1,178
Views
78
CrossRef citations to date
0
Altmetric
Review Article

Physicochemical characterization techniques for solid lipid nanoparticles: principles and limitations

, &
Pages 1565-1575 | Received 26 Nov 2013, Accepted 24 Mar 2014, Published online: 25 Apr 2014

References

  • Davis SS, Washington C, West P, et al. Lipid emulsions as drug delivery systems. Ann N Y Acad Sci 1987;507:75–88
  • Collins-Gold LC, Lyons RT, Bartholow LC. Parenteral emulsions for drug delivery. Adv Drug Deliv Rev 1990;5:189–208
  • Washington C. Stability of lipid emulsions for drug delivery. Adv Drug Deliv Rev 1996;20:131–45
  • Prankerd RJ, Stella VJ. The use of oil-in-water emulsions as a vehicle for parenteral drug administration. J Parenter Sci Technol 1990;44:139–49
  • Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007;4:297–305
  • Couvreur P, Dubernet C, Puisieux F. Controlled drug delivery with nanoparticles: current possibilities and future trends. Eur J Pharm Biopharm 1995;41:2–13
  • Soppimath KS, Aminabhavi TM, Kulkarni AR, Rudzinski WE. Biodegradable polymeric nanoparticles as drug delivery devices. J Control Release 2001;70:1–20
  • Sussman E, Clark M, Shastri VP. Functionalized polymeric nanoparticles. MRS Proceedings. Cambridge, UK: Cambridge University Press; 2004:M12–19
  • Smith A. Evaluation of poly (lactic acid) as a biodegradable drug delivery system for parenteral administration. Int J Pharm 1986;30:215–20
  • Liu J, Gong T, Wang C, et al. Solid lipid nanoparticles loaded with insulin by sodium cholate-phosphatidylcholine-based mixed micelles: preparation and characterization. Int J Pharm 2007;340:153–62
  • Yatvin MB, Parks DW, McClard RW, et al. Covalent lipid-drug conjugates for drug targeting. U.S. Patent No. 5,149,794. 22 September 1992
  • Fundarò A, Cavalli R, Bargoni A, et al. Non-stealth and stealth solid lipid nanoparticles (SLN) carrying doxorubicin: pharmacokinetics and tissue distribution after i.v. administration to rats. Pharmacol Res 2000;42:337–43
  • Gasco M, Antonelli PL. Method for producing solid lipid microspheres having a narrow size distribution. Maria R. Gasco, Torino, Italy; US 5250236 A;1993:1–4
  • Zur Mühlen A, Schwarz C, Mehnert W. Solid lipid nanoparticles (SLN) for controlled drug delivery – drug release and release mechanism. Eur J Pharm Biopharm 1998;45:149–55
  • Müller RH, Lucks JS. Arzneistoffträger aus festen Lipidteilchen – Feste Lipid Nanosphären (SLN). Germanny; 0605497; 1996
  • Takagi T. Electrophoretic light scattering. Electrophoresis 1993;14:1255–6
  • Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery – a review of the state of the art. Eur J Pharm Biopharm 2000;50:161–77
  • Yang SC, Lu LF, Cai Y, et al. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain. J Control Release 1999;59:299–307
  • Abuasal B, Lucas C, Peyton B, et al. Enhancement of intestinal permeability utilizing solid lipid nanoparticles increases γ-tocotrienol oral bioavailability. Lipids 2012;47:461–9
  • Hu L, Tang X, Cui F. Solid lipid nanoparticles (SLNs) to improve oral bioavailability of poorly soluble drugs. J Pharm Pharmacol 2004;56:1527–35
  • Seyfoddin A, Shaw J, Al-Kassas R. Solid lipid nanoparticles for ocular drug delivery. Drug Deliv 2010;17:467–89
  • Schäfer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007;59:427–43
  • Same T, Müller RH, Mehnert W, et al. Solid lipid nanoparticles (SLN): an alternative colloidal carrier system for controlled drug delivery. Eur J Pharm Biopharm 1995;41:62–9
  • Schwarz C, Mehnert W, Lucks JS, Miiller RH. Solid lipid nanoparticles (SLN) for controlled drug delivery. I. Production, characterization and sterilization. J Control Release 1994;30:83–96
  • Mehnert W, Mäder K. Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 2001;47:165–96
  • Bunjes H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J Pharm Pharmacol 2010;62:1637–45
  • Hu H, Liu D, Zhao X, et al. Preparation, characterization, cellular uptake and evaluation in vivo of solid lipid nanoparticles loaded with cucurbitacin B. Drug Dev Ind Pharm 2013;39:770–9
  • Yucel U, Elias RJ, Coupland JN. 6 Emulsions, nanoemulsions and solid lipid nanoparticles as delivery systems in foods. Food Ind Bioprod Bioprocess 2012;167:146–54
  • Montana G, Bondì ML, Carrotta R, et al. Employment of cationic solid-lipid nanoparticles as RNA carriers. Bioconjug Chem 2007;18:302–8
  • Delgado D, Gascón AR, Del Pozo-Rodríguez A, et al. Dextran-protamine-solid lipid nanoparticles as a non-viral vector for gene therapy: in vitro characterization and in vivo transfection after intravenous administration to mice. Int J Pharm 2012;425:35–43
  • Ma B, Zhang S, Jiang H, et al. Lipoplex morphologies and their influences on transfection efficiency in gene delivery. J Control Release 2007;123:184–94
  • Del Pozo-Rodríguez A, Pujals S, Delgado D, et al. A proline-rich peptide improves cell transfection of solid lipid nanoparticle-based non-viral vectors. J Control Release 2009;133:52–9
  • Yang R, Gao R, Li F, et al. The influence of lipid characteristics on the formation, in vitro release, and in vivo absorption of protein-loaded SLN prepared by the double emulsion process. Drug Dev Ind Pharm 2011;37:139–48
  • Zhang N, Ping Q, Huang G, et al. Lectin-modified solid lipid nanoparticles as carriers for oral administration of insulin. Int J Pharm 2006;327:153–9
  • Almeida AJ, Runge S, Müller RH. Peptide-loaded solid lipid nanoparticles (SLN): influence of production parameters. Int J Pharm 1997;149:255–65
  • Li P, Nielsen HM, Müllertz A. Oral delivery of peptides and proteins using lipid-based drug delivery systems. Exp Opinion Drug Deliv 2012;9:1289–304
  • Martins S, Tho I, Ferreira DC, et al. Physicochemical properties of lipid nanoparticles: effect of lipid and surfactant composition. Drug Dev Ind Pharm 2011;37:815–24
  • Radomska-Soukharev A. Stability of lipid excipients in solid lipid nanoparticles. Adv Drug Deliv Rev 2007;59:411–18
  • Schie IW, Nolte L, Pedersen TL, et al. Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst 2013;138:6662–70
  • Arnold YE, Imanidis G, Kuentz M. In vitro digestion kinetics of excipients for lipid-based drug delivery and introduction of a relative lipolysis half life. Drug Dev Ind Pharm 2012;38:1262–9
  • Liu Z, Zhang X, Wu H, et al. Preparation and evaluation of solid lipid nanoparticles of baicalin for ocular drug delivery system in vitro and in vivo. Drug Dev Ind Pharm 2011;37:475–81
  • Hu H, Liu D, Zhao X, et al. Preparation, characterization, cellular uptake and evaluation in vivo of solid lipid nanoparticles loaded with cucurbitacin B. Drug Dev Ind Pharm 2013;39:770–9
  • Das S, Ng WK, Kanaujia P, et al. Formulation design, preparation and physicochemical characterizations of solid lipid nanoparticles containing a hydrophobic drug: effects of process variables. Colloids Surf B Biointerfaces 2011;88:483–9
  • Özbek B, Ülgen KÖ. The stability of enzymes after sonication. Process Biochem 2000;35:1037–43
  • Olbrich C, Gessner A, Kayser O, Müller RH. Lipid-drug-conjugate (LDC) nanoparticles as novel carrier system for the hydrophilic antitrypanosomal drug diminazenediaceturate. J Drug Target 2002;10:387–96
  • Olbrich C, Gessner A, Schröder W, et al. Lipid-drug conjugate nanoparticles of the hydrophilic drug diminazene-cytotoxicity testing and mouse serum adsorption. J Control Release 2004;96:425–35
  • Vadlapudi AD, Vadlapatla RK, Kwatra D, et al. Targeted lipid based drug conjugates: a novel strategy for drug delivery. Int J Pharm 2012;434:315–24
  • Neupane YR, Sabir MD, Ahmad N, et al. Lipid drug conjugate nanoparticle as a novel lipid nanocarrier for the oral delivery of decitabine: ex vivo gut permeation studies. Nanotechnology 2013;24:415102. doi: 10.1088/0957-4484/24/41/415102
  • Kovacevic A, Savic S, Vuleta G, et al. Polyhydroxy surfactants for the formulation of lipid nanoparticles (SLN and NLC): effects on size, physical stability and particle matrix structure. Int J Pharm 2011;406:163–72
  • Li P, Ghosh A, Wagner RF, et al. Effect of combined use of nonionic surfactant on formation of oil-in-water microemulsions. Int J Pharm 2005;288:27–34
  • McClements DJ. Edible lipid nanoparticles: digestion, absorption, and potential toxicity. Prog Lipid Res 2013;52:409–23
  • Wissing SA, Kayser O, Müller RH. Solid lipid nanoparticles for parenteral drug delivery. Adv Drug Deliv Rev 2004;56:1257–72
  • Wei C-C, Ge Z-Q. Influence of electrolyte and poloxamer 188 on the aggregation kinetics of solid lipid nanoparticles (SLNs). Drug Dev Ind Pharm 2012;38:1084–9
  • Guo X, Xing Y, Mei Q, et al. Preparation and cytotoxicity of 2-methoxyestradiol-loaded solid lipid nanoparticles. Anticancer Drugs 2012;23:185–90
  • Jenning V, Lippacher A, Gohla SH. Medium scale production of solid lipid nanoparticles (SLN) by high pressure homogenization. J Microencapsul 2002;19:1–10
  • Müller RH, Dingler A, Schneppe T, Gohla S. Large-scale production of solid lipid nanoparticles (SLN) and nanosuspensions (DissoCubes). In: Wise DL, ed. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker; 2000:359–76
  • Morel S, Rosa Gasco M, Cavalli R. Incorporation in lipospheres of [D-Trp-6] LHRH. Int J Pharm 1994;105:R1–3
  • Xie S, Zhu L, Dong Z, et al. Preparation, characterization and pharmacokinetics of enrofloxacin-loaded solid lipid nanoparticles: influences of fatty acids. Colloids Surfaces B Biointerfaces 2011;83:382–7
  • Lopes R, Eleutério C V, Gonçalves LMD, et al. Lipid nanoparticles containing oryzalin for the treatment of leishmaniasis. Eur J Pharm Sci 2012;45:442–50
  • Hippalgaonkar K, Adelli GR, Hippalgaonkar K, et al. Indomethacin-loaded solid lipid nanoparticles for ocular delivery: development, characterization, and in vitro evaluation. J Ocul Pharmacol Ther 2013;29:216–28
  • Kuntsche J, Bunjes H. Influence of preparation conditions and heat treatment on the properties of supercooled smectic cholesteryl myristate nanoparticles. Eur J Pharm Biopharm 2007;67:612–20
  • Seyfoddin A, Al-Kassas R. Development of solid lipid nanoparticles and nanostructured lipid carriers for improving ocular delivery of acyclovir. Drug Dev Ind Pharm 2013;39:508–19
  • Joshi AS, Patel HS, Belgamwar VS, et al. Solid lipid nanoparticles of ondansetron HCl for intranasal delivery: development, optimization and evaluation. J Mater Sci Mater Med 2012;23:2163–75
  • Westesen K, Siekmann B, Koch MHJ. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int J Pharm 1993;93:189–99
  • Cavalli R, Aquilano D, Carlotti ME, Gasco MR. Study by X-ray powder diffraction and differential scanning calorimetry of two model drugs, phenothiazine and nifedipine, incorporated into lipid nanoparticles. Eur J Pharm Biopharm 1995;41:329–33
  • Siekmann B, Westesen K. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surfaces B Biointerfaces 1994;3:159–75
  • Bunjes H, Westesen K, Koch MHJ, Michel HJ. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int J Pharm 1996;129:159–73
  • Jenning V, Thünemann AF, Gohla SH. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids. Int J Pharm 2000;199:167–77
  • Manolova V, Flace A, Bauer M, et al. Nanoparticles target distinct dendritic cell populations according to their size. Eur J Immunol 2008;38:1404–13
  • Tscharnuter W. Photon correlation spectroscopy in particle sizing. Encyclopedia of Analytical Chemistry NY, USA: John Wiley & Sons, Ltd; 2006
  • Berne B, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics. Biology and Physics. New York: Wiley; 1976
  • Hu F-Q, Zhang Y, Du Y-Z, Yuan H. Nimodipine loaded lipid nanospheres prepared by solvent diffusion method in a drug saturated aqueous system. Int J Pharm 2008;348:146–52
  • Yu WL, Borkovec M. Distinguishing heteroaggregation from homoaggregation in mixed binary particle suspensions by multiangle static and dynamic light scattering. J Phys Chem B 2002;106:13106–10
  • Vivek K, Reddy H, Murthy RSR. Investigations of the effect of the lipid matrix on drug entrapment, in vitro release, and physical stability of olanzapine-loaded solid lipid nanoparticles. AAPS PharmSciTech 2007;8:E83. doi: 10.1208/pt0804083
  • Pardeike J, Weber S, Matsko N, Zimmer A. Formation of a physical stable delivery system by simply autoclaving nanostructured lipid carriers (NLC). Int J Pharm 2012;439:22–7
  • Gaumet M, Vargas A, Gurny R, Delie F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm 2008;69:1–9
  • Jores K, Mehnert W, Drechsler M, et al. Investigations on the structure of solid lipid nanoparticles (SLN) and oil-loaded solid lipid nanoparticles by photon correlation spectroscopy, field-flow fractionation and transmission electron microscopy. J Control Release 2004;95:217–27
  • Chawla JS, Amiji MM. Biodegradable poly(epsilon -caprolactone) nanoparticles for tumor-targeted delivery of tamoxifen. Int J Pharm 2002;249:127–38
  • Shekunov BY, Chattopadhyay P, Tong HHY, Chow AHL. Particle size analysis in pharmaceutics: principles, methods and applications. Pharm Res 2007;24:203–27
  • Yang L, Broom MF, Tucker IG. Characterization of a nanoparticulate drug delivery system using scanning ion occlusion sensing. Pharm Res 2012;29:2578–86
  • Freitas C, Müller RH. Effect of light and temperature on zeta potential and physical stability in solid lipid nanoparticle (SLNTM) dispersions. Int J Pharm 1998;168:221–9
  • Vogel R, Willmott G, Kozak D, et al. Quantitative sizing of nano/microparticles with a tunable elastomeric pore sensor. Anal Chem 2011;83:3499–506
  • Freitas C, Müller R. Stability determination of solid lipid nanoparticles (SLN TM) in aqueous dispersion after addition of electrolyte. J Microencapsul 1999;16:59–71
  • Zimmermann E, Müller RH. Electrolyte- and pH-stabilities of aqueous solid lipid nanoparticle (SLNTM) dispersions in artificial gastrointestinal media. Eur J Pharm Biopharm 2001;52:203–10
  • Petros RA, DeSimone JM. Strategies in the design of nanoparticles for therapeutic applications. Nat Rev Drug Discov 2010;9:615–27
  • Jores K, Mehnert W, Bunjes H, Drechsler M. From solid lipid nanoparticles (SLN) to nanospoons. Visions and reality of colloidal lipid dispersions. 30th International Symposium on Controlled Release of Bioactive material; 2003:1–2; Glasglow, UK
  • Patel MR, San Martin-Gonzalez MF. Characterization of ergocalciferol loaded solid lipid nanoparticles. J Food Sci 2012;77:N8–13
  • Yin Win K, Feng S-S. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 2005;26:2713–22
  • Kumar S, Randhawa JK. High melting lipid based approach for drug delivery: solid lipid nanoparticles. Mater Sci Eng C Mater Biol Appl 2013;33:1842–52
  • McCaffrey JP, Phaneuf MW, Madsen LD. Surface damage formation during ion-beam thinning of samples for transmission electron microscopy. Ultramicroscopy 2001;87:97–104
  • Thach RE, Thach SS. Damage to biological samples caused by the electron beam during electron microscopy. Biophys J 1971;11:204–10
  • Steinbrecht RA, Zierold K. Cryotechniques in biological electron microscopy. New York: Springer Verlag; 1987
  • Garti N, Sato K. Crystallization and polymorphism of fats and fatty acids New York and Basel: Acids Marcel Dekker; 1998
  • Dubes A, Parrot-Lopez H, Abdelwahed W, et al. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur J Pharm Biopharm 2003;55:279–82
  • Erlandsen SLOF, Chris C, Chen Y. Cryo field emission scanning electron microscopy. BioTechniques 2001;31:300–5
  • Binnig G, Quate CF, Gerber C. Atomic force microscope. Phys Rev Lett 1986;56:930–3
  • Yalamanchili MR,Veeramasuneni S, Azevedo MAD, Miller JD. Use of atomic force microscopy in particle science and technology research. Colloids Surf B Biointerfaces 1998;133:77–188
  • O’Brien RWW, Cannon DWW, Rowlands WNN. Electroacoustic determination of particle size and zeta potential. J Colloid Interface Sci 1995;173:406–18
  • Ware BR, Haas DD. Electrophoretic light scattering. In: Sha’afi RI, Fernandez SM, eds. Fast methods in physical biochemistry and cell biology. New York: Elsevier; 1983:173–220
  • Xu R. Progress in nanoparticles characterization: sizing and zeta potential measurement. Particuology 2008;6:112–15
  • Fujimoto T, Morisawa K, Sekiwa M, et al. Electrophoretic mobility measuring apparatus. Japan: USPTO; US7449097 B2; 2008
  • Sarmento B, Mazzaglia D, Bonferoni MC, et al. Effect of chitosan coating in overcoming the phagocytosis of insulin loaded solid lipid nanoparticles by mononuclear phagocyte system. Carbohydr Polym 2011;84:919–25
  • Qi L, Xu Z, Jiang X, et al. Cytotoxic activities of chitosan nanoparticles and copper-loaded nanoparticles. Bioorg Med Chem Lett 2005;15:1397–9
  • Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther 2006;5:1909–17
  • Harris RK. Polymorphism in the pharmaceutical industry. Angew Chemie Int Ed 2006;45:6609. doi: 10.1002/anie.200685424
  • Chapman D. The polymorphism of glycerides. Chem Rev 1962;62:433–56
  • Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN) and crystallinity of the lipid phase. Eur J Pharm Biopharm 1999;47:125–32
  • Jenning V, Schäfer-Korting M, Gohla S. Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 2000;66:115–26
  • Westesen K, Bunjes H. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? Int J Pharm 1995;115:129–31
  • Langevelde A, Malssen K, Peschar R, Schenk H. Effect of temperature on recrystallization behavior of cocoa butter. J Am Oil Chem Soc 2001;78:919–25
  • Bunjes H, Koch MHJ, Westesen K. Effect of particle size on colloidal solid triglycerides. Langmuir 2000;16:5234–41
  • Laura C, Milena S, Giovanna B, et al. Characterization of silver sulfadiazine-loaded solid lipid nanoparticles by thermal analysis. J Therm Anal Calorim 2012;111:2149–55
  • Khan M, Sultana Y, Ali A, et al. Preparation, characterization, and evaluation of gatifloxacin loaded solid lipid nanoparticles as colloidal ocular drug delivery system. J Drug Target 2009;18:191–204
  • Thiebaud S, Aburto J, Alric I, et al. Properties of fatty-acid esters of starch and their blends with LDPE. J Appl Polym Sci 1997;65:705–21
  • Chen H, Chang X, Du D, et al. Podophyllotoxin-loaded solid lipid nanoparticles for epidermal targeting. J Control Release 2006;110:296–306
  • Silva A, Santos D, Ferreira D, Souto E. No Minoxidil-loaded nanostructured lipid carriers (NLC): characterization and rheological behaviour of topical formulations. PHARMAZIE 2009;64:177–82
  • Saupe A, Gordon KC, Rades T. Structural investigations on nanoemulsions, solid lipid nanoparticles and nanostructured lipid carriers by cryo-field emission scanning electron microscopy and Raman spectroscopy. Int J Pharm 2006;314:56–62
  • Noack A, Hause G, Mäder K. Physicochemical characterization of curcuminoid-loaded solid lipid nanoparticles. Int J Pharm 2012;423:440–51
  • Jenning V, Mäder K, Gohla SH. Solid lipid nanoparticles (SLN) based on binary mixtures of liquid and solid lipids: a (1)H-NMR study. Int J Pharm 2000;205:15–21
  • Luo Y, Chen D, Ren L, et al. Solid lipid nanoparticles for enhancing vinpocetine’s oral bioavailability. J Control Release 2006;114:53–9
  • Kotikalapudi LS, Adepu L, Vijayaratna J, Diwan PV. Formulation and invitro characterization of domperidone loaded solid lipid nanoparticles. Int J Pharm 2012;3:22–9
  • Yang SR, Lee HJ, Kim J-D. Histidine-conjugated poly(amino acid) derivatives for the novel endosomolytic delivery carrier of doxorubicin. J Control Release 2006;114:60–8
  • Xu X, Fu Y, Hu H, et al. Quantitative determination of insulin entrapment efficiency in triblock copolymeric nanoparticles by high-performance liquid chromatography. J Pharm Biomed Anal 2006;41:266–73
  • Aji Alex MR, Chacko AJ, Jose S, Souto EB. Lopinavir loaded solid lipid nanoparticles (SLN) for intestinal lymphatic targeting. Eur J Pharm Sci 2011;42:11–18
  • Başaran E, Demirel M, Sirmagül B, Yazan Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul 2010;27:37–47
  • Qi C, Chen Y, Huang J-H, et al. Preparation and characterization of catalase-loaded solid lipid nanoparticles based on soybean phosphatidylcholine. J Sci Food Agric 2012;92:787–93
  • Castro GA, Oréfice RL, Vilela JMC, et al. Development of a new solid lipid nanoparticle formulation containing retinoic acid for topical treatment of acne. J Microencapsul 2007;24:395–407
  • Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev 2007;59:522–30
  • Lee M-K, Lim S-J, Kim C-K. Preparation, characterization and in vitro cytotoxicity of paclitaxel-loaded sterically stabilized solid lipid nanoparticles. Biomaterials 2007;28:2137–46
  • Dong Z, Xie S, Zhu L, et al. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery. Drug Deliv 2011;18:441–50
  • Liu J, Gong T, Fu H, et al. Solid lipid nanoparticles for pulmonary delivery of insulin. Int J Pharm 2008;356:333–44
  • Schultz SG. Determination of the effective hydrodynamic radii of small molecules by viscometry. J Gen Physiol 1961;44:1189–99
  • De Boer GBJ, de Weerd C, Thoenes D, Goossens HWJ. Laser diffraction spectrometry: Fraunhofer diffraction versus Mie scattering. Part Part Syst Charact 1987;4:14–19
  • Roberts GS, Kozak D, Anderson W, et al. Tunable nano/micropores for particle detection and discrimination: scanning ion occlusion spectroscopy. Small 2010;6:2653–8
  • Ugazio E, Cavalli R, Gasco MR. Incorporation of cyclosporin A in solid lipid nanoparticles (SLN). Int J Pharm 2002;241:341–4
  • Hou D, Xie C, Huang K, Zhu C. The production and characteristics of solid lipid nanoparticles (SLNs). Biomaterials 2003;24:1781–5
  • Kaul G, Amiji M. Long-circulating poly(ethylene glycol)-modified gelatin nanoparticles for intracellular delivery. Pharm Res 2002;19:1061–7
  • Léon V, Rabier J, Notonier R, et al. Effects of three nickel salts on germinating seeds of Grevillea exul var. rubiginosa, an endemic serpentine Proteaceae. Ann Bot 2005;95:609–18
  • Lapshin RV. Feature-oriented scanning methodology for probe microscopy and nanotechnology. Nanotechnology 2004;15:1135–51
  • Cavalli R, Caputo O, Eugenia M, et al. Sterilization and freeze-drying of drug-free and drug-loaded solid lipid nanoparticles. J Pharm 1997;148:47–54
  • Lim S-J, Kim C-K. Formulation parameters determining the physicochemical characteristics of solid lipid nanoparticles loaded with all-trans retinoic acid. Int J Pharm 2002;243:135–46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.