5
Views
1
CrossRef citations to date
0
Altmetric
Original Article

Clinical Needs for Hematopoietic Growth Factors: Old and New

Pages 622-634 | Published online: 11 Jun 2009

References

  • Cook D L, Guyatt G H, Laupacis A, et al. Rules of evidence and clinical recommendations on the use of antithrombotic agents (published erratum appears. Chest 1994; 105(2)647
  • Chest 1992; 102(Suppl 4)305S–311S
  • Canadian Medical Association. The Canadian Task Force on the periodic health examination. Can Med Assoc J 1979; 121: 1193–1254
  • American Society of Clinical Oncology: American Society of Clinical Oncology Recommendations for the use of hemalopoielic colony-stimulating factors: Evidence-based, clinical practice guidelines.]. Clin Oncol 1994; 12: 2471–2508
  • Crawford J, Ozer H, Stoller R, et al. Reduction of granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small cell lung cancer (R-Met HuGCSF). N Engl J Med 1991; 325: 164–170
  • Pettengell R, Gurney H, Radford J A, et al. Granulocyte colonystimulating factor to prevent dose-limiting neutropenia in non-Hodgkin's lymphoma: A randomized controlled trial. Blood 1992; 80: 1430–1436
  • Trillet-Lenoir V, Green J, Manegold C, et al. Recombinant granulocyte colony-stimulating factor reduces the infectious complications of cytotoxic chemotherapy. Eur J 1993; 29A: 319–324
  • Vadhan-Kaj S, Broxmeyer H E, Hitlelman W N, et al. Abrogating chemotherapy-induced myelosuppression by recombinant granulocyte-macrophage colony-stimulating factor in patients with sarcoma: Protection at the progenitor cell level. J Clin Oncol 1992; 10: 1266–1277
  • Maher D W, Lieschke G J, Green M, et al. Filgrastim in patients with chemotherapy-induced febrile neutropenia: A double-blind, placebo-controlled trial. Ann Intern Med 1994; 121: 492–501
  • Lyman G H, Lyman C G, Sanderson R A, et al. Decision analysis of hematopoietic growth factor use in patients receiving cancer chemotherapy. J Natl Cancer Inst 1993; 85, 1935–1936
  • Glaspy J, Bleecker G, Crawford J, et al. The impact of therapy with recombinant granulocyte colony-stimulating factor (G-CSF) on health care costs associated with cancer chemotherapy. Blood 1991; 78(Suppl 1)7a, abstract
  • Mayordomo J I, Rivera F, Diaz-Puente M T, et al. Decreasing morbidity and cost of treating febrile neutropenia by adding G-CSF and GM-CSF to standard antibiotic therapy: Results of a randomized trial. Proc Am Soc Clin Oncol 1993; 12: 437, abstract
  • Anaissie E, Vartivarian S, Bodey G P, et al. Randomized comparison between antibiotics alone and antibiotics plus granulocyte-macrophage colony-stimulating factor (E. coli-derived) in cancer patients with fever and neutropenia. Am J Med 1996; 100: 17–23
  • Advani R, Chao N J, Horning S J, et al. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as an adjunct to autologous hematopoietic stem cell transplantation for lymphoma. Ann Intern Med 1992; 116: 183–189
  • Link H, Boogaerts M A, Carella A M, et al. A controlled trial of recombinant human granulocyte-macrophage colony-stimulating factor after total body irradiation, high-dose chemotherapy, and autologous bone marrow transplantation for acute lymphoblastic leukemia or malignant lymphoma. Blood 1992; 80: 2188–2195
  • Chao N J, Schriber J R, Grimes K, et al. Granulocyte colony-stimulating factor (mobilized) peripheral blood progenitor cells accelerate granulocyte and platelet recovery after high-dose chemotherapy. Blood 1993; 81: 2031–2035
  • Klingemann H G, Eaves A C, Barnetl M J, et al. Recombinant GM-CSF in patients with poor graft function after bone marrow transplantation. Clin Invest Med 1990; 13: 77–81
  • Brandwein J M, Nayar R, Baker M A, et al. GM-CSF therapy for delayed engraftment after autologous bone marrow transplantation. Exp Hematol 1991; 19: 191–195
  • Ippoliti C, Przepiorka D, Giralt S, et al. Low-dose non-glycosylated rhGM-CSF is effective for the treatment of delayed hematopoietic recovery after autologous marrow or peripheral blood stem cell transplantation. Bone Marrow Transplant 1993; 11: 55–59
  • Schwartzberg L S, Birch R, Hazelton B, et al. Peripheral blood stem cell mobilization by chemotherapy with and without recombinant human granulocyte colony-stimulating factor. J Hematother 1993; 1: 317–327
  • Sheridan W P, Begley C G, Juttner C A, et al. Effective peripheral-blood progenitor cells mobilized by filgrastim (G-CSF) on platelet recovery after high-dose chemotherapy. Lancet 1992; 339: 640–644
  • Haas R, Hohaus S, Egerer G, et al. Recombinant human granulocyle-macrophage colony-stimulating factor (rhgm-CSF) subsequent to chemotherapy improves collection of blood stem cells for autografting in patients not eligible for bone marrow harvest. Bone Marrow Transplant 1992; 9: 459–465
  • Kritz A, Crown J P, Motzer R J, et al. Beneficial impact of peripheral blood progenitor cells in patients with metastatic breast cancer treated with high-dose chemotherapy plus granulocyte-macrophage colony-stimulating factor: A randomized trial. Cancer 1993; 71: 2515–2521
  • Tepler I, Cannistra S A, Frei E, III, et al. Use of peripheral-blood progenitor cells abrogates the myeloloxicity of repetitive out-patient high-dose carboplatin and cyclophosphamide chemotherapy. J Clin Oncol 1993; 11: 1583–1591
  • Nemunaitis J, Rabinowe S, Singer J. Recombinant granulocytemacrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid cancer. N Engl J Med 1991; 324: 1773–1778
  • Linch D C, Scarffe H, Proctor S, et al. Randomized vehicle-controlled dose-finding study of glycosolated recombinant human granulocyte colony-stimulating factor after marrow transplantation. Bone Marrow Transplant 1993; 11: 307–311
  • Ganser A, Volkers B, Greher J, et al. Recombinant human granulocyte-macrophage colony-stimulating factor in patients with myelodysplastic syndromes—A phase I/II trial. Blood 1989; 73: 31–37
  • Broxmeyer H E, Benmnger L, Patel S, et al. Kinetic response of human marrow myeloid progenitor cells to in vivo treatment of patients with granulocyte colony-stimulating factor is different from the response to treatment of granulocyte-macrophage colonystimulating factor. Exp Hematol 1994; 22: 100–102
  • Griffin T C, Buchanan O R. Hematologic predictors of bone marrow recovery in neutropenic patients hospitalized for fever: Implications for discontinuation of antibiotics and early discharge from the hospital. J Pediatr 1992; 121: 28–33
  • Miller S CB, Jones R J, Piantadosi S, et al. Decreased erythropoietin response in patients with the anemia of cancer. N Engl J Med 1990; 322: 1689–1692
  • Oster W, Herrmann F, Gamm H, et al. Erythropoietin for the treatment of anemia of malignancy associated with neoplastic bone marrow infiltration. J Clin Oncol 1990; 8: 956–962
  • Ludwig H, Fritz E, Kotzmann H, et al. Erythropoietin treatment of anemia associated with multiple myeloma. N Engl J Med 1990; 322: 1693–1699
  • Skillings J R, Sridhar F G, Wong C, Paddock L. The frequency of red cell transfusion for anemia in patients receiving chemotherapy. A retrospective cohort study. Am J Clin Oncol (CCT) 1993; 16: 22–25
  • Cascinu S, Fedeli A, Del Ferro E, et al. Recombinant human erythropoietin treatment in cisplatin-associated anemia: A randomized double-blind trial with placebo. J Clin Oncol 1994; 12: 1058–1062
  • Abels R I, Larholt K M, Krant K D, . Recombinant human erythropoietin (rHuEPO) for the treatment of the anemia of cancer. Blood Cell Growth Factors: Their Present and Future Use in Hematology and Oncology. Bejing Symposium, M J Murphy, et al. Alpha Med Press, Dayton, OH 1991; 121–141
  • Bunn H F. Recombinant erythropoietin therapy in cancer patients. J Clin Oncol 1990; 8: 949–951
  • Rusthoven J. Effects of blood transfusion on cancer recurrence. Immunological Effects of Blood Transfusion, D. Singal. CRC Press, Boca Raton, FL 1994; 85–110
  • Evans R W, Rader B, Manninen D L. The quality of life with hemodialysis recipients treated with recombinant human erythropoietin. JAMA 1990; 263: 825–830
  • Drummond M F, Davies L. Economic analysis alongside clinical trials: Revisiting the methodologic issues. Int J Technol Assess Health Care 1991; 7: 561–573
  • O'Brien B J, Drummond M F, Labelle R J, Willan A. In search of power and significance: Issues in the design and analysis of stochastic cost-effectiveness studies in health care. Med Care 1994; 32: 150–163
  • Giralt S, Escudier S, Kantarjian H, et al. Preliminary results of treatment with filgrastim for relapse of leukemia and myelodysplasia after allogeneic bone marrow transplantation. N Engl J Med 1993; 329: 757–761
  • Borer J S. t-PA and the principles of drug approval. N Engl J Med 1987; 317: 1659–1661
  • Ray W A, Griffin M R, Avorn J. Evaluating drugs after their approval for clinical use. N Engl J Med 1993; 329: 229–232
  • D'Hondt V, Weynants P, Humblet Y, et al. Dose-dependent interleukin-3 stimulation of thrombopoiesis and neutropoiesis in patients with small-cell lung cancer before and following chemotherapy. J Clin Oncol 1993; 11: 2063–2071
  • Vadhan-Raj S, Kudelka A, Garrison L, et al. Interleukin-1 α (IL- 1α) increases circulating platelet (PLT) counts and reduces carboplatin (CBDCA) induced thrombocytopenia. Proc Am Soc Clin Oncol 1992; 11: 224
  • Weber J, Yang J C, Topalian S L, et al. Phase I trial of subcutaneous interleukin-6 in patients with advanced malignancies. J Clin Oncol 1993; 11: 499–506
  • Lotze M. Interleukin-6. Cancer Invest 1993; 11: 732–742
  • Gordon M S, Battiato L, Hoffman R, et al. Subcutaneously administered recombinant-human interleukin-11 (Newmega rh IL-11 growth factor: rh IL-11) prevents thrombocytopenia following chemotherapy with cyclophosphamide and doxarubicin in women with breast cancer. Blood 1993; 82(10-Suppl 1)318a, abstract
  • Farese A M, Herodin F, Grab L B, et al. Therapeutic efficacy of synthokine SC-55494 in a nonhuman primate model of high-dose sublethal radiation-induced marrow aplasia. Blood 1994; 84(10-Suppl 1)28a, abstract
  • Vadhan-Raj S, Papadopoulos N E, Burgess M A, et al. The effects of PIXY 321, a granulocyte macrophage colony-stimulating factor/interleukin-3 fusion protein, on chemotherapy-induced inultilineage myelosuppression in patients with sarcoma. J Clin Oncol 1994; 12: 1715–1724
  • Smith J, Longo D, Lavord W, et al. Thrombopoietic effects of IL-1α in combination with high-dose carboplatin. Proc Am Soc Clin Oncol 1992; 11: 252
  • Tanaka R, Koike K, Imai T, et al. Stem cell factor enhances proliferation, but not maturation, of murine megakaryocylic progenitors in serum-free culture. Blood 1992; 80: 1743–1749
  • Muraguchi A, Hirano T, Tang B, et al. The essential role of B cell stimulatory factor to (BSF-2/1L-6) for the terminal differentiation of B cells. J Exp Med 1988; 167: 332–344
  • Okada M, Kitahara M, Kishimoto S, et al. IL-6/BSF-2 functions as a killer helper factor in the in vitro induction of cytotoxic T Cells. J Immunol 1988; 141: 1543–1549
  • Gauldie J, Richards C, Baumann H. 1L-6 and the acute phase reaction. Res Inimunol 1992; 143: 755–759
  • Schick B P. Hope for treatment of thrombocytopenia. N Engl J Med 1994; 331: 875–876
  • Souyri M, Vigon I, Penciolelli J F, et al. A putative truncated cytokine receptor gene transduced by the myeloproliferalive leukemia virus immortalizes hematopoietic progenitors. Cell 1990; 63: 1137–1147
  • Vigon I, Mornon J P, Cocault L, et al. Molecular cloning and characterization of MPL, the human homolog of v-mpl oncogene: Identification of a member of the hematopoietic growth factor superfamily. Proc Natl Acad Sci USA 1992; 89: 5640–5644
  • de Sauvagc F J, Hass P E, Spencer S D, et al. Stimulation of megakaryocytopoiesis and thrombopoiesis by the c-Mpl ligand. Nature 1994; 369: 533–538
  • Wendling F, Maraskovsky E, Debili N, et al. c-Mpl ligand is a humoral regulator of megakaryocylopoiesis. Nature 1994; 369: 571–574
  • Kaushansky K, Lok S, Holly R D, et al. Promotion of megakaryocyle progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature 1994; 369: 568–571
  • Gulati S, Bennett C. Granulocyte-macrophage colony-stimulating factor (GM-CSF) as adjunct therapy in relapsed Hodgkin's disease. Ann Intern Med 1992; 116: 177–182
  • Rabinowe S N, Neuberg D, Bierman P J, et al. Long-term follow-up of phase HI study of recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for lymphoid malignancies. Blood 1993; 81, 1903–1908
  • Gorin N C, Coiffire B, Hayat M, et al. Recombinant human granulocyte-macrophage colony-stimulating faclor after high-dose chemotherapy and autologous bone marrow transplantation with unpurged manow in non-Hodgkin's lymphoma: A double-blind placebo-controlled trial. Blood 1992; 80: 1498–1157
  • Khwaja A, Linch D C, Goldstone A H, et al. Recombinant human granulocyte-macrophage colony-stimulating factor after autologous bone marrow transplantation for malignant lymphoma: A British national lymphoma investigation double-blind, placebocontrolled trial. Br J Haematol 1992; 82: 317–323
  • Stahel R A, Muller E, Pichert G, et al. Dose intensification of autologous marrow support in high-risk lymphoma: Acceleration of hematopoietic recovery and reduction of days of hospitalization with granulocyte colony-slimulating factor (G-CSF) in a randomized open-label trial (meeting abstract). Proc Am Soc Clin Oncol 1992; 11: 331, abstract
  • Schmitz N, Dreger P, Zander A, et al. Recombinanl human granulocyte colony-stimulating factor (Filgrastim) after autologous bone marrow transplantation for lymphoma: An open label randomized trial in Germany. Blood 1992; 80(Suppl 1)292a, abstract
  • Masaoka T, Moriyama Y, Kato S, et al. A randomized, placebocontrolled trial of KRN8601 (recombinant human granulocyte colony-stimulating factor) in patients receiving allogeneic bone marrow transplantation. Jpn J Med 1990; 3: 233–239
  • De Witte T, Gratwohl A, Van Der Lely N. Recombinant human granulocyte-macrophage colony-stimulating factor accelerates neutrophil and monocyte recovery after allogeneic T-cell depleted bone marrow transplantation. Blood 1992; 79: 1359–1365
  • Powles R, Smith C, Milan S, et al. Human recombinant GM-CSF in allogeneic bone marrow transplantation for leukemia: A double-blind placebo-controlled trial. Lancet 1990; 336: 1417–1420
  • Gupta P, Tiley C, Powles R, et al. No increase in patients with myeloid leukemias receiving rhGM-CSF after allogeneic bone marrow transplantation. Bone Marrow Transplant 1992; 9: 491–493
  • Blaise D, Vernant J P, Fiere D, et al. A randomized, controlled, multicentre trial of recombinant human granulocyte colony-stimulating factor (Figraslim) in patients treated by bone marrow transplantation with total body irradiation for acute lymphoblastic leukemia or lymphoblastic lymphoma. Blood 1992; 80(Suppl 1)982a, abstract
  • Gurney H, Dodwell D, Thatcher N, et al. Escalating drug delivery in cancer chemotherapy: A review of concepts and practice-Part 2. Ann Oncol 1993; 4: 103–115
  • Kaye S B, Lewis C R, Paul J, et al. A randomized study of two doses of cisplatin with cyclophosphamide in epithelial ovarian cancer. Lancet 1992; 340: 329–333
  • Fushiki M, Abe M. A randomized double-blind controlled study of rhG-CSF in patients with neutropenia induced by radiation therapy. Proc Am Soc Clin Oncol 1992, 11A1437, (meeting abstract)
  • Schmidberger H, Hess C F, Hoffmann W, et al. Granulocyte colony-stimulating factor treatment of leukopenia during fractionated radiotherapy. Eur J Cancer 1993; 29A, 1927–1931
  • Marks L B, Friedman H S, Kurtzberg J, et al. Reversal of radiation-induced neutropenia by granulocyle colony-stimulating factor. Med Pediatr Oncol 1992; 20: 240–242
  • Neta R, Douches S, Oppenheim J J. Interieukin-1 is a radioprotector. J Immunol 1986; 136: 2483–2485
  • Neta R, Oppenheim J J, Douches S D. Interdependence of the radioprotective effects of human recombinant IL-1, TNFα, G-CSF, and murine recombinant G-CSF. J Immunol 1988; 140: 108–111
  • Williams D E, Broxmeyer H E. Interleukin-1α: enhances the in vitro survival of purified murine granulocyte-macrophage progenitor cells in the absence of colony-stimulating factors. Blood 1988; 72: 1608–1615
  • Mochizuki D Y, Eisenman J R, Conlon P J, et al. Interleukin-1 regulates hematopoietic activity, a role previously ascribed to hematopoietin 1. Proc Natl Acad Sci USA 1987; 84: 5267–5271
  • Broxmeyer H E, Williams D E, Lu L, et al. The suppressive influences of human tumour necrosis factors on bone marrow hematopoietic progenitor cells from normal donors and patients with leukemia: Synergism of tumour necrosis factor and interferon-γ. J Immunol 1986; 136: 4487–4495
  • Zucali J R, Broxmeyer H E, Gross M A, Dinarello C A. Recombinant human tumour necrosis factors α and β stimulate fibroblasts to produce hematopoietic growth factors in vitro. J Immunol 1988; 140: 840–844
  • Bagby G C, Dinarello C A, Wallace P, et al. Interleukin 1 stimulates granulocyte-macrophage colony-stimulating activity release by vascular endothelial cells. J Clin Invest 1986; 78: 1316–1323
  • Neta R, Vogel S N, Sipe J D, et al. Comparison of in vivo effects of human recombinaiu IL-1 and human recombinant IL-6 in mice. Lymphokine Res 1988; 7: 403–411
  • Neta R, Oppenheim J J, Wang J M, et al. Synergy of IL-1 and stem cell factor in radioprotection of mice is associated with IL-1 up-regulation of mRNA and protein expression for ckit on bone marrow cells. J Immunol 1994; 153: 1536–1543
  • Neta R, Oppenheim J J. Cytokines in therapy of radiation injury. Blood 1988; 72: 1093–1095
  • Neta R, Wong G HW, Pilcher M. LIF and IL-4 used after lethal irradiation protect mice from death. Lymph Res 1990; 9: 568, abstract
  • Grant S, Traylor R, Pettit G R, Lin P S. Modulation of bryostatin 1 of the in vitro radioprotective effects of GM-CSF/IL-3 fusion protein, PIXY-321, on normal human myeloid progenitors. Cytokine 1993; 5: 490–497
  • Grant S, Traylor R, Pettit G R, Lin P S. The macrocyclic lactone protein kinase C activator, bryoslatin 1 either alone or in conjunction with recombinant murine granulocyte-macrophage stimulating factor protects Balb/C and C3H/HeN mice from the lethal in vivo effects of ionizing radiation. Blood 1994; 83: 663–667
  • Rennick D, Jackson J, Yang G, et al. Interleukin-6 interacts with interleukin-4 and other hematopoielic growth factors to selectively enhance the growth of megakaryocytic, erythroid, myeloid, and multipotential progenitor cells. Blood 1989; 73: 1828
  • Patchen M L, MacVittie T J, Williams J L, et al. Administration of interleukin-6 stimulates multilineage hematopoiesis and accelerates recovery from radiation-induced hematopoietic depression. Blood 1991; 77: 472–480
  • Dusenbery K E, McGuire W A, Holt P J, et al. Erythropoeitin increases hemoglobin during radiation therapy for cervical cancer. Int J Radial Oncol Biol Phys 1994; 29: 1079–1084
  • Nela R, Oppenheim J J, Schreiber R D, et al. Role of cytokines (interleukin-1, tumour necrosis factor, and transforming growth factor β) in natural and lipopolysaccharide-enhanced radioresislance. J Exp Med 1991; 173: 1177–1182
  • Gould M N, Kakria R C, Borden E C, Olsen S. Radiosensitization of human bronchogenic carcinoma cells by interferon β. J Interferon Res 1983; 4: 123–128
  • Kwok T T, Sutherland R M. Enhancement of sensitivity of human squamous carcinoma cells to radiation by epidermal growth factor. J Natl Cancer Inst 1989; 81: 1020–1024
  • Neta R, Stiefel S M, Finkelman F, et al. IL-12 protects bone marrow from and sensitizes intestinal tract to ionizing radiation. J Immunol 1994; 153: 4230–4237
  • Bloomenthal R D, Sharkey R M, Goldenberg D M. Dose escalation of radioantibody with use of IL-1 and GM-CSF. J Natl Cancer Inst 1992; 84: 399–407
  • Bloomenthal R D, Sharkey R M, Forman D, et al. Cylokine intervention permits dose escalation of radioantibody: An analysis of myelostimulation by bolus versus continuous infusion of IL-l/GM-CSF. Cancer 1994; 73: 1083–1092
  • Bloomenthal R D., Sharkey R M, Goldenberg D M. IL-7, a novel cytokine for the management of hematopoietic toxicity associated with radioantibody therapy (meeting abstract). Proc Am Assoc Cancer Res 1993; 34: A2787
  • Ralph P, Nakoinz I. Stimulation of macrophage tumouricidal activity by the growth and differentiation factor CSF-1. Cell Immunol 1987; 105: 270–279
  • Nakoinz I, Ralph P. Stimulation of macrophage antibody-dependent killing of tumour targets by recombinant lymphokine factors and M-CSF. Cell Immunol 1988; 116: 331–340
  • Bukowski R M, Budd G T, Gibbons J A, et al. Phase I trial of subcutaneous recombinant macrophage colony-stimulating factor: Clinical and immunomodulatory effects. J Clin Oncol 1994; 12: 97–106
  • Wang M, Friedman H, Djeu J Y. Enhancement of human monocyte function against Candida Albicans by the colony-stimulating factors (CSF): IL-3, granulocyte-macrophage CSF, and macrophage-CSF. J Immunol 1989; 143: 671–677
  • Lee M T, Warren M K. CSF-1-induced resistance to viral infection in murine macrophages. J Immunol 1987; 138: 3019–3022
  • Nemunaitis J, Meyers J D, Buchner C D, et al. Phase I/II trial of recombinant human macrophage colony-stimulating factor (M-CSF) in patients with invasive fungal infection. Blood 1990; 78: 159a
  • Nevins J R. Mechanisms of activation of early viral transcription by the adenovirus: E1 A gene product. Cell 1981; 26: 213–220
  • Lebkowski J S, Page K, McNally M M, et al. Adeno-associated virus: A vector for high efficiency transduction of primary cells. Second International Conference on Gene Therapy of Cancer. 1993; A23–11
  • Thompson L. Al age two, gene therapy enters a growth phase. Science 1992; 258: 744–746
  • Palella T D, Silverman L J, Schroll C T, et al. Herpes simplex virusmediated human hypoxanthine-guanine phosphoribosyl transferase gene transfer into neuronal cells. Mol Cell Biol 1988; 8: 457–460
  • William R S, Johnston S A, Riedy M, et al. Introduction of foreign genes into tissues of living mice by DNA-coated microprojectiles. Proc Natl Acad Sci USA 1991; 88: 2726–2730
  • Malone R, Feigner P, Vilma I. Cationic liposome mediated RNA transfection. Proc Natl Acad Sci USA 1989; 86: 6077–6081
  • Philip R, Lebkowsky J S, Brunette E, et al. Efficient and sustained gene expression in primary T-lymphocytes and primary and cultured tumour cells modified by adeno-associated viral plasmid complexed to cationic liposomes. Mol Cell Biol 1994; 14: 2411–2418
  • Wagner E, Curiel D, Gotten M. Delivery of drugs, proteins and genes using transferrin as a ligand for receptor-mediated endocytosis. Adv Drug Deliv Rev 1994; 14: 113–135
  • Columbo M P, Ferrari G, Sloppacciaro A, et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 1991; 173: 889–897
  • Saito S, Bannerji R, Gansbacher B, et al. Immunotherapy of bladder caneer with cytokine gene modified tumour vaccines. Cancer Res 1994; 54: 3516–3520
  • Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumour cells engineered to secrete murine and granulocyle-macrophate colony stimulating factor stimulates potent, specific, and long lasting anti-tumour. Proc Natl Acad Sci US A 1993; 90: 3539–3543
  • Golumbek P T, Lazenby A J, Levitsky H I, et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991; 254: 713–716
  • Porgador I, Tzehoval E, Katz A, et al. Interleukin-6 gene transfection into Lewis lung carcinoma tumour suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res 1992; 52: 3679–3686
  • Aoki T, Tashiro K, Miyalake S, et al. Expression of murine interleukin-7 in murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 1992; 89: 3850–3854
  • Tahara H, Zen H, Storkus W, et al. Fibroblasls genetically engineered to secrete interleukin-12 can suppress tumor growth and induce anti-tumor immunity to a murine melanoma in vivo. Cancer Res 1994; 54: 182–189
  • Gansbacher B, Rosemhal F M, Guarini A, et al. Retroviral vectors carrying both the interleukin-2 and interferon-gamma gene induce potent anti-tumor responses in murine tumors. Proc Annu Meet Am Assoc Cancer Res 1992; 33: A2095
  • Kuhn R, Rajewsky K, Muller W. Generation and analysis of interleukin-4 deficient mice. Science 1991; 254: 707–710
  • Wierenga E A, Snoek M, de Groot C, et al. Evidence for compartmentalization of functional subsets of CD2+ T-lymphocytes in atopic patients. J Immunol 1990; 144: 4651–4658
  • Horohov D W, Crim J A, Smith P, Siegel J P. 1L-4 (B-cell stimulatory factor-1) regulates multiple aspects of influenza virus-specific cell mediated immunity. J Immunol 1988; 141: 4217–4223
  • Tanaka Y, Saito K, Shirakawa F, et al. Production of B-cells stimulating factors by B-cells in patients with systemic lupus erythematosus. J Immunol 1988; 141: 3043–3049
  • Lowenthal J W, Castle B E, Christiansen J, et al. Expression of high affinity receptors for murine interleukin-4 (BSF-1) on hematopoietic and nonhemapoietic cells. J Immunol 1988; 140: 456–464
  • Hoon D SB, Banez M, Okun E, et al. Modulation of human melanoma cells by interleukin-4 and in combination with γ-interferon or α-tumour necrosis factor. Cancer Res 1991; 51: 2002–2008
  • Toi M, Bicknel R, Harris A L. Inhibition of colon and breast carcinoma cell growth by interleukin-4. Cancer Res 1992; 52: 275–279
  • Hoon D SB, Okun E, Banez M, et al. Interleukin-4 alone and with γ interferon or tumour necrosis factor inhibits cell growth and modulates cell surface antigens on human renal cell carcinomas. Cancer Res 1991; 51: 5687–5693
  • Bosco M, Giovarelli M, Forni M, et al. Low doses of IL-4 injected perilymphatically in tumour-bearing mice inhibit the growth of poorly and apparently non-immunogenic tumours and induce a tumour-specific immune memory. J Immunol 1990; 145: 3136–3143
  • Obiri M, Hillman G, Hass G, Sud S, Puri R K. Expression of high affinity interleukin-4 receptors in human renal carcinoma cells and inhibition of tumour cell growth in vitro by IL-4. J Clin Invest 1993; 91: 88–93
  • Li W, Diamamstein T, Blakenstein T. Lack of tumourogenicity of interleukin-4 autocrine growing cells seems related to the anti-tumour function of interleukin-4. Mol Immunol 1990; 27: 1331–1337
  • Maher D, Boyd A, McKendrick J, et al. Rapid response of B cell malignancies induced by interleukin 4. Blood 1990; 76(Suppl)152a, abstract
  • Taylor C W, Hullquist K E, Taylo A M, et al. Immunopharmacology of recombinant human interleukin-4 administered by the subcutaneous route in patients with malignancy. Blood 1992; 76(Suppl)221a, abstract
  • Whitehead R P, Friedman K D, Clark D A. A phase I trial of subcutaneous interleukin 2 and interleukin 4. Proc Am Assoc Cancer Res 1992; 33: 1381, abstract
  • Lotze M T. In vivo administration of recombinant human interleukin 4 to patients with cancer. J Cell Biochem 1991; 33(Suppl F), abstract
  • Appasamy P M. Interleukin-7: Biology and potential clinical applications. Cancer Invest 1993; 487–499, H
  • Hickman C J, Crim J A, Mostowski H S, et al. Regulation of human cytotoxic T-lymphocyte development by IL-7. J Immunol 1990; 145: 2415–2420
  • Alderson M R, Sassenfeld H M, Widmer M B. Interleukin-7 enhances cylolytic T-lymphocyte generation and induces lymphokine activated killer cells from human peripheral blood. J Exp Med 1990; 172: 577–587
  • Jicha D L, Schwarz S, Mule J J, Rosenberg S A. Interleukin-7 mediates the generation and expression of murine allosensitized and antitumour CTL. Cell Immunol 1992; 141: 71–83
  • Lynch D H, Miller J E. Induction of murine lymphokine-activated killer cells by recombinant IL-7. J Immunol 1990; 145, 1983–1990
  • Naume B, Gately M, Espevik T. A comparative study of IL-12 (cytotoxic lymphocyte maturation factor)-, IL-2–, and IL-7-induced effects on immunomagnetically purified CD56+ NK cells. J Immunol 1992; 148: 2429–2436
  • Alderson M R, Tough T W, Ziegler S F, et al. Interleukin 7 induces cytokrne secretion and tumourcidal activity by human peripheral blood monocytes. J Exp Med 1991; 173: 923–930
  • Morrissey P J, Conlon P, Braddy S, et al. Administration of IL-7 to mice with cyclophosphamide-induced lymphopenia accelerates repopulation. J Immunol 1991; 146: 1547–1552
  • Mackall C L, Fleisher T A, Brown M R, et al. Age, thymopoiesis, and CD4+ T-lymphocyte regeneration after intensive chemotherapy. N Engl J Med 1995; 332: 143–149
  • Sakata T, Iwagami S, Tsuruta Y, et al. Constitutive expression of interleukin-7 MRNA and production of IL-7 by a cloned murine thymic stromal cell line. J Leukocyte Biol 1990; 48: 205–212
  • Conlon P J, Morrissey P J, Nordan R P, et al. Murine thymocytes prolit'erale in direct response to interleukin 7. Blood 1989; 74: 1368–1673
  • Uckun F M, Tuel-Ahlgren L, Obuz V, et al. Interleukin 7 receptor engagement stimulates tyrosine phosphorylation, inositol, phospholipid turnover, proliferation, and selective differentionation to the CD4 lineage by human fetal thymocytes. Proc Natl Acad Sci USA 1991; 88: 6323–6327
  • Kobayashi Fitzl M., Ryan M, et al. Identification and purification of natural killer cell stimulatory factor (NKSF), a cylokine with multiple biological effects on human lymphocytes. J Exp Med 1989; 170: 827–845
  • Gately M K, Wolitzky A G, Quinn P M, et al. Regulation of human cytolytic lymphocyte responses by interleukin-12. Cell Immunol 1992; 143: 127–142
  • Kawano M, Hirano T, Matsuda T, et al. Autocrine generation and requirement of BSF-2/IL-6 for human multiple myelomas. Nature 1988; 332: 83–85
  • Suzuki H, Yasukawa K, Saito T, et al. Anti-human interleukin-6 receptor antibody inhibits human myeloma growth in vivo. Eur J Immunol 1992; 22, 1989–1993
  • Klein B, Wijdenes J, Zhang X G, et al. Murine anti-interleukin-6 monoclonal antibody therapy for a patient with plasma cell leukemia. Blood 1991; 78: 1198–1204
  • Kreitman R J, Siegall C B, FitzGerald D J, et al. Interleukin-6 fused to a mutant form of Pseudomonas exotoxin kills malignant cells from patients with multiple myeloma. Blood 1992; 79: 1775–1780
  • Beck I T, Hsu S M, Wijdenes J, et al. Brief report: Alleviation of systemic manifestations of Castleman's disease by monoclonal anti-interleukin-6 antibody. N Engl J Med 1994; 330: 602–605
  • Yoshida M, Matsuzaki H, Sakata K, et al. Neutrophil chemotactic factors produced by a cell line from thyroid carcinoma. Cancer Res 1992; 52: 464–469
  • Eto H, Yonemoto K, Sekine A, et al. Production of interleukin-8 by human trichilemmoma and squamous cell carcinoma cell lines. Clin Res 1991; 39: 517A
  • Förster E, Kirnbauer R, Urbanski A, et al. Human melanoma cells produce interleukin-8 which functions as an autocrine growth factor. Clin Res 1991; 39: 517A
  • Abbruzzo L, Thornton A, Liebert M, et al. Cytokine induced gene expression of interleukin-8 in human transitional cell carcinomas and renal cell carcinomas. Am J Pathol 1992; 140: 365–373
  • Westlin W, Kiely J -M, Gimbrone M J. Interleukin-8 induces changes in human neutrophil actin conformation and distribution: Relationship to inhibition of adhesion to cytokine-activated endothelium. J Leukocyte Biol 51, 1992; 52: 43–51
  • Peveri P, Walz A, Dewald B, et al. A novel ueutrophil-activating factor produced by human mononuclear phagocytes. J Exp Med 1988; 167: 1547–1559
  • Opdenakker G, Van Damme J. Chemotactic factors, passive invasive and metastasis of cancer cells. Immunol Today 1992; 13: 463–464
  • Koch A, Polverini P, Kunkei S, et al. Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 1992; 258: 1798–1801

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.