247
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Preparation and characterization of progesterone dispersions using supercritical carbon dioxide

, , , , , & show all
Pages 458-469 | Received 10 May 2012, Accepted 16 Jan 2013, Published online: 18 Feb 2013

References

  • Elshafie MA, Ewies AA. Transdermal natural progesterone cream for postmenopausal women: inconsistent data and complex pharmacokinetics. J Obstet Gynaecol 2007;27:655–9
  • Leonetti HB, Longo S, Anasti JN. Transdermal progesterone cream for vasomotor symptoms and postmenopausal bone loss. Obstet Gynecol 1999;94:225–8
  • BP. The British pharmacopoeia: progesterone. London: TSO Publishers; 1998
  • Sundeep S, Squillante E. Solid dispersion of carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm 2004;272:1–10
  • Kikic I, Lora M, Bertucco A. A thermodynamic analysis of three-phase equilibria in binary and ternary systems for applications in rapid expansion of a supercritical solution (RESS), particles from gas-saturated solutions (PGSS), and supercritical antisolvent (SAS). Ind Eng Chem Res 1997;36:5507–15
  • Nienhaus B. Micronising polyether imide-producing PEI particles by the PGSS™ process. Kunstst-Plast Eur 2001;91:82
  • Weidner E, Knez Z, Novak Z. Particles from Gas Saturated Solutions [PGSS] – a new process for powder generation. The 3rd International Symposium on Supercritical Fluids; 1994; Stransbourg, France
  • Sundeep S, Emilio S. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci 2002;91:1948–57
  • Sundeep S, Emilio S. In vitro–in vivo evaluation of supercritical processed solid dispersions: permeability and viability assessment in Caco-2 Cells. J Pharm Sci [College of Pharmacy and Allied Health Professions, St. John’s University, 8000 Utopia Parkway, Jamaica, New York 11439] 2004;93:2985
  • Gosselin P, Lacasse FX, Preda M, et al. Physicochemical evaluation of carbamazepine microparticles produced by the rapid expansion of supercritical solutions and by spray-drying. Pharm Dev Technol 2003;8:11–20
  • Bristow S, Shekunov T, Shekunov BYu, York P. Analysis of the supersaturation and precipitation process with supercritical CO2. J Supercrit Fluids 2001;21:257–71
  • Sundeep S. In vitro–in vivo evaluation of carbamazepine solid dispersions formulated by supercritical and conventional solvent evaporation method. New York: St. John’s University; 2006
  • Rogers TL, Johnston KP, Williams RO. Solution-based particle formation of pharmaceutical powders by supercritical or compressed fluid CO2 and cryogenic spray-freezing technologies. Drug Dev Ind Pharm 2001;27:1003–15
  • de Sousa ARS, Calderone M, Rodier E, et al. Solubility of carbon dioxide in three lipid-based biocarriers. J Supercrit Fluids 2006;39:13–19
  • Hu J, Johnston KP, Williams RO. Nanoparticle engineering processes for enhancing the dissolution rates of poorly water soluble drugs. Drug Dev Ind Pharm 2004;30:233–45
  • Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci 1997;86:885–90
  • Bungert B, Sadowski G, Arlt W. New processes with compressed gases. Innovative Verfahren mit komprimierten Gasen 1997;69:298–311
  • Karanth H, Shenoy V, Murthy R. Industrially feasible alternative approaches in the manufacture of solid dispersions: a technical report. AAPS PharmSciTech 2006;7:1–8 , Article 87
  • Kadimi U, Balasubramanian DR, Ganni UR, et al. In vitro studies on liposomal amphotericin B obtained by supercritical carbon dioxide-mediated process. Nanomed Nanotechnol Biol Med 2007;3:273–80
  • Jannin J, Musakhanian J, Marchaud D. Approaches for the development of solid and semi-solid lipid-based formulations. Adv Drug Delivery 2008;60:734–46
  • Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 2006;20:179–219
  • Knez Z, Weidner E. Particles formation and particle design using supercritical fluids. Curr Opin Solid State Mater Sci 2003;7:353–61
  • Marr R, Gamse T. Use of supercritical fluids for different processes including new developments – a review. Chem Eng Process 2000;39:19–28
  • Stanton LA, Dehghani F, Foster NR. Improving drug delivery using polymers and supercritical fluid technology. Aust J Chem 2002;55:443–7
  • Nandi I, Bateson M, Bari M, Joshi HN. Synergistic effect of PEG-400 and cyclodextrin to enhance solubility of progesterone. AAPS PharmSciTech 2003;4:1–5
  • Lauroyl polyoxylglycerides (new monograph official January 1, 2011). U.S. Pharmacopeia. 2009 [cited 15 June 2009]. Available from:   http://wwwpharmacopeia.cn/v29240/usp29nf24s0_m44359.html [last accessed 27 March 2011]
  • Adamskaa KV, Voelkel A, Héberger K. Selection of solubility parameters for characterization of pharmaceutical excipients. J Chromatogr A 2007;1171:90–7
  • Li J, Yang B, Levons J, et al. Phase behavior of TPGS–PEG400/1450 systems and their application to liquid formulation: a formulation platform approach. J Pharm Sci 2011;100:4907–21
  • Yu l, Bridgers A, Polli J, et al. Vitamin-E-TPGS increases absorption flux of an HIV protease inhibitor by enhancing its solubility and permeability. Pharm Res 1999;16:1812–17
  • Jannin V. Lauroyl polyoxylglycerides, functionalized coconut oil, enhancing the bioavailability of poorly soluble active substances. Oléagineux, Corps Gras, Lipides (OCL): NUTRITION – SANTÉ 2009;16:267–72
  • Alessi P, Cortesi A, Kikic I, et al. Particle production of steroid drugs using supercritical fluid processing. Ind Eng Chem Res 1996;35:4718–26
  • Engelhardt HL, Jurs PC. Prediction of supercritical carbon dioxide solubility of organic compounds from molecular structure. J Chem Inf Comput Sci 1997;37:478–84
  • Favareto R, Cabral VF, Corazza ML, Cardozo-Filho L. Vapor–liquid and solid–fluid equilibrium for progesterone + CO2, progesterone + propane, and progesterone + n-butane systems at elevated pressures. J Supercrit Fluids 2008;45:161–70
  • Damian F, Blaton N, Naesens L, et al. Physicochemical characterization of solid dispersions of the antiviral agent UC-781 with polyethylene glycol 6000 and Gelucire 44/14. Eur J Pharm Sci 2000;10:311–22
  • Moneghini M, Kikic I, Voinovich D, et al. Processing of carbamazepine–PEG 4000 solid dispersions with supercritical carbon dioxide: preparation, characterisation, and in vitro dissolution. Int J Pharm 2001;222:129–38
  • Sihvonen M, Jarvenpaa E, Hietaniemi V, Huopalahti R. Advance in supercritical carbon dioxide technologies. Trends Food Sci Technol 1999;10:217–22
  • Jung J, Perrut M. Part 3: particles from gas-saturated solutions/suspesions (PGSS). J Supercrit Fluids 2001;20:179–219
  • Meterc D, Petermann M, Weidner E. Drying of aqueous green tea extracts using a supercritical fluid spray process. J Supercrit Fluids 2008;45:253–9
  • Wang F, Wachter JA, Antosz FJ, Berglund KA. An investigation of solvent-mediated polymorphic transformation of progesterone using in situ Raman spectroscopy. Process Res Dev 2000;4:391–5
  • Muramatsu M, Iwahashi M, Takeuchi U. Thermodynamic relationship between alpha- and beta-forms of crystalline progesterone. J Pharm Sci 1979;68:175–7
  • Duclos R, Saiter JM, Grenet J, Orecchioni AM. Polymorphism of progesterone: influence of the carrier and of the solid dispersion manufacturing processes: a calorimetric and radio crystallographic study. J Therm Anal 1991;37:1869–75
  • Zoppetti G, Puppini N, Ospitali F, Fini A. Solid state characterization of progesterone in a freeze dried 1:2 progesterone/HPBCD mixture. J Pharm Sci 2007;96:1729--36
  • Nagarajan S, Sudhakar S, Srinivasan KSV. Poly(ethy1ene glycol) block copolymers by redox process: kinetics, synthesis and characterization. Pure App Chem 1998;70:1245–8
  • Zhanga Z, Feng S-S. Nanoparticles of poly(lactide)/vitamin E TPGS copolymer for cancer chemotherapy: synthesis, formulation, characterization and in vitro drug release. Biomaterials 2006;27:262–70
  • Venkatesh DN, Sangeetha S, Samanta MK, et al. Dissolution enhancement of domperidone using water soluble carrier by solid dispersion technology. Int J Pharm Sci Nanotechnol 2008;1:221–6
  • Rodrigues M, Peiriço N, Matos H, et al. Microcomposites theophylline/hydrogenated palm oil from a PGSS process for controlled drug delivery systems. J Supercrit Fluids 2004;29:175–84
  • de Paz E, Martína A, Duarte CMM, Cocero MJ. Formulation of β-carotene with poly-(ε-caprolactones) by PGSS process. Powder Technol 2012;217:77–83
  • Varona S, Kareth S, Cocero MJ. Encapsulation of essentials oils using biopolymers for their use in ecological agriculture. International Symposium on Supercritical Fluids Arcachon; 2009; France
  • Sheu M-T, Yeh C-M, Sokoloski TD. Characterization and dissolution of fenofibrate solid dispersion systems. Int J Pharm 1994;103:137–46
  • Linstrom PJ, Mallard WG. NIST Chemistry WebBook. U.S. Secretary of Commerce; 2005. Available from: http://webbook.nist.gov/chemistry/ [last accessed 19 July 2010]
  • Pasquali I, Comi L, Pucciarelli F, Bettini R. Swelling, melting point reduction and solubility of PEG 1500 in supercritical CO2. Int J Pharm 2007;356:76–81
  • Shinozaki H, Oguchi T, Suzuki S, et al. Micronization and polymorphic conversion of tolbutamide and barbital by rapid expansion of supercritical solutions. Drug Dev Ind Pharm 2006;32:877–91
  • Beach S, Latham D, Sidgwick C, et al. Control of the physical form of salmeterol xinafoate. Org Process Res Dev 1999;3:370–6
  • Funami E, Taki K, Ohishima M. Density measurement of polymer/CO2 single-phase solution at high temperature and pressure using a gravimetric method. J Appl Polym Sci 2007;105:3060–8
  • Guadagno T, Kazarian SG. High-pressure CO2-expanded solvents: simultaneous meansurement of CO2 sorption and swelling of liquid polymers with in situ near-IR spectroscopy. J Phys Chem B 2004;108:13995–9
  • Kazarian SG. Polymer processing with supercritical fluids. Polym Sci Ser C 2000;42:78–101
  • Ford JL, Rubinstein MH. Phase equilibria and dissolution rates of indomethacin-polyethylene glycol 6000 solid dispersions. Pharm Acta Helv 1978;53:327–32
  • Khoo S-M, Porter CJH, Charman WN. The formulation of Halofantrine as either non-solubilising PEG 6000 or solubilising lipid based solid dispersions: physical stability and absolute bioavailability assessment. Int J Pharm 2000;205:65–78
  • Van den Mooter G, Augustijns P, Blaton N, Kinget R. Physico-chemical characterization of solid dispersions of temazepam with polyethylene glycol 6000 and PVP K30. Int J Pharm 1998;164:67–80
  • Harris JM. Poly(ethylene glycol) chemistry: biotechnical and biomedical applications. New York: Plenum Press; 1992
  • Guyot M, Fawaz F, Bildet J, et al. Physicochemical characterization and dissolution of norfloxacin/cyclodextrin inclusion compounds and PEG solid dispersions. Int J Pharm 1995;123:53–63
  • Dordunoo SK, Ford JL, Rubinstein MH. Preformulation studies on solid dispersions containing triamerene or temazepam in polyethylene glycols or gelucire 44/14 for liquid filling hard gelatin capsules. Drug Dev Ind Pharm 1991;17:1685–713

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.