203
Views
7
CrossRef citations to date
0
Altmetric
Review Article

Co-processing as a tool to improve aqueous dispersibility of cellulose ethers

, &
Pages 1745-1758 | Received 12 Nov 2014, Accepted 28 May 2015, Published online: 10 Jul 2015

References

  • Carere CR, Sparling R, Cicek N, Levin DB. Third generation biofuels via direct cellulose fermentation. Int J Mol Sci 2008;9:1342–60
  • Coffey DG, Bell DA, Henderson A. Cellulose and cellulose derivatives. In: Stephen AM, Phillips GO, Williams PA, eds. Food polysaccharides and their applications. Boca Raton (FL): Taylor & Francis; 2006:147–174
  • Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int 2005;44:3358–93
  • Zhang LM. Cellulosic associative thickeners. Carbohydr Polym 2001;45:1–10
  • Mariscal Pd, Bell DA. Fiber-based fat mimetics: methylcellulose gums. In: Roller S, Jones SA, ed. Handbook of fat replacers. Boca Raton (FL): CRC Press;1996:140–153
  • Kadajji VG, Betageri GV. Water soluble polymers for pharmaceutical applications. Polymers 2011;3:1972–2009
  • Doelker E. Swelling behavior of water soluble cellulose derivatives. In: Brannon-Peppas L, Harland RS, eds. Absorbent polymer technology. Amsterdam, Netherlands: Elsevier; 1990:125–145
  • Cellulose Ethers. Technical Overview and Product Guide. Available from: http://www.dowconstructionchemicals.com/na/en/pdfs/832-00226.pdf [last accessed 31 Mar 2013]
  • Aulton M, Abdul-Razzak M, Hogan J. The mechanical properties of hydroxypropylmethylcellulose films derived from aqueous systems Part 1: the influence of plasticisers. Drug Dev Ind Pharm 1981;7:649–68
  • Bruce HF, Sheskey PJ, Garcia-Todd P, Felton LA. Novel low-molecular-weight hypromellose polymeric films for aqueous film coating applications. Drug Dev Ind Pharm 2011;37:1439–45
  • Honary S, Orafai H. The effect of different plasticizer molecular weights and concentrations on mechanical and thermomechanical properties of free films. Drug Dev Ind Pharm 2002;28:711–15
  • Lehtola V, Heinämäki J, Nikupaavo P, Yliruusi J. The mechanical and adhesion properties of aqueous based hydroxypropyl methylcellulose coating systems containing polydextrose and titanium dioxide. Drug Dev Ind Pharm 1995;21:675–85
  • Obara S, Kokubo H. Application of HPMC and HPMCAS to aqueous film coating of pharmaceutical dosage forms. In: Swarbrick JW, Felton LA, eds. Aqueous polymeric coatings for pharmaceutical dosage forms. New York: Informa Healthcare; 2008:279–322
  • Savage AB. 1976. US Patent US3960584
  • Nimerick KH, Simpson BE. 1977. US Patent US4042529
  • Bishop MD. 1988. US Patent US4735659
  • Socha GE. 1983. US Patent US4373959
  • Bhargava P, Carroll GT, Nguyen TT, Vaynberg KA. 2012. US Patent US0247367
  • Reibert KC, Schulz GJ, Smith MR. 1997. US Patent US5674999
  • Majewicz TG. 1982. US Patent US4309535
  • Jullander EI. 1959. US Patent US2879268
  • Werner S. 1969. US Patent US3453261
  • Doengers R, Hammes A. 2004. US Patent US2004/0110942
  • Maasberg AT, Swinehart RW. 1943. US Patent US2331864
  • Lahteenmaki M, Kankohen H, Kloow G, et al. 2003. US Patent US6600033
  • Bonney SR, Ramaile HH. 2007. US Patent US2007/0175361
  • Gupta P, Nachaegari SK, Bansal AK. Improved excipient functionality by co-processing. In: Katdare A, Chaubal MV, eds. Excipient development for pharmaceutical, biotechnology and drug delivery systems. New York (NY): Informa Healthcare; 2006:109–126
  • Saha S, Shahiwala AF. Multifunctional co-processed excipients for improved tabletting performance. Expert Opin Drug Deliv 2009;6:197–208
  • Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm 2012;38:1159–70
  • Kamide K. Cellulose and cellulose derivatives molecular characterization and its applications. Amsterdam, Netherlands: Elsevier; 2005:1–23
  • Zugenmaier P. Crystalline cellulose and cellulose derivatives characterization and structures. Germany: Springer; 2008:7–52
  • Kumar V, Banker GS. Chemically-modified celldlosic polymers. Drug Dev Ind Pharm 1993;19:1–31
  • Feller RL, Wilt MH. Evaluation of cellulose ethers for conservation. Los Angeles (CA): Getty Conservation Institute;1990:9–34
  • Sarkar N, Walker LC. Hydration–dehydration properties of methylcellulose and hydroxypropylmethylcellulose. Carbohydr Polym 1995;27:177–85
  • Kamel S, Ali N, Jahangir K, et al. Pharmaceutical significance of cellulose: a review. eXPRESS Polym Lett 2008;2:758–78
  • Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels: design and applications. Materials 2009;2:353–73
  • Mark HF. Encyclopedia of polymer science and technology. New York: John Wiley & Sons; 2003:507–532
  • Sarkar N. Structural interpretation of the interfacial properties of aqueous solutions of methylcellulose and hydroxypropylmethylcellulose. Polymer 1984;25:481–6
  • Shokri J, Adibkia K. Application of cellulose and cellulose derivatives in pharmaceutical industries. In: Ven Tvd, Godbout L, eds. Cellulose – medical, pharmaceutical and electronic applications. Rijeka, Croatia: InTech; 2013:47–66
  • Methocel Cellulose Ethers. Technical Handbook. Available from: http://www.dow.com/dowwolff/en/pdf/192-01062.pdf [last accessed 31 Mar 2013]
  • Colombo P, Bettini R, Peppas NA. Observation of swelling process and diffusion front position during swelling in hydroxypropyl methyl cellulose (HPMC) matrices containing a soluble drug. J Control Release 1999;61:83–91
  • Harding RB, Crenshaw SLH, Gregory PE, Broughton DH. 2006. US Patent US7022837
  • Modi JJ. 2008. US Patent US20080166311 A1
  • Tang J, Feng H, Shen G-Q. Drum drying. In: Heldman DR, Moraru CI, eds. Encyclopedia of agricultural, food and biological engineering. New York: Marcel Dekker; 2003:211–214
  • Montagna M, Sterpone F, Guidoni L. Structural and spectroscopic properties of water around small hydrophobic solutes. J Phys Chem 2012;116:11695–700
  • Yaminsky VV, Vogler EA. Hydrophobic hydration. Curr Opin Colloid Interface Sci 2001;6:342–9
  • Predota M, Nezbeda I, Cummings PT. Hydrophobic hydration at the level of primitive models. II: Large solutes and water restructuring. Mol Phys 2002;100:2189–200
  • Luksic M, Urbic T, Hribar-Lee B, Dill KA. Simple model of hydrophobic hydration. J Phys Chem 2012;116:6177–86
  • Paulaitis ME, Gardettand S, Ashbaugh HS. The hydrophobic effect. Curr Opin Colloid Interface Sci 1996;1:376–83
  • Chandler D. Interfaces and the driving force of hydrophobic assembly. Nature 2005;437:640–7
  • Lazaridis T, Paulaitis ME. Entropy of hydrophobic hydration: a new statistical mechanical formulation. J Phys Chem 1992;96:3841–55
  • Colombo P, Bettini R, Santi P, Peppas NA. Swellable matrices for controlled drug delivery: gel-layer behaviour, mechanisms and optimal performance. Pharm Sci Tech Today 2000;3:198–204
  • Nyamweya N, Hoag SW. Assessment of polymer––polymer interactions in blends of HPMC and film forming polymers by modulated temperature differential scanning calorimetry. Pharm Res 2000;17:625–31
  • Viridena A, Wittgren B, Larsson A. Investigation of critical polymer properties for polymer release and swelling of HPMC matrix tablets. Eur J Pharm Sci 2009;36:297–309
  • Conti S, Maggi L, Segale L, et al. Matrices containing NaCMC and HPMC 2. Swelling and release mechanism study. Int J Pharm 2007;333:143–51
  • Ganji F, Vasheghani-Farahani E. Hydrogels in controlled drug delivery systems. Iran Polym J 2009;18:63–88
  • Patel A, Mequanint K. Hydrogel biomaterials. In: Fazel R, ed. Biomedical engineering – frontiers and challenges. Rijeka, Croatia: InTech; 2011:275–296
  • Gulrez SKH, Al-Assaf S, Phillips GO. Hydrogels: methods of preparation, characterisation and applications. In: Carpi A, ed. Progress in molecular and environmental bioengineering – from analysis and modeling to technology applications. Rijeka, Croatia: InTech; 2011:117–46
  • Omidian H, Park K. Hydrogels. In: Siepmann J, Siegel RA, Rathbone MJ, eds. Fundamentals and applications of controlled release drug delivery. New York: Springer; 2012:75–106
  • Peppas NA. Hydrogels and drug delivery. Curr Opin Colloid Interface Sci 1997;2:531–7
  • Omidian H, Park K. Swelling agents and devices in oral drug delivery. J Drug Del Sci Tech 2008;18:83–93
  • Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E. Theoretical description of hydrogel swelling: a review. Iran Polym J 2010;19:375–98
  • Bajwa GS, Hoebler K, Sammon C, et al. Microstructural imaging of early gel layer formation in HPMC matrices. J Pharm Sci 2006;95:2145–57
  • Pajander J, Baldursdottir S, Rantanen J, Ostergaard J. Behaviour of HPMC compacts investigated using UV-imaging. Int J Pharm 2012;427:345–53
  • Li CL, Martini LG, Ford JL, Roberts M. The use of hypromellose in oral drug delivery. J Pharm Pharmacol 2005;57:533–46
  • Siepmann J, Peppas NA. Modeling of drug release from delivery systems based on hydroxypropyl methylcellulose (HPMC). Adv Drug Deliv Rev 2001;48:139–57
  • Anderson AW, Moeller BV. 1953. US Patent US2647064
  • Desai U, Chavan R, Mhatre P, Chinchole R. A review: co-processed excipients. Int J Pharm Sci Rev Res 2012;12:93–105
  • Marwaha M, Sandhu D, Marwaha RK. Co-processing of excipients: a review on excipient development for improved tabletting performance. Int J Appl Pharm 2010;2:41–7
  • Nachaegari SK, Bansal AK. Co-processed excipients for solid dosage forms. Pharm Technol 2004;28:52–64
  • Viscasillas Clerch A, Fernandez Campos F, del Pozo A, Calpena Campmany AC. Pharmaceutical design of a new lactose-free coprocessed excipient: application of hydrochlorothiazide as a low solubility drug model. Drug Dev Ind Pharm 2013;39:961–9
  • Hamman J, Steenekamp J. Excipients with specialized functions for effective drug delivery. Expert Opin Drug Deliv 2012;9:219–30
  • Mirani AG, Patankar SP, Borole VS, et al. Direct compression high functionality excipient using coprocessing technique: a brief review. Curr Drug Deliv 2011;8:426–35
  • Bansal AK, Nachaegari SK. High-functionality excipients for solid dosage forms. Business Briefing: Pharmagenerics (World Markets Research Centre, London, UK) 2002;38–44
  • Gonnissen Y, Gonçalves SIV, Remon JP, Vervaet C. Mixture design applied to optimize a directly compressible powder produced via cospray drying. Drug Dev Ind Pharm 2008;34:248–57
  • Garg N, Dureja H, Kaushik D. Co-processed excipients: a patent review. Recent Pat Drug Deliv Formul 2013;7:78–83
  • Chaudhari PD, Phatak AA, Desai U. A review: co-processed excipients – an alternative to novel chemical entities. Int J Pharm Chem Sci 2012;1:1480–98
  • Anderson AW, Moeller BV. 1955. US Patent US2720464
  • Katsuno E, Tahara K, Takeuchi Y, Takeuchi H. Orally disintegrating tablets prepared by a co-processed mixture of micronized crospovidone and mannitol using a ball mill to improve compactibility and tablet stability. Powder Technol 2013;241:60–6
  • Hanson WJ. 1955. US Patent US2716072
  • Wang Y, Forssberg E. International overview and outlook on comminution technology. Gallivare Hard Rock Research Report, Gallivare, Sweden; 2004
  • Banker GS, Anderson NR. Tablets. In: Lachman L, Lieberman HA, Kanig JL, eds. The theory and practice of industrial pharmacy. Philadelphia (PA): Lea & Febiger; 1990:293–245
  • Augsburger LL, Vuppala MK. Theory of granulation. In: Parikh DM, ed. Handbook of pharmaceutical granulation technology. New York: Informa Healthcare; 1997:7–23
  • Rigler LE, Taki GH, Spirtos NG. 1975. US Patent US3928252
  • Bostrom P, Karlsson G. 2003. US Patent US6639066
  • Porter SC, Woznicki EJ. 1985. US Patent US4543370
  • Tousey MD. The granulation process 101 basic technologies for tablet making. Pharm Technol 2002;1:8–13
  • El-Barghouthi M, Eftaiha Aa, Rashid I, et al. A novel superdisintegrating agent made from physically modified chitosan with silicon dioxide. Drug Dev Ind Pharm 2008;34:373–83
  • Sander EH, Cook DR. 1987. US Patent US4696762
  • Link KC, Schlunder E-U. Fluidized bed spray granulation investigation of the coating process on a single sphere. Chem Eng Process 1997;36:443–57
  • Srivastava S, Mishra G. Fluid bed technology: overview and parameters for process selection. Int J Pharm Sci Drug Res 2010;2:236–46
  • Dobry DE, Settell DM, Baumann JM, et al. A model-based methodology for spray-drying process development. J Pharm Innov 2009;4:133–42
  • Gonnissen Y, Remon JP, Vervaet C. Development of directly compressible powders via co-spray drying. Eur J Pharm Biopharm 2007;67:220–6
  • Mohammed G, Puri V, Bansal AK. Co-processing of nevirapine and stavudine by spray drying. Pharm Dev Technol 2008;13:299–310
  • Paudel A, Worku ZA, Meeus J, et al. Manufacturing of solid dispersions of poorly water soluble drugs by spray drying: formulation and process considerations. Int J Pharm 2013;53:253–84
  • Daraghmeh N, Rashid I, Al Omari MM, et al. Preparation and characterization of a novel co-processed excipient of chitin and crystalline mannitol. AAPS PharmSciTech 2010;11:1558–71
  • Bhaskaran S, Lakshmi P. Extrusion spheronization – a review. Int J Pharm Tech Res 2010;2:2429–33
  • Kanbe H, Hayashi T, Onuki Y, Sonobe T. Manufacture of fine spherical granules by an extrusion/spheronization method. Int J Pharm 2007;337:56–62
  • Otsuka M, Gao J, Matsuda Y. Effect of amount of added water during extrusion-spheronization process on pharmaceutical properties of granules. Drug Dev Ind Pharm 1994;20:2977–92
  • Goyanes A, Martínez-Pacheco R. New co-processed MCC-based excipient for fast release of low solubility drugs from pellets prepared by extrusion-spheronization. Drug Dev Ind Pharm 2015;41:362–8
  • Goyanes A, Souto C, Martínez-Pacheco R. Co-processed MCC-Eudragit® E excipients for extrusion–spheronization. Eur J Pharm Biopharm 2011;79:658–63
  • Roblegg E, Schrank S, Griesbacher M, et al. Use of the Direct Compression Aid Ludiflash® for the preparation of pellets via wet extrusion/spheronization. Drug Dev Ind Pharm 2011;37:1231–43
  • Madan S, Madan S. Hot melt extrusion and its pharmaceutical applications. Asian J Pharm Sci 2012;7:123–33
  • Halle PD, Sakhare RS, Dadage KK, et al. A review on melt granulation technique. J Pharm Phytother 2013;1:6–10
  • Alderman DA, Schulz GJ. 1989. US Patent US4816298
  • Crowley MM, Zhang F, Repka MA, et al. Pharmaceutical applications of hot-melt extrusion: part I. Drug Dev Ind Pharm 2007;33:909–26
  • Maniruzzaman M, Rana M, Boateng J, et al. Dissolution enhancement of poorly water-soluble APIs processed by hot-melt extrusion using hydrophilic polymers. Drug Dev Ind Pharm 2013;39:218–27
  • Repka MA, Shah S, Lu J, et al. Melt extrusion: process to product. Expert Opin Drug Deliv 2012;9:105–25
  • Breitenbach J. Melt extrusion: from process to drug delivery technology. Eur J Pharm Biopharm 2002;54:107–17
  • Vynckier AK, Dierickx L, Voorspoels J, et al. Hot-melt co-extrusion: requirements, challenges and opportunities for pharmaceutical applications. J Pharm Pharmacol 2014;66:167–79
  • Repka MA, Battu SK, Upadhye SB, et al. Pharmaceutical applications of hot-melt extrusion: Part II. Drug Dev Ind Pharm 2007;33:1043–57
  • Chow AH, Tong HH, Chattopadhyay P, Shekunov BY. Particle engineering for pulmonary drug delivery. Pharm Res 2007;24:411–37
  • Shoyele SA, Cawthorne S. Particle engineering techniques for inhaled biopharmaceuticals. Adv Drug Deliv Rev 2006;58:1009–29
  • York P. Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 1999;2:430–40
  • Khadka P, Ro J, Kim H, et al. Pharmaceutical particle technologies: an approach to improve drug solubility, dissolution and bioavailability. Asian J Pharm Sci 2014;9:304–16
  • Pasquali I, Bettini R, Giordano F. Solid-state chemistry and particle engineering with supercritical fluids in pharmaceutics. Eur J Pharm Sci 2006;27:299–310
  • Melbouci M. 2001. US Patent US6197100
  • Hayakawa K. 2008. US Patent US7452928
  • Whelan K. 1970. US Patent US3503895
  • Patel BB. 1995. US Patent US5391359
  • Hansson P, Lindman B. Surfactant–polymer interactions. Curr Opin Colloid Interface Sci 1996;1:604–13
  • Nilsson S. Interactions between water-soluble cellulose derivatives and surfactants. 1. The HPMC/SDS/Water system. Macromolecules 1995;28:7837–44
  • Silva SMC, Antunes FE, Sousa JJS, et al. New insights on the interaction between hydroxypropylmethylcellulose and sodium dodecyl sulfate. Carbohydr Polym 2011;86:35–44
  • Su JC, Liu SQ, Joshi SC, Lam YC. Effect of SDS on the gelation of hydroxypropylmethylcellulose hydrogels. J Therm Anal Calorim 2008;93:495–501
  • Holmberg K, Jonsson B, Kronberg B, Lindman B. Surfactant-polymer systems. In: Dias R, Lindman B, eds. Surfactants and polymers in aqueous solution. England: John Wiley & Sons; 2002:277–303
  • Lofroth JE, Johansson L, Norman AC, Wettstrom K. Interactions between surfactants and polymers. I: HPMC. Progr Colloid Polym Sci 1991;84:73–7
  • Joshi SC, Chen B. Influence of surfactant properties on thermal behavior and sol-gel transitions in surfactant-HPMC mixtures. J Appl Polym Sci 2009;113:2887–93
  • Mitchell K, Ford JL, Armstrong DJ, et al. The influence of additives on the cloud point, disintegration and dissolution of hydroxypropylmethylcellulose gels and matrix tablets. Int J Pharm 1990;66:233–42
  • Zhang Y, Cremer PS. Interactions between macromolecules and ions: the Hofmeister series. Curr Opin Chem Biol 2006;10:658–63
  • Bowman BJ, Ofner CM, Schott H. Colloidal dispersions. In: Troy DB, Beringer P, eds. Remington: the science and practice of pharmacy. Philadelphia (PA): Lippincott Williams & Wilkins; 2006:293–318
  • Liu SQ, Joshi SC, Lam YC. Effects of salts in the hofmeister series and solvent isotopes on the gelation mechanisms for hydroxypropylmethylcellulose hydrogels. J Appl Polym Sci 2008;109:363–72
  • Galema SA, Hailand H. Stereochemical aspects of hydration of carbohydrates in aqueous solutions. 3. Density and ultrasound measurements. J Phys Chem 1991;95:5321–6
  • Williams HD, Ward R, Hardy IJ, Melia CD. The extended release properties of HPMC matrices in the presence of dietary sugars. J Control Release 2009;138:251–9
  • Kabayama MA, Patterson D. The thermodynamics of mutarotation of some sugars II. Theoretical considerations. Can J Chem 1958;36:563–73
  • Williams HD, Ward R, Culy A, et al. Designing HPMC matrices with improved resistance to dissolved sugar. Int J Pharm 2010;401:51–9
  • Williams HD, Ward R, Hardy IJ, Melia CD. The effect of sucrose and salts in combination on the drug release behaviour of an HPMC matrix. Eur J Pharm Biopharm 2010;76:433–6
  • Levy G, Schwarz TW. The effect of certain additives on the gel point of methylcellulose. J Am Pharm Assoc 1958;47:44–6
  • Soldatos AC. 1988. US Patent US4720303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.