6
Views
3
CrossRef citations to date
0
Altmetric
Original Article

An Overview of Tumor Biology

, , &
Pages 247-265 | Published online: 11 Jun 2009

References

  • Duesberg P H. Cancer genes: Rare recombinants instead of activated oncogenes (a review). Proc Natl Acad Sci (USA) 1987; 84: 2117–2124
  • Bishop J M. The molecular genetics of cancer. Science 1987; 235: 303–311
  • Marshall C J. Meeting report: Oncogenes and growth control 1987. Cell 1987; 49: 723–725
  • Forrester K, Almoguera C, Han K, et al. Detection of high incidence of K-ras oncogenes during human colon tumorigenesis. Nature 1987; 327: 298–303
  • Bos J L, Fearon E R, Hamilton S R, et al. Prevalence of ras gene mutations in human colorectal cancers. Nature 1987; 327: 293–297
  • Der C J, Pan B T, Cooper G M. RasH mutants deficient in GTP binding. Mol Cell Biol 1986; 6: 3291–3294
  • Der C J, Finkel T, Cooper G M. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 1986; 44: 167–176
  • Trahey M, Milley R J, Cole G E, et al. Biochemical properties of the human N-ras p21 protein. Mol Cell Biol 1987; 7: 541–544
  • Willumsen B M, Papageorge A G, Kung H F, et al. Mutational analysis of a ras catalytic domain. Mol Cell Biol 1986; 6: 2646–2654
  • Parries G, Hoebel R, Racker E. Opposing effects of a ras oncogene on growth factor-stimulated phosphoinositide hydrolysis: Desen-sitization to platelet-derived growth factor and enhanced sensitivity to bradykinin. Proc Natl Acad Sci (USA) 1987; 84: 2648–2652
  • Wolfman A, Macara I G. Elevated levels of diacylglycerol and decreased phorbol ester sensitivity in ras-transformed fibroblasts. Nature 1987; 325: 359–361
  • Wakelam M J, Davies S A, Houslay M D, et al. Normal p21ras couples bombesin and other growth factor receptors to inositol phosphate production. Nature 1986; 323: 173–176
  • Bar-Sagi D, Feramisco J R. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 1986; 233: 1061–1068
  • Riedel H, Schlessinger J., Ullrich A. A chimeric, ligand-binding v-erbB/EGF receptor retains transforming potential. Science 1987; 236: 197–200
  • Sacca R, Stanley E R, Sherr C J, et al. Specific-binding of the mononuclear phagocyte colony-stimulating factor CSF-1 to the product of the v-fms oncogene. Proc Natl Acad Sci (USA) 1986; 83: 3331–3335
  • Sherr C J, Rettenmier C W. The fms gene and the CSF-1 receptor. Cancer Surv 1986; 5: 223–232
  • Roussel M F, Dull T J, Rettenmier C W, et al. Transforming potential of the c-fms proto-oncogene (CSF-1 receptor). Nature 1987; 325: 549–552
  • Wheeler E F, Askew D, May S, et al. The v-fms oncogene induces factor-independent growth and transformation of the interleukin-3-dependent myeloid cell line FDC-P1. Mol Cell Biol 1987; 7: 1673–1680
  • Wheeler E F, Rettenmier C W, Look A T, et al. The v-fms oncogene induces factor-independence and tumorigenicity in CSF-1 dependent macrophage cell line. Nature 1986; 324: 377–379
  • Browning P J, Bunn H F, Cline A, et al. “Replacement” of COOH-terminal truncation of v-fms with c-fms sequences markedly reduces transformation potential. Proc Natl Acad Sci (USA) 1986; 83: 7800–7804
  • Cartwright C A, Eckhart W, Simon S, et al. Cell transformation by pp60c-src mutated in the carboxy-terminal regulatory domain. Cell 1987; 49: 83–91
  • Piwnica-Worms H, Saunders K B, Roberts T M, et al. Tyrosine phosphorylation regulates the biochemical and biological properties of pp60c-scr. Cell 1987; 49: 75–82
  • Kmiecik T E, Shalloway D. Activation and suppression of pp60c-src transforming ability by mutation of its primary sites of tyrosine phosphorylation. Cell 1987; 49: 65–73
  • Hunter T. A tail of two src's: Mutatis mutandis. Cell 1987; 49: 1–4
  • Bolen J B, Veillette A, Schwartz A M, et al. Activation of pp60m protein kinase activity in human colon carcinoma. Proc Natl Acad Sci (USA) 1987; 84: 2251–2255
  • Friend S H, Bernards R, Rogelj S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323: 643–646
  • Weissman B E, Saxon P J, Pasquale S R, et al. Introduction of a normal human chromosome 11 into a Wilms' tumor cell line controls its tumorigenic expression. Science 1987; 236: 175–180
  • Geiser A G, Der C L, Marshall C J, et al. Suppression of tumorigenicity with continued expression of the c-Ha-ras oncogene in EJ bladder carcinoma-human fibroblast hybrid cells. Proc Natl Acad Sci (USA) 1986; 83: 5209–5213
  • Koi M, Barrett J C. Loss of tumor-suppressive function during chemically induced neoplastic progression of Syrian hamster embryo cells. Proc Natl Acad Sci (USA) 1986; 83: 5992–5996
  • Kurzrock R, Shtalrid M, Romero P, et al. A novel c-abl protein product in Philadelphia-positive acute lymphoblastic leukemia. Nature 1987; 325: 631–635
  • Chan L C, Karhi K K, Rayter S I, et al. A novel abl protein expressed in Philadelphia chromosome positive acute lymphoblastic leukaemia. Nature 1987; 325: 635–637
  • Ishikawa F, Takaku F, Nagao M, et al. Rat c-raf oncogene activation by a rearrangement that produces a fused protein. Mol Cell Biol 1987; 7: 1226–1232
  • Park M, Dean M, Cooper C S, et al. Mechanism of met oncogene activation. Cell 1986; 45: 895–904
  • Takahashi M, Cooper G M. ret Transforming gene encodes a fusion protein homologous to tyrosine kinases. Mol Cell Biol 1987; 7: 1378–1385
  • Sap J, Munoz A, Damm K, et al. The c-erbA protein is a high-affinity receptor for thyroid hormone. Nature 1986; 324: 635–646
  • Green S, Chambon P. A superfamily of potentially oncogenic hormone receptors. Nature 1986; 324: 615–617
  • Bargmann C I, Hung M C, Weinberg R A. Multiple independent activations of the neu oncogene by a point mutation altering the transmembrane domain of p185. Cell 1986; 45: 649–657
  • Young D, Waitches G, Birchmeier C, et al. Isolation and characterization of a new cellular oncogene encoding a protein with multiple potential transmembrane domains. Cell 1986; 45: 711–719
  • Chabre M. The G protein connection: Is it in the membrane or the cytoplasm?. TIBS 1987; 12: 213–215
  • Cockcroft S. Phosphoinositide phosphodiesterase: Regulation by a novel guanine nucleotide binding protein. Gp. TIBS 1987; 12: 75–78
  • Bourne H R. One molecular mechanism can transduce diverse signals. Nature 1986; 321: 814–816
  • Pennington S R. G proteins and diabetes. Nature 1987; 327: 188–189
  • Marx J L. Polyphosphoinositide research updated. Science 1987; 235: 974–976
  • Fleischman L F, Chahwala S B, Cantley L. Ras-transformed cells: Altered levels of phosphatidylinositol-4,5-biphosphate and catabolites. Science 1986; 231: 407–410
  • Croce C M. Chromosome translocations and human cancer. Cancer Res 1986; 46: 6019–6023
  • Croce C M. Role of chromosome translocations in human neoplasia. Cell 1987; 49: 155–156
  • Haluska F G, Finver S, Tsujimoto Y, et al. The t(8:14) chromosomal translocation occurring in B-cell malignancies results from mistakes in V-D-J joining. Nature 1986; 324: 158–160
  • Finger L R, Harvey R C, Moore R C, et al. A common mechanism of chromosomal translocation in T- and B-cell neoplasia. Science 1986; 234: 982–985
  • Murphy W, Sarid J, Taub R, et al. A translocated human c-myc oncogene is altered in a conserved coding sequence. Proc Natl Acad Sci (USA) 1986; 83: 2939–2943
  • Showe L C, Moore R C, Erikson J, et al. Myc oncogene involved in a t(8;22) chromosome translocation is not altered in its putative regulatory regions. Proc Natl Acad Sci (USA) 1987; 84: 2824–2828
  • Pelicci P G, Knowles D M, Magrath I, et al. Chromosomal breakpoints and structural alterations of the c-myc locus differ in endemic and sporadic forms of Burkitt lymphoma. Proc Natl Acad Sci (USA) 1986; 83: 2984–2988
  • Rosen N, Reynolds C P, Thiele C J, et al. Increased N-myc expression following progressive growth of human neuroblastoma. Cancer Res 1986; 46: 4139–4142
  • Slamon D J, Clark G M, Wong S G, et al. Human breast cancer: Correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 1987; 235: 177–182
  • Wong A J, Ruppert J M, Eggleston J, et al. Gene amplification of c-myc and N-myc in small cell carcinoma of the lung. Science 1986; 233: 461–464
  • Winter E, Perucho M. Oncogene amplification during tumorigenesis of established rat fibroblasts reversibly transformed by activated human ras oncogenes. Mol Cell Biol 1986; 6: 2562–2570
  • George D L. Amplification of cellular proto-oncogenes in tumors and tumor cell lines. Cancer Surv 1984; 3: 497–513
  • Bernards R, Dessain S K, Weinberg R A. N-myc amplification causes down-modulation of MHC class I antigen expression in neuroblastoma. Cell 1986; 47: 667–674
  • Ford M, Fried M. Large inverted duplications are associated with gene amplification. Cell 1986; 45: 425–430
  • Meinkoth J, Killary A M, Fournier R E, et al. Unstable and stable CAD gene amplification: Importance of flanking sequences and nuclear environment in gene amplification. Mol Cel Biol 1987; 7: 1415–1424
  • Readhead C, Popko B, Takahashi N, et al. Expression of a myelin basic protein gene in transgenic Shiverer mice: correction of the dysmyleinating phenotype. Cell 1987; 48: 703–712
  • Constantini F, Chada K, Magram J. Correction of murine B-thalassemia by gene transfer into the germ line. Science 1986; 233: 1192–1194
  • LeMeur M, Gerlinger P, Benoist C, et al. Correcting an immunoresponse deficiency by creating E alpha gene transgenic mice. Nature 1985; 316: 38–42
  • Yamamura K, Kikutoni H, Folson V, et al. Functional expression of a microinjected Ed alpha gene in C57BL/6 transgenic mice. Nature 1985; 316: 67–69
  • Ruther U, Garber C, Komitowski D, et al. Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature 1987; 325: 412–416
  • Brinster R L, Chen H Y, Messing A, et al. Transgenic mice harboring SV40 T-antigen genes develop characteristic brain tumors. Cell 1984; 37: 367–379
  • Hanahan D. Heritable formation of pancreatic B-cell tumours in transgenic mice expressing recombinant insulin/simian virus 40 oncogenes. Nature 1985; 315: 115–122
  • Ornitz D M, Palmiter R D, Messing A, et al. Elastase 1 promoter directs expression of human growth hormone and SV40 T-antigen genes to pancreatic acinar cells in transgenic mice. Cold Spring Harbor Symp Quant Biol 1985; 50: 399–409
  • Mahon K A, Chepelinsky A B, Khillan J S, et al. Oncogenesis of the lens in transgenic mice. Science 1987; 235: 1622–1628
  • Andres A C, Schonenberger C A, Groner B, et al. Ha-ras oncogene expression directed by a milk protein gene promoter: tissue specificity, hormonal regulation, and tumor induction in transgenic mice. Proc Natl Acad Sci (USA) 1987; 84: 1299–1303
  • Quaife C J, Pinkert C A, Ornitz D M, et al. Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice. Cell 1987; 48: 1023–1034
  • Adams J M, Harris A W, Langdon W Y, et al. c-Myc-induced lymphomagenesis in transgenic mice and the role of the pvt-1 locus in lymphoid neoplasia. Curr Topics Microbiol Immunol 1986; 132: 1–8
  • Langdon W Y, Harris A W, Cory S, et al. The c-myc oncogene perturbs B lymphocyte development in Eu-myc transgenic mice. Cell 1986; 47: 11–18
  • Alexander W S, Schrader J W, Adams J M. Expression of the c-myc oncogene under control of an immunoglobulin enhancer in Eu-myc transgenic mice. Mol Cel Biol 1987; 7: 1436–1444
  • Leder A, Pattengale P K, Kuo A, et al. Consequences of widespread deregulation of the c-myc gene in transgenic mice: Multiple neoplasms and normal development. Cell 1986; 45: 485–495
  • Sinn E, Muller W, Pattengale P, et al. Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo. Cell 1987; 49: 465–475
  • Hanahan D. Oncogenesis in transgenic mice. Oncogenes and Growth Control, P Kahn, T Graf. Springer-Veriag, New York 1986; 349–363
  • Klein G, Klein E. Conditioned tumorigenicity of activated oncogenes. Cancer Res 1986; 46: 3211–3224
  • Pardee A B. Molecules involved in proliferation of normal and cancer cells: Presidential address. Cancer Res 1987; 47: 1488–1491
  • Lee M G, Nurse P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 1987; 327: 31–35
  • Wier M L, Scott R E. Regulation of the terminal event in cellular differentiation: Biological mechanisms of the loss of proliferative potential. J Cell Biol 1986; 102: 1955–1964
  • Sparks R L, Seibel-Ross E I, Wier M L, et al. Differentiation, dedifferentiation and transdifferentiation of BALB/c 3T3 T mesenchymal stem cells: Potential significance in metaplasia and neoplasia. Cancer Res 1986; 46: 5312–5319
  • Dmitrovsky E, Kuehl W M, Hollis G F, et al. Expression of a transfected human c-myc oncogene inhibits differentiation of a mouse erythroleukaemia cell line. Nature 1986; 322: 748–750
  • Prochownik E V, Kukowska J. Deregulated expression of c-myc by murine erythroleukaemia cells prevents differentiation. Nature 1986; 322: 848–850
  • Resnitzky D, Yarden A, Zipori D, et al. Autocrine B-related interferon controls c-myc suppression and growth arrest during hematopoietic cell differentiation. Cell 1986; 46: 31–40
  • Olson E, Spizz G, Tainsky M A. The oncogenic forms of N-ras or H-ras prevent skeletal myoblast differentiation. Mol Cell Biol 1987; 7: 2104–2111
  • Leon J, Guerrero I, Pellicer A. Differential expression of the ras gene family in mice. Mol Cell Biol 1987; 7: 1535–1540
  • Chesa P G, Rettig W J, Melamed M R, et al. Expression of p21ras in normal and malignant human tissues: Lack of association with proliferation and malignancy. Proc Natl Acad Sci (USA) 1987; 84: 3234–3238
  • Reinach F C, MacLeod A R. Tissue-specific expression of the human tropomyosin gene involved in the generation of the trk oncogene. Nature 1986; 322: 648–650
  • Lynch S A, Brugge J S, Levine J M. Induction of altered c-src product during neural differentiation of embryonal carcinoma cells. Science 1986; 234: 873–876
  • Gee C E, Griffin J, Sastre L, et al. Differentiation of myeloid cells is accompanied by increased levels of pp60c-src protein kinase activity. Proc Natl Acad Sci (USA) 1986; 83: 5131–5135
  • Cooper G M, Goldman D S, Kiessling A A, et al. Oncogene expression in germ cells, In preparation
  • Jacobovits A, Shackleford G M, Varmus H E, et al. Two proto-oncogenes implicated in mammary carcinogenesis, int-1 and int-2 are independently regulated during mouse development. Proc Natl Acad Sci (USA) 1986; 83: 7806–7810
  • Maniatis T, Goodbourn S, Fischer J A. Regulation of inducible and tissue-specific gene expression. Science 1987; 236: 1237–1244
  • McKnight S., Tjian R. Transcriptional selectivity of viral genes in mammalian cells. Cell 1986; 46: 795–805
  • Struhl K. Promoters, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 1987; 49: 295–297
  • Lee W, Haslinger A, Kariri M, et al. Activation of transcription by two factors that bind promotor and enhancer sequences of the human metallothionein gene and SV40. Nature 1987; 325: 368–370
  • Kadonaga J T, Tjian R. Affinity purification of sequence-specific DNA binding proteins. Proc Natl Acad Sci (USA) 1986; 83: 5889–5893
  • Briggs M R, Kadonaga J T, Bell S P, et al. Purification and biochemical characterization of the promoter-specific transcription factor, Spl. Science 1986; 234: 47–52
  • Jones K A, Kadonaga J T, Rosenfeld P J, et al. A cellular DNA-binding protein that activates eukaryotic transcription and DNA replication. Cell 1987; 48: 79–89
  • Schleif R. Why should DNA loop?. Nature 1987; 327: 369–370
  • Echols H. Multiple DNA-protein interactions governing high precision DNA transactions. Science 1986; 233: 1050–1056
  • Holt J T, Venkat T, Moulton A D, et al. Inducible production of c-fos antisense RNA inhibits 3T3 cell proliferation. Proc Natl Acad Sci (USA) 1986; 83: 4794–4798
  • Nishikura K, Murray J M. Antisense RNA of proto-oncogene c-fos blocks renewed growth of quiescent 3T3 cells. Mol Cell Biol 1987; 7: 639–647
  • Studzinski G P, Brelvi Z S, Feldman S C, et al. Participation of c-myc protein in DNA synthesis of human cells. Science 1986; 234: 467–470
  • Bravo R, Neuberg M, Burckhardt J, et al. Involvement of common and cell type-specific pathways in c-fos gene control: Stable induction by cAMP in macrophages. Cell 1987; 48: 251–260
  • Prywes R, Roeder R G. Inducible binding of a factor to the c-fos enhancer. Cell 1986; 47: 777–784
  • Sassone-Corsi P, Verma I. Modulation of c-fos gene transcription by negative and positive cellular factors. Nature 1987; 326: 507–510
  • Gilman M Z, Wilson R N, Weinberg R A. Multiple protein binding sites in the 5′-flanking region regulate c-fos expression. Mol Cell Biol 1986; 6: 4305–4316
  • Treisman R. Identification of a protein-binding site that mediates transcriptional response of the c-fos gene to serum factors. Cell 1986; 46: 567–574
  • Chung J, Sinn E, Reed R R, et al. Trans-acting elements modulate expression of the human c-myc gene in Burkitt lymphoma cells. Proc Natl Acad Sci (USA) 1986; 83: 7918–7922
  • Marcu K B. Regulation of the expression of the c-myc proto-oncogene. BioEssays 1986; 6: 28–32
  • Sheridan J D, Atkinson M M. Physiological roles of permeable junctions: Some possibilities. Ann Rev Physiol 1985; 47: 337–353
  • Loewenstein W R. The cell-to-cell channel of gap junctions. Cell 1987; 48: 725–726
  • Mehta P P, Bertram J S, Loewenstein W R. Growth inhibition of transformed cells correlates with their junctional communication with normal cells. Cell 1986; 44: 187–196
  • Azarnia R, Loewenstein W R. Polyomavirus middle T antigen down regulates junctional cell-to-cell communication. Mol Cell Biol 1987; 7: 946–950
  • Chang C C, Trosko J E, Kung H J, et al. Potential role of src gene product in inhibition of gap-junctional communication in NIH/3T3 cells. Proc Natl Acad Sci (USA) 1985; 82: 5360–5364
  • Maher P A, Pasquale E B, Wang J Y, et al. Phosphotyrosine-containing proteins are concentrated in focal adhesions and intracellular junctions in normal cells. Proc Natl Acad Sci (USA) 1985; 82: 6576–6580
  • Young J D, Cohn Z A, Gilula N B. Functional assembly of gap junction conductance in lipid bilayers: Demonstration that the major 27 kd protein forms the junctional channel. Cell 1987; 48: 733–743
  • Paul D L. Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 1986; 103: 123–134
  • Kumar N M, Gilula N B. Cloning and characterization of human and rat liver cDNAs coding for a gap junction protein. J Cell Biol 1986; 103: 767–776
  • Marks P A, Sheffery M, Rifkind R A. Induction of transformed cells to terminal differentiation and the modulation of gene expression. Cancer Res 1987; 47: 659–666
  • Gerschenson M, Graves K, Carson S D, et al. Regulation of melanoma by embryonic skin. Proc Natl Acad Sci (USA) 1986; 83: 7307–7310
  • Newmark P. Oncogenes and cell growth. Nature 1987; 327: 101–102
  • Sachs L. Cell differentiation and bypassing of genetic defects in the suppression of malignancy. Cancer Res 1987; 47: 1981–1986
  • Olden K, Matsumoto K, White S, et al. Inhibition of B16-F10 melanoma experimental metastasis: Recent approaches (abstr. Q220). J Cell Biochem 1987; 11D(Suppl)110
  • Furcht L T, McCarthy J B, Nordan-Skubitz A, et al. Role of laminin and fibronectin domains in the migration and in vivo metastasis of tumor cells (abstr.). International Congress, Cancer Metastasis, BolognaItaly, May, 13–151987, 33
  • Sloane B F, Rozhin J, Lah T T, et al. Tumor cathepsin B and its endogenous inhibitor in metastasis (abstr). International Congress, Cancer Metastasis, BolognaItaly, May, 13–151987, 41
  • Dennis J W, Laferte S, Waghorne C, et al. B1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1986; 236: 582–585
  • Liteplo R G, Kerbel R S. Reduced levels of DNA 5-methylcytosine in metastatic variants of the human melanoma line MeWo. Cancer Res 1987; 47: 2264–2267
  • Jones P A, Chandler L A, Ghazi H, et al. DNA methylation patterns and tumor heterogeneity (abstr. Q006). J Cell Biochem 1987; 11D(Suppl)80
  • Pulciani S, Santos E, Long L K, et al. ras Gene amplification and malignant transformation. Mol Cell Biol 1985; 5: 2836–2841
  • Bernstein S C, Weinberg R A. Expression of the metastatic phenotype in cells transfected with human metastatic tumor DNA. Proc Natl Acad Sci (USA) 1985; 82: 1726–1730
  • Bradley M D, Kraynak A R, Storer R D, et al. Experimental metastasis in nude mice of N1H 3T3 cells containing various ras genes. Proc Natl Acad Sci (USA) 1986; 83: 5277–5281
  • Egan S E, McClarty G A, Jarolim L, et al. Expression of H-ras correlates with metastatic potential: Evidence for direct regulation of the metastatic phenotype in 10T1/2 and NIH 3T3 cells. Mol Cell Biol 1987; 7: 830–837
  • Egan S E, Jarolim L, Wright J A, et al. Direct regulation of the metastatic phenotype in established rodent fibroblasts by normal and activated H-ras (abstr. Q110). J Cell Biol 1987; 1ID(Suppl)97
  • Muschel R J. RasH oncogenes and metastasis. J Cell Biochem (abstr. Q011). J Cell Biochem 1987; 11D(Suppl)83
  • Pozzatti R, Muschel R, Wiliams J, et al. Primary rat embryo cells transformed by one or two oncogenes show different metastatic potentials. Science 1986; 232: 223–227
  • Kerbel R S, Waghorne C, Man M S, et al. Alteration of the tumorigenic and metastatic properties of neoplastic cells is associated with the process of calcium phosphate-mediated DN A transfection. Proc Natl Acad Sci (USA) 1987; 84: 1263–1267

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.