5
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Tumor Suppressor Genes and Cancer of the Human Nervous System

&
Pages 429-438 | Published online: 11 Jun 2009

References

  • Harris J, Miller O J, Klein G, et al. Suppression of malignancy by cell fusion. Nature 1969; 223: 363–368
  • Klein G, Bregula U, Weiner F, et al. The analysis of malignancy by cell fusion. I. Hybrids between tumour cells and L cell derivatives. J Cell Sci 1974; 8: 659–672
  • Stanbridge EJ. Genetic regulation of tumorigenic expression in somatic cell hybrids. Adv Viral Oncol 1987; 6: 83
  • Stanbridge E J, Flandermeyer R R, Daniels DW, et al. Specific chromosome loss associated with the expression of tumorigenicity in human cell hybrids. Somatic Cell Genet 1981; 7: 699–712
  • Oshimura M, Koi M, Morita H, et al. Suppression of tumorigenecity of human cancer cell lines following chromosome transfer via microcell fusion. Proc Am Assoc Cancer Res 1989; 30: 786
  • Trent J M, Stanbridge E J, McBride HL, et al. Tumorigenicity in human melanoma cell lines controlled by introduction of human chromosome 6. Science 1990; 247: 568–571
  • Dracopoli N C, Harnett P, Bale SJ, et al. Loss of alleles from the distal short arm of chromosome 1 occurs late in melanoma tumor progression. Proc Natl Acad Sci (USA) 1989; 86: 4614–4618
  • Weston A, Willey J C, Modali H, et al. Differential DNA sequence deletions from chromosomes 3, 11, 13, and 17 in squamous cell carcinoma, large cell carcinoma, and adenocarcinoma of the human lung. Proc Natl Acad Sci (USA) 1989; 86: 5099–5103
  • Kovacs G, Erlandsson R, Bolldog F, et al. Consistent chromosome 3p deletion and loss of heterozygosity in renal cell carcinoma. Proc Natl Acad Sci (USA) 1988; 85: 1571–1575
  • Yokota J, Tsukuda Y, Nakajima T, et al. Loss of heterozygosity on the short arm of chromosome 3 in carcinoma of the cervix. Cancer Res 1989; 49: 3598–3601
  • Green AR. Recessive mechanisms of malignancy. Br J Cancer 1988; 58: 115–121
  • Callahan R, Campbell G. Mutations in human breast cancer: an overview. J Natl Cancer Inst 1989; 81: 1780–1786
  • Fearon E R, Feinberg A P, Hamilton SH, et al. Loss of genes on the short arm of chromosome 11 in bladder cancer. Nature 1985; 318: 377–380
  • Comings DE. A general theory of carcinogenesis. Proc Natl Acad Sci (USA) 1973; 70: 3324–3328
  • De Mars R. In 23rd Ann. Symp. Fundamental Cancer Research Williams & Wilkins. Baltimore 1970; 105–106
  • Knudson AG. Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci (USA) 1971; 68: 820–823
  • Hansen M F, Cavenee WK. Genetics of cancer predisposition. Cancer Res 1987; 47: 5518–5527
  • Cavenee W K, Dryja T P, Phillips RA, et al. Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 1983; 305: 779–784
  • Nakamura Y, Leppert M, O'Connell P, et al. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 1987; 235: 1616–1622
  • Cavenee W K, Hansen M K, Kock E, et al. Genetic origins of mutations predisposing to retinoblastoma. Science 1985; 228: 501–503
  • Ponder B. Gene losses in human tumours. Nature 1988; 335: 400–402
  • Seizinger B R, Breakefield XO. The role of “tumor suppressor” genes in neural tumors. Trends Neurosci 1990; 13: 3–6
  • Friend S H, Bernards R, Rogel S, et al. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 1986; 323: 643–646
  • Seizinger B R, Martuza R L, Gusella JF. Loss of genes on chromosome 22 in tumorigenesis of human acoustic neuroma. Nature 1986; 322: 644–647
  • Seizinger B R, de la Monte S, Atkins L, et al. Molecular genetic approach to human meningioma: Loss of genes on chromosome 22. Proc Natl Acad Sci (USA) 1987; 84: 5419–5423
  • El-Azouzi M, Chung R Y, Farmer GE, et al. Loss of distinct regions on the short arm of chromosome 17 associated with tumorigenesis of human astrocytomas. Proc Natl Acad Sci (USA) 1989; 86: 7186–7190
  • James C D, Carlbom E, Dumanski JP, et al. Clonal genomic alterations in glioma malignancy stages. Cancer Res 1988; 48: 5546–5551
  • James C D, Carlbom E, Nordenskjold M, et al. Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci (USA) 1989; 86: 2858–2862
  • Fujimoto M, Fults D W, Thomas GA, et al. Loss of heterozygosity on chromosome 10 in human glioblastoma multiforme. Genomics 1989; 4: 210–214
  • Barker D, Wright E, Nguyen K, et al. Gene for von Recklinghausen neurofibromatosis is in the pericentromeric region of chromosome 17. Science 1987; 236: 1100–1102
  • Seizinger B R, Rouleau G A, Ozelius LJ, et al. Genetic linkage of von Recklinghausen neurofibromatosis to the nerve growth factor receptor gene. Cell 1987; 49: 589–594
  • Seizinger B R, Rouleau G A, Ozelius LJ, et al. Common pathogenetic mechanism for three tumor types in bilateral acoustic neurofibromatosis. Science 1987; 236: 317–319
  • Seizinger B R, Rouleau G A, Ozelius LJ, et al. Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988; 332: 268–269
  • Larsson C, Skogseid B, Oberg K, et al. Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma. Nature 1988; 332: 85–87
  • Mathew C GP, Smith B A, Thorpe K, et al. Deletion of genes on chromosome 1 in endocrine neoplasia. Nature 1987; 328: 524
  • Francke U. Retinoblastoma and chromosome 13. Cytogenet Cell Genet 1976; 16: 131
  • Sparkes R S, Sparkes M C, Wilson MG, et al. Regional assignment of genes for human esterase D and retinoblastoma to chromosome band 13q14. Science 1980; 208: 1042–1044
  • Sparkes R S, Murphree A L, Lingua RW, et al. Gene for hereditary retinoblastoma assigned to chromosome 13 by linkage to esterase D. Science 1983; 219: 971–973
  • Lee W H, Bookstein R, Hong F, et al. Human retinoblastoma susceptibility gene: cloning, identification and sequence. Science 1987; 235: 1394–1399
  • Hong F D, Huang H-JS, To H, et al. Structure of the human retinoblastoma gene. Proc Natl Acad Sci (USA) 1989; 86: 5502–5506
  • Yandell D W, Campbell T A, Dayton SH, et al. Identification of cancer-causing point mutations in the human retinoblastoma gene and application to genetic counseling. N Engl J Med 1989; 321: 1689
  • Huang H-JS, Yee J-K, Shew J-Y, et al. Suppression of the neoplastic phenotype by replacement of the RB gene in human cancer cells. Science 1988; 242: 1563–1566
  • De Caprio J A, Ludlow J W, Figge J, et al. SV40 large T antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 1988; 54: 275–283
  • Whyte P, Buchovich K J, Horowitz JM, et al. Association between an oncogene and an antioncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 1988; 334: 124–129
  • Dyson N, Howley P M, Munger K, et al. The human papilloma virus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 1989; 243: 934–936
  • Green MR. When the products of oncogenes and anti-oncogenes meet. Cell 1989; 56: 1–3
  • Ruley HE. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 1983; 304: 602–606
  • Fried M, Prives C. The biology of simian virus 40 and polyomavirus. Cancer Cells 1986; 4: 1–16
  • Stabel S, Argos P, Philipson L. The release of growth arrest by microinjection of adenovirus E1A DNA. EMBO J 1985; 4: 2329–2336
  • Moran E, Mathews MB. Multiple functional domains in the adenovirus E1A gene. Cell 1987; 48: 177–178
  • Livingston D M, Bradley MK. Review: the simian virus 40 large T antigen-a lot packed into a little. Mol Biol Med d 1987; 4: 63–80
  • De Caprio J A, Ludlow J W, Lynch D, et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 1989; 58: 1085–1095
  • Buchovich K, Duffy L A, Harlow E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 1989; 58: 1097–1105
  • Tjian R, Fey G, Graessmann A. Biological activity of purified simian virus 40 T antigen proteins. Proc Natl Acad Sci (USA) 1978; 75: 1279–1283
  • Ludlow J W, De Caprio J A, Huang C-M, et al. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 1989; 56: 57–65
  • Corallini A, Pagnani M, Viadana P, et al. Association of BK virus with human brain tumors and tumors of pancreatic islets. Int J Cancer 1987; 39: 60–67
  • Harbour J W, Lai S-L, Whang-Peng J, et al. Abnormalities in structure and expression of the human retinoblastoma susceptibility gene in SCLC. Science 1988; 241: 353–356
  • Bookstein R, Lee EY-H, Peccei A, et al. Human retinoblastoma gene: long-range mapping and analysis of its deletion in a breast cancer cell line. Mol Cell Biol 1989; 9: 1628–1634
  • Lee ET-H, To P, Shew J-Y, et al. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 1988; 241: 218–221
  • Horowitz J M, Yandell D W, Park S-H, et al. Point mutational inactivation of the retinoblastoma antioncogene. Science 1989; 243: 937–940
  • Toguchida J, Ishikazi K, Sasaki MS, et al. Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma. Nature 1989; 338: 156–158
  • Lane D P, Crawford LV. T antigen is bound to a host protein in SV40-transformed cells. Nature 1979; 278: 261–263
  • Sarnow P, Ho Y S, Williams J, et al. Adenovirus E1B-58k tumor antigen and SV40 large tumor antigen are physically associated with the same 54kd cellular protein in transformed cells. Cell 1982; 28: 387
  • Eliyahu D, Raz A, Gruss P, et al. Participation of p53 cellular tumour antigen in transformation of normal embryonic cells. Nature 1984; 312: 646–649
  • Parada L F, Land H, Weinberg RA, et al. Cooperation between gene encoding p53 tumour antigen andrasin cellular transformation. Nature 1984; 312: 649–651
  • Finlay C A, Hinds P W, Levine AJ. The p53 proto-oncogene can act as a suppressor of transformation. Cell 1989; 57: 1083–1093
  • Benchimol S, Pim D, Crawford L. Radioimmunoassay of the cellular protein p53 in mouse and human cell lines. EMBO J 1982; 1055–1062
  • Mowat M, Cheng A, Kimura N, et al. Rearrangements of the cellular p53 gene in erythroleukemic cells transformed by Friend virus. Nature 1985; 314: 633–636
  • Wolf D, Rotter V. Major deletions in the gene encoding the p53 tumor antigen cause lack of p53 expression in HL-60 cells. Proc Natl Acad Sci (USA) 1985; 82: 790–794
  • Mercer W E, Nelson D, DeLeo AB, et al. Microinjection of monoclonal antibody to protein p53 inhibits serum-induced DNA synthesis in 3T3 cells. Proc Natl Acad Sci (USA) 1982; 79: 6309–6312
  • Shohat O, Greenberg M, Reisman D, et al. Inhibition of cell growth mediated by plasmids encoding p53 anti-sense. Oncogene 1987; 1: 277
  • Wang E H, Friedman P N, Prives C. The murine p53 protein blocks replication of SV40 DNA in vitro by inhibiting the initiation functions of SV40 large T antigen. Cell 1989; 57: 379–382
  • Masuda H, Miller C, Koeffler HP, et al. Rearrangement of the p53 gene in human osteogenic sarcomas. Proc Natl Acad Sci (USA) 1987; 84: 7716–7719
  • Takahashi T, Nau M M, Chiba I, et al. p53: a frequent target for genetic abnormalities in lung cancer. Science 1989; 246: 491–494
  • Baker S J, Fearon E R, Nigro JM, et al. Chromosome 17 deletions and p53 gene mutations in colorectal carcinomas. Science 1989; 244: 217–221
  • Nigro J M, Baker S J, Preisinger AC, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989; 342: 705–708
  • Chung R Y, Whaley J M, Yandell DW, et al. P53 gene mutations associated with the early appearance of the malignant phenotype in human adult astrocytomas, submitted for publication
  • Menon A G, Anderson K M, Riccardi VM, et al. Chromosome 17p deletions and p53 gene mutations associated with neurofibrosarcomas from patients with NF1, submitted for publication
  • Zulch KJ. Brain Tumors: Their Biology and Pathology3 ed. Springer Publishing, New York 1986
  • Van Tuinen P, Rich D C, Summers KM, et al. Regional mapping panel for human chromosome 17: application to neurofibromatosis type 1. Genomics 1987; 1: 374
  • Eliyahu D, Goldfinger N, Pinhasi-Kimhi O, et al. Meth A fibrosarcoma cells express two transforming mutant p53 species. Oncogene 1988; 3: 313
  • Rovinski B, Benchimol S. Immortalization of rat embryo fibroblasts by the cellular p53 oncogene. Oncogene 1988; 2: 445–452
  • Herskowitz I. Functional inactivation of genes by dominant negative mutations. Nature 1987; 329: 219–222
  • Knudson AG. Hereditary cancer, oncogenes, and antioncogenes. Cancer Res 1985; 45: 1437–1443
  • Noda M, Kitayama H, Matsuzaki T, et al. Detection of genes with a potential for suppressing the transformed phenotype associated with activatedrasgenes. Proc Natl Acad Sci (USA) 1989; 86: 162–166
  • Kitayama H, Sugimoto Y, Matsuzaki T, et al. Aras-related gene with transformation suppressor activity. Cell 1989; 56: 77–84
  • Zarling J M, Shoyab M, Marquardt H, et al. Oncostatin M: a growth regulator produced by differentiated histiocytic lymphoma cell. Proc Natl Acad Sci (USA) 1986; 83: 9729–9743
  • Newmark P. Oncogenes and cell growth [news]. Nature 1987; 327: 101
  • Kimchi A, Wang X F, Weinberg RA, et al. Absence of TGF-beta receptors and growth inhibitory responses in retinoblastoma cells. Science 1988; 240: 196–199
  • Fearon E R, Cho K R, Nigro JM, et al. Identification of a chromosome 18q gene that is altered in colorectal cancers. Science 1990; 247: 49–56
  • Bos J L, Fearon E R, Hamilton SR, et al. Prevalence ofrasgene mutations in human colorectal cancers. Nature 1987; 327: 293–297
  • Forrester K, Almoguera M, Han K, et al. Detection of high incidence of K-rasoncogenes during human colon tumourigenesis. Nature 1987; 327: 298–303
  • Vogelstein B, Fearon E R, Dern SE, et al. Allelotype of colorectal carcinomas. Science 1989; 244: 207
  • Solmon E, Voss R, Hall V, et al. Chromosome 5 allele loss in human colorectal carcinomas. Nature 1987; 328: 616–619
  • Williams A F, Barclay AN. The immunoglobulin superfamily-domains for cell surface recognition. Ann Rev Immunol 1988; 6: 381
  • Hynes RO. Molecular biology of fibronectin. Ann Rev Cell Biol 1986; 1: 67
  • Todaro G J, Green H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established cell lines. J Cell Biol 1963; 17: 299
  • Fidler I J, Hart IR. Biologic diversity in metastatic neoplasms: origins and implications. Science 1982; 217: 998–1003
  • Greenberg M E, Brackenberry R, Edelman GM. Alteration of neural cell adhesion molecule (N-CAM) expression after neuronal cell transformation by Rous sarcoma virus. Proc Natl Acad Sci (USA) 1984; 81: 969–973
  • Pignatelli M, Bodmer WF. Genetics and biochemistry of collagen binding triggered glandular differentiation of a human colon carcinoma cell line. Proc Natl Acad Sci (USA) 1988; 85: 5561–5565
  • Marks P A, Sheffrey M, Rifkind RA, et al. Introduction of transformed cells to dermal differentiation and the modulation of gene expression. Cancer Res 1987; 47: 659–666
  • Folkman J, Cotran R. Relation of vascular proliferation to tumor growth. Int Rev Exp Pathol 1976; 16: 207–248
  • Bouck N P, di Mayorca G. Chemical carcinogens transform BHK cells by inducing a recessive mutation. Mol Cell Biol 1982; 2: 97–105
  • Bouck N P, Head M. The majority of independently transformed BHK cell clones share a single functional lesion which determines anchorage independence and influences tumorigenicity. In Vitro Cell Dev Biol 1985; 21: 463–469
  • Bouck N P, Stoler A, Polverini PJ. Coordinate control of anchorage independence, actin cytoskeleton, and angiogenesis by human chromosome 1 in hamster-human hybrids. Cancer Res 1986; 46: 5101–5105
  • Stoler A, Bouck NP. Identification of a single chromosome in the normal genome essential for suppression of hamster cell transformation. Proc Natl Acad Sci (USA) 1985; 82: 570–574
  • Rastinejad F, Polverini P J, Bouck NP. Regulation of the activity of an new inhibitor of angiogenesis by a cancer suppressor gene. Cell 1989; 56: 345–355
  • Fong C-T, Dracopoli N C, White PS, et al. Loss of heterozygosity for the short arm of chromosome 1 in human neuroblastomas: Correlation with N-mycamplification. Proc Natl Acad Sci (USA) 1989; 86: 3753–3757

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.