507
Views
14
CrossRef citations to date
0
Altmetric
Review Article

Alternative extrusion–spheronization aids

, &
Pages 1364-1376 | Received 10 May 2009, Accepted 29 Mar 2010, Published online: 03 Jun 2010

References

  • Vervaet C, Baert L, Remon JP. (1995). Extrusion–spheronization: A literature review. Int J Pharm, 116:131–46.
  • Gandhi R, Kaul CL, Panchagnula R. (1999). Extrusion and spheronization in the development of oral controlled release dosage form. Pharm Sci Technol Today, 2(4):160–9.
  • Law M, Deasy P. (1998). Use of hydrophilic polymers with microcrystalline cellulose to improve extrusion–spheronization. Eur J Pharm Biopharm, 45:57–65.
  • Kleinebudde P. (1994). Shrinking and swelling properties of pellets containing microcrystalline cellulose and low substituted hydroxypropylcellulose: II. Swelling properties. Int J Pharm, 109:221–7.
  • Schroder M, Kleinebudde P. (1995). Development of disintegrating pellets obtained from extrusion/spheronization. Pharm Sci, 1:415–18.
  • Okada S, Nakahara H, Isaka H. (1987). Adsorption of drugs on microcrystalline cellulose suspended in aqueous solutions. Chem Pharm Bull, 35:761–8.
  • Basit AW, Newton JM, Lecey LF. (1999). Formulation of ranitidine pellets by extrusion/spheronization with a little and with no microcrystalline cellulose. Pharm Dev Technol, 4:499–505.
  • Liew CV, Josephine LG, Soh LP, Heng PW. (2005). Functionality of cross-linked polyvinylpyrrolidone as a spheronization aid: A promising alternative to microcrystalline cellulose. Pharm Res, 22:1387–98.
  • International specialty products, Technical profile: Crospovidone.
  • Gordon MS, Chowhan ZT. (1987). Effect of tablet solubility and hygroscopicity on disintegrant efficiency in direct compression tablets in terms of dissolution. J Pharm Sci, 76:907–9.
  • Gordon MS, Rudraraju VS, Dani K, Chowhan ZT. (1993). Effect of the mode of super disintegrant incorporation on dissolution in wet granulated tablets. J Pharm Sci, 82:220–6.
  • Rudnic EM, Lausier JM, Chilamkurti RN, Rhodes CT. (1980). Studies of the utility of cross linked polyvinylpolypyrrolidine as a tablet disintegrant. Drug Dev Ind Pharm, 6:291–309.
  • Schiermeier S, Schmidt PC. (2002). Fast dispersible ibuprofen tablets. Eur J Pharm Sci, 15(3):295–305.
  • Fielden KE, Newton JM, O'Brien P, Rowe RC. (1988). Thermal studies of the interaction of water and microcrystalline cellulose. J Pharm Pharmacol, 40:674–8.
  • Coviello T, Matricardi P, Marianecci C, Alhaique F. (2007). Polysaccharide hydrogels for modified release formulations. J Control Release, 119:5–24.
  • Rowe RC, Sheskey PJ, Weller PJ. (2003). Carrageenan. In: Handbook of pharmaceutical excipients. 4th ed. Washington, DC: Pharmaceutical Press, 101–3.
  • USP 29. (2005). Carrageenan. The United States Pharmacopoeia, The United States Pharmacopoeial Convention, 3303–4.
  • Bubnis W, O'Hare K, Reilly WA. (1997). Low moisture hydrocolloid soft chewable gel delivery system. Pharm Res, 14(11):525.
  • Cuzzocrea S, Mazzon E, Sautebin L. (2002). Protective effects of Celecoxib on lung injury and red blood cells modification induced by carrageenan in the rat. Biochem Pharmacol, 63(4):785–95.
  • Manni L, Lundeberg T, Tirassa P, Aloe L. (2002). Role of cholecystokinin-8 in nerve growth factor and nerve growth factor in mRNA expression in carrageenan-induced joint inflammation in adult rats. Rheumatology (Oxford), 41(7):787–92.
  • Bornhoft M, Thommes M, Kleinebudde P. (2005). Preliminary assessment of carrageenan as excipient for extrusion/spheronization. Eur J Pharm Biopharm, 59:127–31.
  • Thommes M, Blaschek W, Kleinebudde P. (2007). Effect of drying on extruded pellets based on ĸ–carrageenan. Eur J Pharm Sci, 31:112–18.
  • Thommes M, Kleinebudde P. (2006). Use of ĸ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronization. I. Influence of type and fraction of filler. Eur J Pharm Biopharm, 63:59–67.
  • Thommes M, Kleinebudde P. (2006). Use of ĸ-carrageenan as alternative pelletisation aid to microcrystalline cellulose in extrusion/spheronization. II. Influence of drug and filler type. Eur J Pharm Biopharm, 63:68–75.
  • USP 29. (2005). Pectin. The United States Pharmacopoeia, The United States Pharmacopoeial Convention, 1647–8.
  • Itoh K, Kubo W, Fujiwara M, Hirayama T, Miyazaki S, Dairaku M, . (2006). The influence of variation of gastric pH on the gelation and release characteristics of in situ gelling pectin formulations. Int J Pharm, 312:37–42.
  • Itoh K, Kubo W, Fujiwara M, Watanabe H, Miyazaki S, Attwood D. (2006). The influence of gastric acidity and taste masking agent on in situ gelling pectin formulations for oral sustained delivery of acetaminophen. Biol Pharm Bull, 29:343–47.
  • Kubo W, Itoh K, Miyazaki S, Attwood D. (2005). Oral sustained delivery of theophylline and cimetidine from in situ gelling pectin formulations in rabbits. Drug Dev Ind Pharm, 31:819–25.
  • Hiorth M, Versland T, Heikkilae J, Tho I, Sande SA. (2006). Immersion coating of pellets with calcium pectinate and chitosan. Int J Pharm, 308:25–32.
  • Pillay V, Danckwerts MP, Fassihi R. (2002). A crosslinked calcium-alginate–pectinate–cellulose acetophthalate gelisphere system for linear drug release. Drug Deliv, 9(2):77–86.
  • Aydin Z, Akbuga J. (1996). Preparation and evaluation of pectin beads. Int J Pharm, 137:133–6.
  • Chambin O, Dupuis G, Champion D, Voilley A, Pourcelot Y. (2006). Colon specific drug delivery: Influence of solution reticulation properties upon pectin bead performance. Int J Pharm, 321:86–93.
  • Tho I, Sande SA, Kleinebudde P. (2002). Pectinic acid, a novel excipient for production of pellets by extrusion/spheronization: Preliminary studies. Eur J Pharm Biopharm, 54:95–9.
  • Tho I, Sande SA, Kleinebudde P. (2003). Disintegrating pellets from a water-insoluble pectin derivative produced by extrusion/spheronization. Eur J Pharm Biopharm, 56:371–80.
  • Tho T, Kleinebudde P, Sande SA. (2001). Extrusion/spheronization of pectin-based formulations. I. Screening of important factors. AAPS PharmSciTech, 2(4):26.
  • Rowe RC, Sheskey PJ, Weller PJ. (2003). Hypromellose. In: Handbook of pharmaceutical excipients, 4th ed. Washington, DC: Pharmaceutical Press, 297–300.
  • Hardy JG, Kennerley JW, Taylor MJ. (1982). Release rates from sustained release buccal tablets in man. J Pharm Pharmacol, 34 (Suppl.):91P.
  • Hogan JE. (1989). Hydroxypropylmethylcellulose sustained release technology. Drug Dev Ind Pharm, 15:975–99.
  • Shah AC, Britten NJ, Olanoff LS, Badalamenti JN. (1989). Gel-matrix systems exhibiting bimodal controlled release for oral delivery. J Control Release, 9:169–75.
  • Wilson HC, Cuff GW. (1989). Sustained release of isomazole from matrix tablets administered to dogs. J Pharm Sci, 78:582–4.
  • Dahl TC, Calderwood T, Bormeth A. (1990). Influence of physicochemical properties of hydroxypropylmethylcellulose on naproxen release from sustained release matrix tablets. J Control Release, 14:1–10.
  • Rowe RC, Sheskey PJ, Weller PJ. (2003). Hydroxy ethylcellulose. In: Handbook of pharmaceutical excipients, 4th ed. Washington, DC: Pharmaceutical Press, 283–6.
  • Kovacs B, Merenyi G. (1990). Evaluation of tack behaviour of coating solutions. Drug Dev Ind Pharm, 16(15):2302–23.
  • Chatlapalli R, Rohera BD. (1998). Physical characterization of HPMC and HEC and investigation of their use as pelletisation aids. Int J Pharm, 161:179–93.
  • USP 29. (2005). Polyethylene oxide. The United States Pharmacopoeia, The United States Pharmacopoeial Convention, 3398–9.
  • DOW chemical company, Technical profile, Poly (ethyleneoxide).
  • Cappello B, Rosa GD, Giannini L, Rotonda MIL, Mensitieri G, Miro A, . (2006). Cyclodextrin-containing poly (ethyleneoxide) tablets for the delivery of poorly soluble drugs: Potential as buccal delivery system. Int J Pharm, 319:63–70.
  • El-Malah Y, Nazzal S. (2006). Hydrophilic matrices: Application of Placket-Burman screening design to model the effect of POLYOX— carbopol blends on drug release. Int J Pharm, 309:163–70.
  • Shenoy DB, Amiji MM. (2005). Poly (ethyleneoxide) modified poly (ϵ-caprolactone) nanoparticles for targeted delivery of tamoxifen in breast cancer. Int J Pharm, 293:261–70.
  • Efentakis M, Koligliati S, Vlachou M. (2006). Design and evaluation of dry coated drug delivery system with an impermeable cup, swellable top layer and pulsatile release. Int J Pharm, 311:147–56.
  • Chien TY, Nuessle NO. (1985). Factors influencing migration during spheronisation. Pharm Technol, 9:42–6.
  • Howard MA, Neau SH, Sack MJ. (2006). PEO and MPEG in high drug load extruded and spheronised beads that are devoid of MCC. Int J Pharm, 307:66–76.
  • Rama M, Saripella KK, Neau SH. (2010). Use of coarse ethylcellulose and PEO in beads produced by extrusion–spheronization. Int J Pharm, 385:53–65.
  • Junnila R, Palviainen P, Heinämäki J, Myllärinen P, Forssell P, Yliruusi J. (2000). Waxy corn starch: A potent cofiller in pellets produced by extrusion-spheronization. Pharm Dev Technol, 5:67–76.
  • Almeida S, Prieto J, Mendez B, Espinar O. (2005). Starch – dextrin mixtures as base excipients for extrusion-spheronization pellets. Eur J Pharm Biopharm, 59:511–21.
  • Dukic A, Mens R, Adriaensens P, Foreman P, Gelan J, Remon JP, . (2007). Development of starch-based pellets via extrusion/spheronization. Eur J Pharm Biopharm, 66:83–94.
  • Chui CW, Henley M, Paul A. (1994). Process for making amylase resistant starch from high amylose starch. US patent no. 5281276, January 25.
  • Dukic A, Remon JP, Foreman P, Vervaet C. (2007). Immediate release of poorly soluble drugs from starch based pellets prepared via extrusion/spheronisation. Eur J Pharm Biopharm, 67:715–24.
  • Dukic A, De Beer T, Remon JP, Baeyens W, Foreman P, Vervaet C. (2008). In-vitro and in-vivo evaluation of enteric coated starch based pellets prepared via extrusion/spheronization. Eur J Pharm Biopharm, 70:302–12.
  • Levis SR, Deasy PB. (2001). Pharmaceutical applications of size reduced grades of surfactant co-processed microcrystalline cellulose. Int J Pharm, 230:25–33.
  • Levis SR, Deasy PB. (2001). Production and evaluation of size reduced grades of microcrystalline cellulose. Int J Pharm, 213:13–24.
  • Podczeck F, Knight PE, Newton JM. (2008). The evaluation of modified microcrystalline cellulose for the preparation of pellets with high drug loading by extrusion/spheronization. Int J Pharm, 350:145–54.
  • Lindner H, Kleinebudde P. (1994). Use of powdered cellulose for the production of pellets by extrusion/spheronization. J Pharm Pharmacol, 46:2–7.
  • Alvarez L, Concheiro A, Gomez-Amoza JL, Souto C, Martinez-Pacheco R. (2003). Powered cellulose as excipient for extrusion–spheronization pellets of a cohesive hydrophobic drug. Eur J Pharm Biopharm, 55:291–5.
  • El Saleh F, Jumma M, Hassan I, Kleinebudde P. (2000). Influence of cellulose type on the properties of extruded pellets. Part II. Production and properties of pellets. STP Pharm Sci, 10:379–85.
  • Fechner PM, Wartewig S, Futing M, Heilmann A, Neubert RHH, Kleinebudde P. (2003). Properties of microcrystalline cellulose and powder cellulose after extrusion/spheronization as studies by fourier transform Raman spectroscopy and environmental scanning electron microscopy. AAPS PharmSciTech, 5(4), article 31.
  • Newton JM, Boutel S, Chatchawalsaisin J, Podczeck F. (2004). The preparation of spherical granules by extrusion/spheronization without microcrystalline cellulose. Pharm Technol Eur, 16(10):21–5.
  • Chatchawalsaisin J, Podczeck F, Newton JM. (2005). The preparation by extrusion/spheronization and the properties of pellets containing drugs, microcrystalline cellulose and glyceryl monostearate. Eur J Pharm Sci, 24:35–48.
  • Montousse C, Pruvost M, Rodriguez F, Brossard C. (1999). Extrusion–spheronization manufacture of Gelucire® matrix beads. Drug Dev Ind Pharm, 25(1):75–80.
  • Dupont G, Flament MP, Leterme P, Farah N, Gayot A. (2002). Developing a study method for producing 400 μm spheroids. Int J Pharm, 247:159–65.
  • Flament MP, Dupont G, Leterme P, Farah N, Gayot A. (2004). Development of 400 μm pellets by extrusion–spheronization: Application with Gelucire® 50/02 to produce a sprinkle form. Drug Dev Ind Pharm, 30(1):43–51.
  • Rowe RC, Sheskey PJ, Weller PJ. (2003). Chitosan. In: Handbook of pharmaceutical excipients. 4th ed. Washington, DC: Pharmaceutical Press, 132–5.
  • Yomota C, Miyazaki T, Okada S. (1994). Sustained-release effect of the direct compressed tablet based on chitosan and Na alginate. Yakugaku Zasshi, 114:257–63.
  • Errington N, Harding SE, Varum KM, Illum L. (1993). Hydrodynamic characterization of chitosans varying in degree of acetylation. Int J Biol Macromol, 15:113–7.
  • He P, Davis SS, Illum L. (1999). Chitosan microspheres prepared by spray drying. Int J Pharm, 187:53–65.
  • Hejazi R, Amiji M. (2002). Stomach-specific anti-H. Pylori therapy. I: Preparation and characterisation of tetracycline-loaded chitosan microspheres. Int J Pharm, 235:87–94.
  • Sakkinen M, Seppala U, Heinanen P, Marvola M. (2002). In vitro evaluation of microcrystalline chitosan as gel-forming excipient in matrix granules. Eur J Pharm Biopharm, 54:33–40.
  • Berthold A, Cremer K, Kreuter J. (1996). Preparation and characterization of chitosan microspheres as drug carrier for prednisolone sodium phosphate as model for anti-inflammatory drugs. J Control Release, 39:17–25.
  • Hoffmann HR, Asmussen B, Schnellzer F. (1999). Pellets auf der Basis von Chitosan. Patent DE 199/40795 A1.
  • Tapia C, Buckton G, Newton JM. (1993). Factors influencing the mechanism of release from sustained release matrix pellets, produced by extrusion/spheronisation. Int J Pharm, 92:211–8.
  • Steckel H, Mindermann-Nogly F. (2004). Production of chitosan pellets by extrusion/spheronisation. Eur J Pharm Biopharm, 57:107–14.
  • Chatchawalsaisin J, Podczeck F, Newton JM. (2004). The influence of chitosan and sodium alginate and formulation variables on the formation and drug release from pellets prepared by extrusion/spheronisation. Int J Pharm, 275:41–60.
  • Santos H, Veiga F, Pina M, Podczeck F, Sausa J. (2002). Physical properties of chitosan pellets produced by extrusion–spheronisation: Influence of formulation variables. Int J Pharm, 246:153–69.
  • Agrawal AM, Manek RV, Kolling WM, Neau SH. (2004). Water distribution studies within microcrystalline cellulose and chitosan using differential scanning calorimetry and dynamic vapour sorption analysis. J Pharm Sci, 93(7):1766–79.
  • Agrawal AM, Howard MA, Neau SH. (2004). Extruded and spheronized beads containing no microcrystalline cellulose: Influence of formulation and process variables. Pharm Dev Technol, 9(2):197–217.
  • Charoenthai N, Kleinebudde P, Puttipipatkhachorn S. (2007). Influence of chitosan type on the properties of extruded pellets with low amount of microcrystalline cellulose. AAPS PharmSciTech, 8(3), article 64.
  • Jess K, Steckel H. (2007). The extrusion spheronization of chitosan. Pharm Technol Eur, 19(7):21–8.
  • Charoenthai N, Kleinebudde P, Puttipipatkhachorn S. (2007). Use of chitosan-alginate as alternate pelletization aid to microcrystalline cellulose in extrusion/spheronization. J Pharm Sci, 96(9):2469–84.
  • Clare K. (1993). Algin. In: Whistler RS, BeMiller JN, eds. Industrial gums. New York: Academic Press, 105–43.
  • Grant GT, Morris ER, Rees DA, Smith PJ, Thom D. (1973). Biological interaction between polysaccharides and divalent cations: The egg-box model. FEBS Lett, 32:195–8.
  • Sriamornsak P, Nunthanid J, Luangtana-Anan M, Puttipipatkhachorn S. (2007). Alginates based pellets prepared by extrusion/spheronisation: A preliminary study on the effect of additive in granulating liquid. Eur J Pharm Biopharm, 67:227–35.
  • Sriamornsak P, Nunthanid J, Luangtana-Anan M, Weerapol Y, Puttipipatkhachorn S. (2008). Alginates based pellets prepared by extrusion/spheronization: Effect of the amount and type of sodium alginate and calcium salts. Eur J Pharm Biopharm, 69:274–84.
  • Challa R, Ahuja A, Ali J, Khar RK. (2005). Cyclodextrin in drug delviery: An updated review. AAPS PharmSciTech, 6(2), article 43.
  • Szejtli J. (1991). Cyclodextrin in drug formulations: Part I. Pharm Technol Int, 3:15–23.
  • Villar-López ME, Nieto-Reyes L, Anguiano-Igea S, Otero-Espinar FJ, Blanco-Méndez J. (1999). Formulation of triamcinolone acetonide pellets suitable for coating and colon targeting. Int J Pharm, 179:229–35.
  • Gainotti A, Bettini R, Gazzaniga A, Colombo P, Giordano F. (2004). Drug β-cyclodextrin containing pellets prepared with high shear mixer granulator. Drug Dev Ind Pharm, 30:1061–8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.