He F., Tian G., Bergmark E., Zhang S., Deng H., Wang Y., Crofton K. M., Fennell T., Costa L. G. Relationships between biomarkers of exposure and neurological effects in a group of workers exposed to acrylamide. Toxicol. Appl. Pharmacol 1994; 126: 361–367
  • Calleman C. J., He F., Bergmark E., Costa L. G. Determination of hemoglobin adducts as a tool for neurological risk estimation of human exposure to acrylamide. 1996, Manuscript
  • Carlson G. P., Fossa A. A., Morse M. A., Weaver P. M. Binding and distribution studies in the SENCAR mouse of compounds demonstrating a route-dependent tumorigenic effect. Env. Health Perspect 1986; 68: 53–60
  • Carlson G. P., Weaver P. M. Distribution and binding of 14C-acrylamide to macromolecules in SENCAR and BALB/c mice following oral and topical administration. Toxicol. Appl. Pharmacol 1985; 79: 307–313
  • Carrington C. D., Lapadula D. M., Dulak L., Friedman M., Abou-Donia M. B. In vivo binding of [14C]acrylamide to proteins in the mouse nervous system. Neurochem. Int. 1991; 18: 191–197
  • Collins J. J., Swaen G. M. H., Marsh G. M., Utidjian H. M. D., Caporossi J. C., Lucas L. J. Mortality patterns among workers exposed to acrylamide. J. Occup. Med. 1989; 7: 614–617
  • Costa L. G., Deng H., Gregotti C., Manzo L., Faustman E. M., Bergmark E., Calleman C. J. Comparative studies on the neuro- and reproductive toxicity of acrylamide and its epoxide metabolite glycidamide in the rat. Neurotoxicology 1992; 13: 219–224
  • Costa L. G., Deng H., Calleman C. J., Bergmark E. Evaluation of the neurotoxicity of glycidamide, an epoxide metabolite of acrylamide: Behavioral, neurochemical and morphological studies. Toxicology 1995; 98: 151–161
  • Dearfield K. L., Abernathy C. O., Ottley M. S., Brantner J. H., Hayes P. Acrylamide: Its metabolism, developmental and reproductive effects, genotoxicity, and carcinogenicity. Mutat. Res. 1988; 195: 45–77
  • Deng H., He F., Zhang S., Calleman C. J., Costa L. G. Quantitative measurements of vibration thresholds in healthy adults and acrylamide workers. Int. Arch. Occup. Envir. Health 1993; 65: 53–56
  • el-Din A. Y., al-Maskati H. A., Mohamed D. Y., Dairi M. G. Acrylamide as an inducer of metabolic activation system (S9) in rats. Mutat. Res. 1993; 300: 91–97
  • Dixit R., Mukhtar H., Seth P. K., Murti C. R. K. Conjugation of acrylamide with glutathione catalyzed by glutathione-S-transferase of rat liver and brain. Biochem. Pharmacol 1981; 30: 1739–1744
  • Edwards P. M. The distribution and metabolism of acrylamide and its neurotoxic analogues in rats. Biochem. Pharmacol 1975a; 4: 1277–1282
  • Edwards P. M. Neurotoxicity of acrylamide and its analogues and effects of these analogues and other agents on acrylamide neuropathy. Br. J. Ind. Med. 1975b; 32: 31–38
  • Ehrenberg L. Genetic toxicity of environmental chemicals. Acta Biol. Iugosl., Ser. F, Genetika 1974; 6: 367–398
  • EPA: Environmental Protection Agency. Final draft for drinking water criteria document on acrylamide. Office of Drinking Water, USEPA, Washington, DC 1987
  • EPA: Environmental Protection Agency. Assessment of health risks from exposure to acrylamide. Office of Toxic Substances, USEPA, Washington, DC 1990
  • EPA: Environmental Protection Agency. Integrated risk information system, acrylamide. 1992, Revised 01/01/92
  • Farmer P. B., Bailey E., Naylor S., Anderson D., Brooks A., Cushmir J., Lamb J. H., Sepai O., Tang Y.-S. Identification of endogenous electrophiles by means of mass spectrometric determination of protein and DNA adducts. Env. Health Perspect 1993; 99: 19–24
  • Frantz S. W., Dryzga N. L., Freshour N. L., Watanabe P. G. In vivo/in vitro determination of cutaneous penetration of residual monomer from polyacrylamides. Toxicologist 1985; 5, Abstract 39
  • Gibaldi M., Perrier D. Pharmacokinetics. Marcel Dekker, New York 1982; 272–277
  • Gutierrez-Espeleia G. A., Hughes L. A., Piegorsch W. W., Shelby M. D., Generoso W. M. Acrylamide: Dermal exposure produces genetic damage in male mouse germ cells. Fundam. Appl. Toxicol 1992; 18: 189–192
  • Hashimoto K., Aldridge W. N. Biochemical studies on acrylamide, a neurotoxic agent. Biochem. Pharmacol 1970; 19: 2591–2604
  • Hashimoto K., Sakamoto J., Tanii H. Neurotoxicity of acrylamide and related compounds and their effects on male gonads in mice. Arch. Toxicol 1981; 47: 179–189
  • Hashimoto K., Tanii H. Mutagenicity of acrylamide and its analogues. Salmonella typhimurium. Mutat. Res. 1985; 158: 129–133
  • Hashimoto K., Hayashi M., Tanii H., Sakamoto J. Toxi-cological aspect of acrylamide neuropathy. J. UOEH 1988; 10(Suppl.)209–218
  • Hattis D., Shapiro K. Analysis of dose/time/response relationships for chronic toxic effects: The case of acrylamide. Neuro-toxicology 1990; 11: 219–236
  • He F., Zhang S., Wang H., Li G., Zhang Z., Li F., Dong X., Hu F. Neurological and electroneuromyographic assessment of the adverse effects of acrylamide on occupationally exposed workers. Scand. J. Work Environ. Health 1989; 15: 125–129
  • Howland R. D., Ypas I. L., Lowndes H. E. The etiology of acrylamide neuropathy: Possible involvement of neuron specific enolase. Brain Res 1980; 190: 529–535
  • IARC. IARC Monographs on the Evaluation of the Carcinogenic Risk of Chemicals to Humans, No. 39. Some Chemicals Used in Plastics and Elastomers. IARC, Lyon 1986; 41–66
  • Ikeda G. J., Miller E., Sapienza P. P., Michel T. C., Inskeep P. B. Comparative tissue distribution and excretion of [l-14C]acrylamide in beagle dogs and miniature pigs. Food Chem. Toxicol 1987; 25: 871–875
  • Jakubowski M., Linhart I., Pielas G., Kopecky J. 2-Cyano-ethylmercapturic acid (CEMA) in the urine as a possible indicator of exposure to acrylonitrile. Br. J. Ind. Med. 1987; 44: 834–840
  • Johnson K. S., Gorzinski S., Bodner R., Campbell R., Wolf C., Friedman M., Mast R. Chronic toxicity and oncogenicity study on acrylamide incorporated in the drinking water of Fischer 344 rats. Toxicol. Appl. Pharmacol 1986; 85: 154–168
  • Kaplan M. L., Murphy S. D., Gilles F. H. Modification of acrylamide neuropathy in rats by selected factors. Toxicol. Appl. Pharmacol 1973; 85: 154–168
  • Kedderis G. L., Batra R. Species differences in the hydrolysis of 2-cyanoethylene oxide, the epoxide metabolite of acrylonitrile. Carcinogenesis 1993; 14: 685–689
  • King D. J., Noss R. R. Toxicity of polyacrylamide and acrylamide monomer. Rev. Environ. Health 1989; 8: 3–15
  • Knaap A. G. A. C., Kramers P. G. N., Voogd C. E., Bergkamp W. G. M., Groot M. G., Langebroek P. G., Mout H. C. A., van der Stel J. J., Verharen H. W. Mutagenic activity of acrylamide in eukaryotic systems but not in bacteria. Mutagenesis 1988; 3: 263–268
  • Kotlovsky Yu., Grishanova A., Ivanov V. V. Effect of memylmethacrylate and acrylamide on the system of microsomal oxidation in rat liver tissue. Vopr. Med. Khim 1984; 30: AA–A1
  • Lijinsky W., Andrews A. W. Mutagenicity of vinyl compounds. Salmonella typhimurium. Teratogen. Carcinogen. Mutagen 1980; 1: 259–267
  • Marlowe C., Clark M. J., Mast R. W., Friedman M. A., Waddell W. J. The distribution of [14C]acrylamide in male and pregnant Swiss-Webster mice studied by whole-body autoradiography. Toxicol. Appl. Pharmacol 1986; 86: 457–465
  • Matsuoka M., Igisu H., Lin J., Inoue N. Effects of acrylamide and NN'-methylene-bis-acrylamide on creatine kinase activity. Brain Res 1990; 507: 351–353
  • Miller M. J., Carter D. E., Sipes I. G. Pharmacokinetics of acrylamide in Fisher-344 rats. Toxicol. Appl. Pharmacol 1982; 63: 36–44
  • Miller M. J., McQueen C. The effect of acrylamide on hepatocellular DNA repair. Environ. Mutagen 1986; 8: 99–108
  • Miller M. S., Spencer P. S. The mechanism of acrylamide axonopathy. Ann. Rev. Pharmacol. Toxicol 1985; 25: 643–666
  • Moore M. M., Amtower A., Doerr C., Brock K. H., Dearfield K. L. Mutagenicity and clastogenicity of acrylamide in L5178Y mouse lymphoma cells. Environ. Mutagen 1987; 9: 261–267
  • Myers J. E., Macun I. Acrylamide neuropathy in a South African factory: An epidemiological investigation. Am. J. Ind. Med. 1991; 19: 487–493
  • Neuhäuser-Klaus A., Schmahl W. Mutagenic and teratogenic effects of acrylamide in the mammalian spot test. Mutat. Res. 1989; 226: 157–162
  • NIOSH: National Institute of Occupational Safety and Health. NIOH and NIOSH Basis for an Occupational Health Standard. Acrylamide: A Review of the Literature. Cincinnati, OH 1991, DHHS (NIOSH) Publication No. 91–115
  • Okajiwa Y., Maloney F. P. Overwork weakness in rats with acrylamide neuropathy. Am. J. Phys. Med. Rehabil 1989; 68: 66–69
  • Ortiz E., Patel J. M., Leibman K. C. Specific inactivation of aniline hydroxylase by a reactive intermediate formed during acrylamide biotransformation by rat liver microsomes. Adv. Exp. Med. Biol 1981; 136: 1221–1227
  • O'Shaugnessy D. J., Losos G. J. Comparison of central and peripheral nervous system lesions caused by high-dose short-term and low-dose subchronic acrylamide treatment in rats. Toxicol. Pathol 1986; 14: 389–394
  • Osterman-Golkar S., Ehrenberg L., Segerbäck D., Hällström I. Evaluation of genetic risks of alkylating agents. II. Haemoglobin as a dose monitor. Mutat. Res. 1976; 34: 1–10
  • Osterman-Golkar S., Farmer P. B., Segerbäck D., Bailey E., Calleman C. J., Svenson K., Ehrenberg L. Dosimetry of ethylene oxide in the rat by quantitation of alkylated histidine in hemoglobin. Teratogen. Carcinogen. Mutagen 1983; 3: 395–405
  • Osterman-Golkar S., MacNeela J. P., Turner M. J., Walker V., Swenberg J. A., Sumner S. J., Youtsey N., Fennel T. R. Monitoring of exposure to acrylonitrile using adducts with N-terminal valine in hemoglobin. Carcinogenesis 1994; 15: 2701–2707
  • Pastoor T., Heydens W., Richardson R. J. Time- and dose-related excretion of acrylamide metabolites in the urine of Fisher-344 rats. Toxicol. Lett 1980, No. 1: 215, S. I
  • Pastoor T., Richardson R. J. Blood dynamics of acrylamide in rats. Toxicologist 1981; 1: 53
  • Ramsey J. C., Young J. D., Gorzinski S. J. Acrylamide: Toxicodynamics in rats. Dow Chemical Company, Midland, MI 1984, Unpublished report
  • Raymer J. H., Sparacino C. M., Velez G. R., Padilla S., MacPhail R. C., Crofton K. M. Analysis of acrylamide in rat serum and sciatic nerve by gas chromatography/electron capture detection of the derivative, 2-bromopropenamide. J. Chromatogr. Biomed. Appl 1993; 619: 223–234
  • Russell L. B., Hunsicker P. R., Cacheiro N. L. A., Generoso W. M. Induction of specific-locus mutations in male germ cells of the mouse by acrylamide monomer. Mutat. Res. 1991; 262: 101–107
  • Sabri M. I. In vitro and in vivo inhibition of glycolytic enzymes by acrylamide. Neurochem. Pathol 1983; 1: 179–191
  • Sabri M. I. Acrylamide impairs fast and slow axonal transport in rat optic system. Neurochem. Res. 1990; 15: 603–608
  • Sakamoto J., Hashimoto K. Reproductive toxicity of acrylamide and related compounds in mice–effects on fertility and sperm morphology. Arch Toxicol 1986; 59: 201–205
  • Schoental R., Cavanagh J. B. Mechanisms involved in the “dying-back” process–an hypothesis implicating coenzymes. Neuropathol. Appl. Neurobiol 1977; 3: 145–157
  • Sega G. A., Valdivia Alcota R. P., Tancongco C. P., Brimer P. Acrylamide binding to the DNA and protamine of spermiogenic stages in the mouse and its relationship to genetic damage. Mutat. Res. 1989; 216: 221–230
  • Sega G. A., Generoso E. E., Brimer P. A. Acrylamide exposure induces a delayed unscheduled DNA synthesis in germ cells of male mice that is correlated with the temporal pattern of adduct formation in testis DNA. Environ. Mol. Mutagen 1990; 16: 137–142
  • Segerbäck D. Alkylation of DNA and hemoglobin in the mouse following exposure to ethene and ethene oxide. Chem.-Biol. Interact 1983; 45: 139–151
  • Segerbäck D., Calleman C. J., Schroeder J. L., Costa L. G., Faustman E. M. Formation of N-7-(2-carbamoyl-2-hydroxy-ethyl)guanine in DNA of the mouse and the rat following intraperitoneal administration of [14C]acrylamide. Carcinogenesis 1995; 16: 1161–1165
  • Shelby M. D., Cain K. T., Hughes L. A., Braden P. W., Generoso W. M. Dominant lethal effects of acrylamide in male mice. Mutat. Res. 1986; 173: 273–278
  • Shelby M. D., Cain K. T., Cornett C. V., Generoso W. M. Acrylamide: Induction of heritable translocations in male mice. Environ. Mutagen 1987; 9: 363–368
  • Shiraishi T. Chromosome aberrations induced by monomeric acrylamide in bone marrow and germ cells of mice. Mutat. Res. 1978; 57: 313–324
  • Smith E. A., Oehme F. W. Acrylamide and polyacrylamide: A review of production, use, environmental fate and neurotoxicity. Rev. Env. Health 1991; 9: 215–228
  • Smith M. K., Zenick H., Preston R. J., George E. L., Long R. E. Dominant lethal effects of subchronic acrylamide administration in the male Long-Evans rat. Mutat. Res. 1986; 173: 273–277
  • Snellings W. M., Weil C. S., Maronpot R. R. A two-year inhalation study of the carcinogenic potential of ethylene oxide in Fischer 344 rats. Toxicol. Appl. Pharmacol 1984; 75: 105–117
  • Sobel W., Bond G. G., Parsons T. W., Brenner F. E. Acrylamide cohort mortality study. Br. J. Ind. Med. 1986; 43: 785–788
  • Solomon J. J., Fedyk J., Mukai F., Segal A. Direct alkylation of 2′-deoxynucleosides and DNA following in vitro reaction with acrylamide. Cancer Res 1985; 45: 3465–3470
  • Srivastava S. P., Seth P. K., Das M., Mukhtar H. Effects of mixed-function oxidase modifiers on neurotoxicity of acrylamide in rats. Biochem. Pharmacol 1985; 34: 1099–1102
  • Sumner S. C. J., MacNeela J. P., Fennell T. R. Characterization and quantitation of urinary metabolites of [1,2,3−13C]acrylamide in rats and mice using 13C nuclear magnetic resonance spectroscopy. Chem. Res. Toxicol 1992; 5: 81–89
  • Svensson K., Osterman-Golkar S. Kinetics of metabolism of propene and covalent binding to macromolecules in the mouse. Toxicol. Appl. Pharmacol 1984; 73: 363–372
  • Tilson H. A. The neurotoxicity of acrylamide: An overview. Neurobehav. Toxicol. Teratol 1981; 3: 445–461
  • Tripathy N. K., Patnaik K. K., Nabi Md. J. Acrylamide is genotoxic to me somatic and germ cells of Drosophila melanogaster. Mutat Res 1991; 259: 21–27
  • Tsuda H., Shimizu C. S., Taketomi M. K., Hasegawa M. M., Hamada A., Kawata K. M., Inui N. Acrylamide: Induction of DNA damage, chromosomal aberrations and cell transformation without gene mutations. Mutagenesis 1993; 8: 23–29
  • Voogd C. E., van der Stel J. J., Jacobs J. J. J. A. A. The mutagenic action of aliphatic epoxides. Mutat. Res. 1981; 89: 269–282
  • Walum E., Odland L., Romert L., Ekblad-Sekund G., Nilsson M., Calleman C. J., Bergmark E., Costa L. G. Biochemical approaches to neurotoxicology in vitro: Attempts to develop a test system for chemically induced axonopathy. Proc. Conf. In Vitro Toxicology: An Alternative to Animal Testing. Academic Press, London 1992
  • Warr T. J., Parry J. H., Callander R. D., Ashby J. Methylvinyl sulphone: A new class of Michael-type genotoxin. Mutat. Res. 1990; 245: 191–199
  • WHO. Acrylamide. Geneva 1985, Environmental Health Criteria No. 49
  • Working P. K., Bentley K. S., Hum M., Mohr K. L. Comparison of the dominant lethal effects of acrylonitrile and acrylamide in male Fischer 344 rats. Mutagenesis 1987; 2: 215–220

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.