1,329
Views
228
CrossRef citations to date
0
Altmetric
Review Article

Production of nanoparticles using organisms

, &
Pages 279-306 | Accepted 25 May 2009, Published online: 05 Oct 2009

References

  • Abdiaziz AF, Ramon AA, Hicham F. 2008. Chemically stable silver nanoparticle-crosslinked polymer microspheres. J Colloid Interface Sci 319(2): 572–576.
  • Agnihotri M, Joshi S, Kumar AR, Zinjarde S, Kulkarni S. 2009. Biosynthesis of gold nanoparticles by the tropical marine yeast Yarrowia lipolytica NCIM 3589. Mater Lett 63(15): 1231–1234.
  • Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M. 2002. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124(41): 12108–12109.
  • Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M. 2003a. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28: 313–318.
  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. 2003b. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic Actinomycete, Thermomonospora sp. Langmuir 19: 3550–3553.
  • Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M. 2003c. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete, Rhodococcus species. Nanotechnology 14: 824–828.
  • Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M. 2005. Extra-/intracellular, biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1: 47–53.
  • Aiking H, Kok K, Heerikhuizen H, Riet J. 1982. Adaptation to cadmium by Klebsiella aerogenes growing in continuous culture proceeds mainly via formation of cadmium sulfide. Appl Environ Microbiol 44: 938–944.
  • Alivisatos AP. 1996. Perspectives on the physical chemistry of semiconductor nanocrystals. J Phys Chem 100: 13226–13239.
  • Amemiya Y, Arakaki A, Staniland SS, Tanaka T, Matsunaga T. 2007. Controlled formation of magnetite crystal by partial oxidation of ferrous hydroxide in the presence of recombinant magnetotactic bacterial protein Mms6. Biomaterials 28(35): 5381–5389.
  • Angell P. 1999. Understanding microbially influenced corrosion as biofilm-mediated changes in surface chemistry. Curr Opin Biotechnol 10: 269–272.
  • Ankamwar B, Chaudhary M, Mural S. 2005a. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nanometal Chem 35: 19–26.
  • Ankamwar B, Damle C, Ahmad A, Sastry M. 2005b. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol 5(10): 1665–1671.
  • Anshup A, Venkataraman JS, Subramaniam C, Kumar RR, Priya S, Kumar TRS, Omkumar RV, John A, Pradeep T. 2005. Growth of gold nanoparticles in human cells. Langmuir 21: 11562.
  • Arakaki A, Nakazawa H, Nemoto M, Mori T, Matsunaga T. 2008. Formation of magnetite by bacteria and its application. J R Soc Interface 5: 977–999.
  • Arató B, Schüler D, Flies C, Bazylinski D, Frankel R, Buseck P, Dódony I, PósfaiM. 2004. Intracellular magnetite and extracellular hematite produced by Desulfovibrio magneticus strain RS-1. Geophys Res Abstracts 6.
  • Armendariz V, Herrera I, Peralta-Videa JR, Jos’e-Yacam’an M, Troiani H, Santiago P, Gardea-Torresdey JL. 2004. Size controlled gold nanoparticle formation by Avena sativa biomass: use of plants in nanobiotechnology. J Nanopart Res 6: 377–382.
  • Badri Narayanan K, Sakthivel N. 2008. Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62: 4588–4590.
  • Bae W, Mehra RK. 1998. Properties of glutathione- and phytochelatin-capped CdS bionanocrystallites. J Inorg Biochem 69: 33–43.
  • Baedecker MJ, Back W. 1979. Modern marine sediments as a natural analog to the chemically stressed environment of a landfill. J Hydrol 43: 393–414.
  • Bai HJ, Zhang ZM. 2009. Microbial synthesis of semiconductor lead sulfide nanoparticles using immobilized Rhodobacter sphaeroides. Mater Lett 63(9-10): 764–766.
  • Bai HJ, Zhang ZM, Gong J. 2006. Biological synthesis of semiconductor zinc sulfide nanoparticles by immobilized Rhodobacter sphaeroides. Biotechnol Lett 28: 1135–1139.
  • Bai HJ, Zhang ZM, Guo Y, Yang GE. 2009. Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids Surf B Biointerfaces 70: 142–146.
  • Balaji DS, Basavaraja S, Deshpande R, Bedre Mahesh D, Prabhakar BK, Venkataraman A. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68: 88–92.
  • Bansal V, Rautaray D, Ahmad A, Sastry M. 2004. Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14: 3303–3305.
  • Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M. 2005. Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15: 2583–2589.
  • Bansal V, Poddar P, Ahmad A, Sastry M. 2006. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles. J Am Chem Soc 128: 11958–11963.
  • Bar H, Bhui DK, Sahoo GP, Sarkar P, De SP, Misra A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids Surf A Physicochem Eng Asp 339(1-3): 134–139.
  • Barondeau DP, Lindahl PA. 1997. Methylation of carbon monoxide dehydrogenase from Clostridium thermoaceticum and mechanism of acetyl coenzyme A synthesis. J Am Chem Soc 119: 3959–3970.
  • Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5): 1164–1170.
  • Beveridge JT, Hughes MN, Lee H, Leung KT, Poole RK. 1997. Metal-microbe interactions: contemporary approaches. Adv Microb Physiol 38: 178–243.
  • Beveridge TJ, Murray RG. 1980. Sites of metal deposition in the cell wall of Bacillus subtilis. J Bacteriol 141: 876–887.
  • Bhainsa KC, D’Souza SF. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B Biointerfaces 47: 160–164.
  • Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M. 2006. Extracellular biosynthesis of magnetite using fungi. Small 2: 135–141.
  • Bogunia-Kubik K, Sugisaka M. 2002. From molecular biology to nanotechnology and nanomedicine. Biosystems 65: 123–138.
  • Bostrom B, Jansson M, Forsberg C. 1982. Phosphorus release from lake sediments. Arch Hydrobiol Beih Ergeb Limnol 18: 5–59.
  • Bowman JP, McCammon SA, Nichols DS, Skerratt JH, Rea SM, Nichols PD, McMeekin TA. 1997. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20: 5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47: 1040–1047.
  • Bozal N, Montes MJ, Tudela E, Jimenez F, Guinea J. 2002. Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52: 195–205.
  • Brierley JA, Brierley CL. 1980. Biological methods to remove selected inorganic pollutants from uranium mine wastewater. In Trudinger PA, Walter MR, Ralph BJ, eds. Biogeochemistry of Ancient and Modern Environments (pp. 661–667 ). New York: Springer-Verlag.
  • Brock TD, Gustafson J. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl Environ Microbiol 32: 567–571.
  • Brock TD, Cook S, Peterson S, Mosser JL. 1976. Biochemistry and bacteriology of ferrous iron oxidation in geothermal habitats. Geochim Cosmochim Acta 40: 493–500.
  • Brown S, Sarikaya M, Johnson E. 2000. A genetic analysis of crystal growth. J Mol Biol 299: 725–735.
  • Bulte JW, Douglas T, Mann S, Frankel RB, Moskowitz BM, Brooks RA, Baumgarner CD, Vymazal J, Frank JA. 1994. Magnetoferritin—biomineralization as a novel molecular approach in the design of iron-oxide-based magnetic-resonance contrast agents. Invest Radiol 29: 5214–5216.
  • Caccavo F Jr, Blakemore RP, Lovley DR. 1992. A hydrogen-oxidizing, Fe (III)-reducing microorganism from the Great Bay Estuary. New Hampshire Appl Environ Microbiol 58: 3211–3216.
  • Caccavo F Jr, Lonergan DJ, Lovley DR, Davis M, Stolz JF, McInerney MJ. 1994. Geobacter sulfurreducens sp. nov., a hydrogen- and acetate oxidizing dissimilatory metal-reducing microorganism. Appl Environ Microbiol 60: 3752–3759.
  • Cao GZ. 2004. Nanostructures and Nanomaterials: Synthesis, Properties and Applications (p. 448 ). London, UK: Imperial College Press.
  • Chakraborty N, Pal R, Ramaswami A, Nayak D, Lahiri S. 2006. Diatom: a potential bio-accumulator of gold. J Radioanal Nucl Chem 270: 645–649.
  • Chakraborty N, Banerjee A, Lahiri S, Panda A, Ghosh AN, Pal R. 2009. Biorecovery of gold using cyanobacteria and an eukaryotic alga with special reference to nanogold formation—a novel phenomenon. J Appl Phycol 21: 145–152.
  • Chan WCW, Nie S. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016.
  • Chan WCW, Maxwell DJ, Gao X, Bailey RE, Han M, Nie S. 2002. Luminescent quantum dots for multiplexed biological detection and imaging. Curr Opin Biotechnol 13: 40–46.
  • Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M. 2006. Synthesis of gold nanotriangles and silver nanoparticles using Aloe vera plant extract. Biotechnol Prog 22: 577.
  • Cho K-H, Park J-E, Osaka T, Park S-G. 2005. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta 51: 956–960.
  • Colvin VL, Schlamp MC, Alivisatos AP. 1994. Light emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370: 354–357.
  • Cunningham DP, Lundie JLL. 1993. Precipitation of cadmium by Clostridium thermoaceticum. Appl Environ Microbiol 59: 7–14.
  • Dameron CT, Winge DR. 1990. Characterization of peptide-coated cadmium-sulfide crystallites. Inorg Chem 29: 1343–1348.
  • Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Brus LE, Winge DR. 1989. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338: 596–597.
  • Daniel MC, Astruc D. 2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104: 293–346.
  • De Windt D, Aelterman P, Verstraete W. 2005. Bioreductive deposition of palladium(0) nanoparticles on Shewanella oneidensis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7: 314–325.
  • Debaditya B, Rajinder KG. 2005. Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25: 199–204.
  • Deplanche K, Macaskie LE. 2008. Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99(5): 1055–1064.
  • Douglas T, Young M. 1998. Host-guest encapsulation of materials by assembled virus protein cages. Nature 393: 152–155.
  • Douglas T, Strable E, Willits D, Aitouchen A, Libera M, Young M. 2002. Protein engineering of a viral cage for constrained nanomaterials synthesis. Adv Mater 14: 415.
  • Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3: 203–208.
  • Efros AL, Rodina AV. 1989. Confined excitons, trions and biexcitons in semiconductor microcrystals. Solid State Comm 72: 645–649.
  • Fabrice D, Karine P, Teyeb OE, Catherine A, Pierre L, Etienne S, Mosset A, Casanove M-J, Chaudret B. 1998. Platinum nanoparticles stabilized by CO and octanethiol ligands or Polymers: FT-IR, NMR, HREM and WAXS studies. New J Chem 22: 703–712.
  • Faivre D, Menguy N, Posfai M, Schuler D. 2008. Environmental parameters affect the physical properties of fast-growing magnetosomes. Amer Mineral 93: 463–469.
  • Favier I, Massou S, Teuma E, Philippot K, Chaudret B, Gómez M. 2008. A new and specific mode of stabilization of metallic nanoparticles. Chem Commun (Camb) 28: 3296–3298.
  • Fendler JH, Meldrum F. 1995. The colloid chemical approach to nanostructured materials. Adv Mater 7: 607–632.
  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ. 2000. Reduction of Fe(III), Cr(IV), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66: 2006–2011.
  • Gardea-Torresdey JL, Tiemann KJ, Gamez G, Dokken K, Tehuacanero S, Jos’e-Yacam’an, M. 1999. Gold nanoparticles obtained by bio-precipitation from gold (III) solutions. J Nanopart Res 1: 397–404.
  • Gardea-Torresdey JL, Tiemann KJ, Armendariz V, Bess-Oberto L, Chianelli RR, Rios J, Parsons JG, Gamez G. 2000. Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of Avena monida (Oat) biomass. J Hazard Mater 80: 175–188.
  • Gardea-Torresdey JL, Tiemann KJ, Parsons JG, Gamez G, Jos’e-Yacam’an M. 2002a. Characterization of trace level Au (III) binding to alfalfa biomass (Medicago sativa) by GFAA. Adv Environ Res 6: 313–323.
  • Gardea-Torresdey JL, Parsons JG, Gomez E, Videa P, Troiani HE, Santiago P, Yacaman MJ. 2002b. Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2: 397–401.
  • Gericke M, Pinches A. 2006a. Biological synthesis of metal nanoparticles. Hydrometallurgy 83: 132–140.
  • Gericke M, Pinches A. 2006b. Microbial production of gold nanoparticles. Gold Bull 39: 22–28.
  • Goodsell DS. 2004. Bionanotechnology: Lessons from Nature (pp. 1–8 ). New Jersey: Willey-Less.
  • Gorby YA, Lovley DR. 1991. Enzymatic uranium precipitation. Environ Sci Technol 26: 205–207.
  • Gorby YA, Caccavo F Jr, Bolton H Jr. 1998. Microbial reduction of cobalt (III) EDTA in the presence and absence of manganese (IV) oxide. Environ Sci Technol 32: 244–250.
  • Govender Y, Riddin T, Gericke M, Whiteley CG. 2009. Bioreduction of platinum salts into nanoparticles: a mechanistic perspective. Biotechnol Lett 31: 95–100.
  • Govindaraju K, Basha SK, Kumar VG, Singaravelu G. 2008. Silver, gold and bimetallic nanoparticles production using single-cell protein (Spirulina platensis) Geitler. J Mater Sci 43: 5115–5122.
  • Graybeal AL, Heath GR. 1984. Remobilization of transition metals in surficial pelagic sediments from the eastern Pacific. Geochim Cosmochim Acta 48: 965–975.
  • Grill E, Winnacker EL, Zenk MH. 1985. Phytochelatins: the principal heavy-metal complexing peptides of higher plants. Science 230: 674–676.
  • Grubbs RB. 2007. Roles of polymer ligands in nanoparticle stabilization. Polymer Rev 47: 197–215.
  • Grünberg K, Wawer C, Tebo BM, Schüler D. 2001. A large gene cluster encoding several magnetosome proteins is conserved in different species of magnetotactic bacteria. Appl Environ Microbiol 67: 4573–4582.
  • Hamilton JF, Baetzold RC. 1979. Catalysis by small metal clusters. Science 205: 1213–1220.
  • Harris AT, Bali R. 2008. On the formation and extent of uptake of silver nanoparticles by live plants. J Nanopart Res 10: 691–695.
  • Harvey PI, Crundwell FK. 1997. Growth of Thiobacillus ferrooxidans: a novel experimental design for batch growth and bacterial leaching studies. Appl Environ Microbiol 63: 2586–2592.
  • Haverkamp RG, Marshall AT, Van Agterveld D. 2007. Pick your carats: nanoparticles of gold–silver–copper alloy produced in vivo. J Nanopart Res 9: 697–700.
  • He S, Guo Z, Zhang Y, Zhang S, Wang J, Gu N. 2007. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett 61(18): 3984–3987.
  • He S, Zhang Y, Guo Z, Gu N. 2008. Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24: 476–480.
  • He Y, Yuan J, Su F, Xing X, Shi G. 2006. Bacillus subtilis assisted assembly of gold nanoparticles into long conductive nodous ribbons. J Phys Chem B 110(36): 17813–17818.
  • Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW. 2007. Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153: 1677–1692.
  • Herrera-Becerra R, Zorrilla C, Rius JL, Ascencio JA. 2008. Electron microscopy characterization of biosynthesized iron oxide nanoparticles. Appl Phys A 91: 241–246.
  • Hoffman AJ, Mills G, Yee H, Hoffmann MR. 1992. Q-sized cadmium sulfide: synthesis, characterization, and efficiency of photoinitiation of polymerization of several vinylic monomers. J Phys Chem 96: 5546–5552.
  • Hohl Tobias M, Feldmesser M. 2007. Aspergillus fumigatus: principles of pathogenesis & host defense. Eukaryotic Cell 6: 1953–1963.
  • Holmes JD, Smith PR, Evans-Gowing R, Richardson DJ, Russell DA, Sodeau JR. 1995. Energy-dispersive X-ray analysis of the extracellular cadmium sulfide crystallites of Klebsiella aerogenes. Arch Microbiol 163: 143–147.
  • Hosea M, Greene B, McPherson R, Henzl M, Dale Alexander M, Darnall DW. 1986. Accumulation of elemental gold on the alga Chlorella vulgaris. Inorganica Chimica Acta 123(3): 161–165.
  • Hu S, Law KWK, Wu M. 2001. Cadmium sequestration in Chlamydomonas reinhardtii. Plant Sci 161: 987–996.
  • Huang J, Li Q, Sun D, Lu Y, Su Y, Yang X, Wang H, Wang Y, Shao W, He N, Hong J, Chen C. 2007. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology 18: 105104.
  • Huang J, Lin L, Li Q, Sun D, Wang Y, Lu Y, He N, Yang K, Yang X, Wang H, Wang W, Lin W. 2008. Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind Eng Chem Res 47: 6081–6090.
  • Huber R, Kristjansson JK, Stetter KO. 1987. Pyrobaculum a new genus of neutrophilic, rod-shaped archaebacteria form continental solfataras growing optimally at 100°C. Arch Gen Nov Microbiol 149: 95–101.
  • Hudler GW. 1998. Magical Mushrooms, Mischievous Molds. Princeton, NJ: Princeton University Press.
  • Husseiny MI, El-Aziz MA, Badr Y, Mahmoud MA. 2007. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim Acta A: Mol Biomol Spectrosc 67: 1003–1006.
  • Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Current Nanosci 4: 141–144.
  • Ivanova EP, Sawabe T, Gorshkova NM, Svetashev VI, Mikhailov VV, Nicolau DV, Christen R. 2001. Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51: 1027–1033.
  • Ivanova EP, Nedashkovskaya OI, Zhukova NV, Nicolau DV, Christen R, Mikhailov VV. 2003a. Shewanella waksmanii sp. nov., isolated from a sipuncula (Phascolosoma japonicum). Int J Syst Evol Microbial. 53: 1471–1477.
  • Ivanova EP, Sawabe T, Hayashi K, Gorshkova NM, Zhukova NV, Nedashkovskaya OI, Mikhailov VV, Nicolau DV, Christen R. 2003b. Shewanella fidelis sp. nov., isolated from sediments and sea water. Int J Syst Evol Microbiol 53: 577–582.
  • Jahn M, Haderlein S, Meckenstock RU. 2005. A novel mechanism of electron transfer from iron-reducing microorganisms to solid iron phases. Geophys Res Abstracts 7.
  • Jha AK, Prasad K, Prasad K. 2009. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem Eng J 43: 303–306.
  • Joerger R, Klaus T, Granqvist CG. 2000. Biologically produced silver-carbon composite materials for optically functional thin film coatings. Adv Mater 12: 407–409.
  • Kajander EO, Çiftçioglu N. 1998. Nanobacteria: an alternative mechanism for pathogenic intra- and extracellular calcification and stone formation. Proc Natl Acad Sci USA 95: 8274–8279.
  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Bilal M, Gurunathan S. 2008a. Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf B Biointerfaces 65(1): 150–153.
  • Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. 2008b. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Mater Lett 62(29): 4411–4413.
  • Kapoor S. 1998. Preparation, characterization, and surface modification of silver particles. Langmuir 14: 1021–1025.
  • Kashefi K, Lovley DR. 2000. Reduction of Fe(III), Mn(VI), and toxic metals at 100°C by Pyrobaculum islandicum. Appl Environ Microbiol 66: 1050–1056.
  • Kashefi K, Tor JM, Nevin KP, Lovley DR. 2001. Reductive precipitation of gold by dissimilatory Fe(III)-reducing Bacteria and Archaea. Appl Envir Microbiol 67: 3275–3279.
  • Kasthuri J, Veerapandian S, Rajendiran N. 2009. Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68: 55–60.
  • Kathiresan K, Manivannan S, Nabeel MA, Dhivya B. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71: 133–137.
  • Keating CD, Kovaleski KK, Natan MJ. 1998. Heightened electromagnetic fields between metal nanoparticles: surface enhanced Raman scattering from metal-Cytochrome c-metal sandwiches. J Phys Chem B 102: 9414.
  • Kelly KL, Coronado E, Zhao LL, Schatz GC. 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107: 668.
  • Kessi J, Ramuz M, Wehrli E, Spycher M, Bachofen R. 1999. Reduction of selenite and detoxification of elemental selenium by the phototrophic bacterium Rhodospirillum rubrum. Appl Environ Microbiol 65: 4734–4740.
  • Kieft TI, Fredrickson JK, Onstott TC, Gorby YA, Kostandarithes HM, Bailey TJ, Kennedy DW, Li SW, Plymale AE, Spadoni CM, Gray MS. 1999. Dissimilatory reduction of Fe(III) and other electron acceptors by a thermus isolate. Appl Environ Microbiol 65: 1214–1221.
  • Kim D-M, Kang C-I, Lee CS, Kim H-B, Kim E-C, Kim NJ, Oh MD, Choe KW. 2006. Treatment failure due to emergence of resistance to carbapenem during therapy for Shewanella algae bacteremia. J Clin Microbiol 44: 1172–1174.
  • Klaus T, Joerger R, Olsson E, Granqvist, C-G. 1999. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci USA 96: 13611–13614.
  • Klaus-Joerger T, Joerger R, Olsson E, Granqvist C-G. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1): 15–20.
  • Klefenz H. 2004. Nanobiotechnology: from molecules to systems. Eng Life Sci 4: 211.
  • Klein DL, Roth R, Lim AKL, Alivisatos AP, McEuen PL. 1997. A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389: 699–701.
  • Kneer R, Zenk MH. 1997. The formation of Cd–phytochelatin complexes in plant cell cultures. Phytochemistry 44: 69–74.
  • Konishi Y, Tsukiyama T, Ohno K, Saitoh N, Nomura T, Nagamine S. 2006. Intracellular recovery of gold by microbial reduction of AuCl4− ions using the anaerobic bacterium Shewanella algae. Hydrometallurgy 81(1): 24–29.
  • Konishi Y, Ohno K, Saitoh N, Nomura T, Nagamine S, Hishida H, Takahashi Y, Uruga T. 2007a. Bioreductive deposition of platinum nanoparticles on the bacterium Shewanella algae. J Biotechnol 128: 648–653.
  • Konishi Y, Tsukiyama T, Tachimi T, Saitoh N, Nomura T, Nagamine S. 2007b. Microbial deposition of gold nanoparticles by the metal-reducing bacterium Shewanella algae. Electrochimica Acta 53(1): 186–192.
  • Kotthaus S, Gunther BH, Hang R, Schafer H. 1997. Study of isotropically conductive bondings filled with aggregates of nano-sited Ag-particles. IEEE Trans Compon Packaging Technol 20(1): 15–20.
  • Kowshik M, Deshmukh N, Vogel W, Urban J, Kulkarni SK, Paknikar KM. 2002a. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnol Bioeng 78: 583–588.
  • Kowshik M, Vogel W, Urban J, Kulkarni SK, Paknikar KM. 2002b. Microbial synthesis of semiconductor PbS nanocrystallites. Adv Mater 14(11): 815–818.
  • Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM. 2003. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14: 95–100.
  • Kumar SA, Ayoobul AA, Absar A, Khan MI. 2007a. Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3: 190–194.
  • Kumar SA, Majid Kazemian A, Gosavi SW, Sulabha KK, Renu P, Absar A, Khan MI. 2007b. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29(3): 439–445.
  • Laverman AM, Switzer Blum J, Schaefer JK, Phillips EJP, Lovley DR, Oremland RS. 1995. Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61: 3556–3561.
  • Ledentsov NN, Grundmann M, Kirstaedter N, Schmidt O, Heitz R, Bohrer J. 1996. Ordered arrays of the quantum dots: formation electronic spectra, relaxation phenomena, lasing. J Solid State Electron 40: 785–798.
  • Lee H, Purdon AM, Chu V, Westervelt RM. 2004. Controlled assembly of magnetic nanoparticles from magnetotactic bacteria using microelectromagnets arrays. Nano Lett 4: 995–998.
  • Lengke M, Fleet ME, Southam G. 2006a. Morphology of gold nanoparticles synthesized by filamentous cyanobacteria from gold (I)-thiosulfate and gold (III)-chloride complexes. Langmuir 22: 2780–2787.
  • Lengke M, Ravel B, Fleet ME, Wanger G, Gordon RA, Southam G. 2006b. Mechanisms of gold bioaccumulation by filamentous cyanobacteria from gold (III)-chloride complex. Environ Sci Technol 40: 6304–6309.
  • Li S, Shen Y, Xie A, Yu X, Qiu L, Zhang L, Zhang Q. 2007a. Green synthesis of silver nanoparticles using Capsicum annuum L. extract. Green Chem 9: 852–858.
  • Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C. 2007b. Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology 18: 405101.
  • Li Z, Chung SW, Nam JM, Ginger DS, Mirkin CA. 2003. Living templates for the hierarchical assembly of gold nanoparticles. Angew Chem Int Ed 42: 2306.
  • Liangwei D, Jiang H, Liu X, Wang E. 2007. Biosynthesis of gold nanoparticles assisted by Escherichia coli DH5a and its application on direct electrochemistry of hemoglobin. Electrochem Commun 9: 1165–1170.
  • Liu SV, Zhou J, Zhang C, Cole DR, Gajdarziska-Josifovska M, Phelps TJ. 1997. Thermophilic Fe(III)-reducing bacteria from the deep subsurface: the evolutionary implications. Science 277: 1106–1109.
  • Lloyd JR, Macaskie LE. 1996. A novel phosphor imager-based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 62: 578–582.
  • Lloyd JR, Macaskie LE. 2000. Bioremediation of radionuclide containing wastewaters. In Lovley DR, ed. Environmental Microbe-Metal Interactions (pp. 277–327 ). Washington, DC: ASM Press.
  • Lloyd JR, Yong P, Macaskie LE. 1998a. Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64: 4607–4609.
  • Lloyd JR, Nolting HF, Sole VA, Bosecker K, Macaskie LE. 1998b. Technetium reduction and precipitation by sulfate-reducing bacteria. Geomicrobiol J 15: 43–58.
  • Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE. 1999a. Reduction of technetium by Desulfovibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65: 2691–2696.
  • Lloyd JR, Thomas GH, Finlay JA, Cole JA, Macaskie LE. 1999b. Microbial reduction of technetium by Escherichia coli and Desulfovibrio desulfuricans: enhancement via the use of high-activity strains and effect of process parameters. Biotechnol Bioeng 166: 122–130.
  • Lloyd JR, Mabbett AM, Williams DR, Macaskie LE. 2001. Metal reduction by sulphate-reducing bacteria: physiological diversity and metal specificity. Hydrometallurgy 59: 327–337.
  • Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ. 2004. A magnetocaloric pump for microfluidic applications. IEEE Trans Nanobioscience 3: 101–110.
  • Love LJ, Jansen JF, McKnight TE, Roh Y, Phelps TJ, Yeary LW, Cunningham GT. 2005. Ferrofluid field induced flow for microfluidic applications. IEEE/ASME Trans Mechatron 10: 68–76.
  • Lovley DR. 1987. Organic matter mineralization with the reduction of ferric iron. Geomicrobiol J 5: 375–399.
  • Lovley DR. 1993. Dissimilatory metal reduction. Annu Rev Microbiol 47: 263–290.
  • Lovley DR. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14: 85–93.
  • Lovley DR. 2000. Fe(III) and Mn(IV) reduction. In Lovley DR, ed. Environmental Microbe-Metal Interactions (pp. 3–30 ). Washington, DC: ASM Press.
  • Lovley DR. 2001. Dissimilatory Fe(III) reduction and Mn(IV) reduction. Microbiol Rev 55: 259–287.
  • Lovley DR, Phillips EJP. 1988. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol 54: 1472–1480.
  • Lovley DR, Phillips EJP. 1992a. Bioremediation of uranium contamination with enzymatic uranium reduction. Environ Sci Technol 26: 2228–2234.
  • Lovley DR, Phillips EJP. 1992b. Reduction of uranium by Desulfovibrio desulfuricans. Appl Environ Microbiol 58: 850–856.
  • Lovley DR, Phillips EJP. 1994. Reduction of chromate by Desulfovibrio vulgaris and its c3 cytochrome. Appl Environ Microbiol 60: 726–728.
  • Lovley DR, Coates JD. 1997. Bioremediation of metal contamination. Curr Opin Biotechnol 8: 285–289.
  • Lovley DR, Stolz JF, Nord GL, Phillips Jr, Elizabeth JP. 1987. Anaerobic production of magnetite by a dissimilatory iron-reducing microorganism. Nature 330: 252–254.
  • Lovley DR, Phillips EJP, Lonergan DJ. 1989. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl Environ Microbiol 55: 700–706.
  • Lovley DR, Phillips EJP, Gorby YA, Landa ER. 1991. Microbial reduction of uranium. Nature 350: 413–416.
  • Lovley DR, Roden EE, Phillips EJP, Phillips JP, Woodward JC. 1993. Enzymatic iron and uranium reduction by sulfate-reducing bacteria. Marine Geol 113: 41–53.
  • Lovley DR, Phillips EJP, Lonergan DJ, Widman PK. 1995. Fe(III) and S0 reduction by Pelobacter carbinolicus. Appl Environ Microbiol 61: 2132–2138.
  • Macdonald IDG, Smith WE. 1996. Orientation of Cytochrome c adsorbed on a citrate-reduced silver colloid surface. Langmuir 12: 706.
  • Maeda Y, Yoshino T, Takahashi M, Ginya H, Asahina J, Tajima H, Matsunaga T. 2008. Noncovalent immobilization of streptavidin on in vitro- and in vivo biotinylated bacterial magnetic particles. Appl Environ Microbiol 74: 5139–5145.
  • Maliszewska I, Szewczyk K, Waszak K. 2009. Biological synthesis of silver nanoparticles. J Phys Conf 146: 1–6.
  • Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69: 485–492.
  • Mansur HS, Grieser F, Marychurch MS, Biggs S, Urquhart RS, Furlong DN. 1995. Photoelectrochemical properties of “q-state” cds particles in arachidic acid langmuir-blodgett films. J Chem Soc Faraday Trans 91: 665–672.
  • Matsunaga T, Takeyama H. 1998. Biomagnetic nanoparticle formation and application. Supramol Sci 5(3-4): 391–394.
  • Matthias L, Gregory KD, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF. 2000. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290: 1744–1747.
  • Mehra RK, Winge DR. 1991. Metal ion resistance in fungi: molecular mechanisms and their regulated expression. J Cell Biochem 45: 30–40.
  • Mehra RK, Mulchandani P, Hunter TC. 1994. Role of CdS quantum crystallites in cadmium resistance in Candida glabrata. Biochem Biophys Res Comm 200: 1193–1200.
  • Mohagheghi A, Updegraff DM, Goldhaber MB. 1985. The role of sulfate-reducing bacteria in the deposition of sedimentary uranium ores. Geomicrobiol J 4: 153–173.
  • Mohanpuria P, Rana NK, Yadav SK. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10(3): 507–517.
  • Moisescu C, Bonneville S, Tobler D, Ardelean I, Benning LG. 2008. Controlled biomineralization of magnetite (Fe3O4) by Magnetospirillum gryphiswaldense. Mineral Mag 72: 333–336.
  • Mokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S, Shahverdi HR, Shahverdi AR. 2009. Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumoniae: the effects of visible-light irradiation and the liquid mixing process. Mater Res Bull 44(6): 1415–1421.
  • Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF. 2007. Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316(5831): 1600–1603.
  • Morelli E, Cruz BH, Somovigo S, Scarano G. 2002. Speciation of cadmium-g-glutamyl peptides complexes in cells of the marine microalga Phaeodactylum tricornutum. Plant Sci 163: 807–813.
  • Moroz P, Jones SK, Gray BN. 2002a. Magnetically mediated hyperthermia: current status and future directions. Int J Hypertherm 18: 267–284.
  • Moroz P, Jones SK, Gray BN. 2002b. Tumor response to arterial embolization hyperthermia and direct injection hyperthermia in a rabbit liver tumor model. J Surg Oncol 80: 149–156.
  • Mouxing FU, Qingbiao LI, Daohua SUN, Yinghua LU, Ning HE, Xu DENG, Wang H, Huang J. 2006. Rapid preparation process of silver nanoparticles by bioreduction and their characterizations. Chinese J Chem Eng 14(1): 114–117.
  • Mude N, Ingle A, Gade A, Rai M. 2009. Synthesis of silver nanoparticles using callus extract of Carica papaya—a first report. J Plant Biochem Biotechnol 18(1): 83–86.
  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan M, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M. 2001a. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10): 515–519.
  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R. 2001b. Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed D.M. and S.S. Angew Chem Int Ed Engl 40: 3585–3588.
  • Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M. 2002. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem 3(5): 461–463.
  • Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP. 2008. Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19: 075103.
  • Mullen MD, Wolf DC, Ferris FG, Beveridge TJ, Flemming CA, Bailey GW. 1989. Bacterial sorption of heavy metals. Appl Environ Microbiol 55: 3143–3149.
  • Nair B, Pradeep T. 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2: 293–298.
  • Nanda A, Saravanan M. 2009. Biosynthesis of silver nanoparticles from Staphylococcus aureus and it’s antimicrobial activity against MRSA and MRSE. Nanomedicine:Nanotechnology, Biology and Medicine. doi:10.1016/j.nano.2009.01.012 <http://dx.doi.org/10.1016/j.nano.2009.01.012>.
  • National Nanotechnology Initiative (NNI). 2007. Nanotechnology: what is nanotechnology? Available from http://www.nano.gov/html/facts/whatIsNano.html.
  • Nayak D, Nag M, Banerjee S, Pal R, Laskar S, Lahiri S. 2006. Preconcentration of 198Au in a green alga, Rhizoclonium. J Radioanal Nucl Chem 268: 337–340.
  • Nguyen BT, Gautrot JE, Nguyenb MT, Zhu XX. 2007. Nitrocellulose-stabilized silver nanoparticles as low conversion temperature precursors useful for inkjet printed electronics. J Mater Chem 17: 1725–1730.
  • Niemeyer CM. 2005. Nanobiotechnology. Weinheim: Willey-VCH.
  • Nogi Y, Kato C, Horikoshi K. 1998. Taxonomic studies of deep-sea barophilic Shewanella strains and description of Shewanella violacea sp. nov. Arch Microbiol 170: 331–338.
  • Oremland RS. 1994. Biogeochemical transformations of selenium in anoxic environments. In Frankenberger WTJ, Benson SN, eds. Selenium in the Environment (pp. 389–419 ). New York: Mareel Dekker, Inc.
  • Ortiz DF, Kreppel L, Speiser DM, Scheel G, McDonald G, Ow DW. 1992. Heavy metal tolerance in the fission yeast requires an ATP-binding cassette-type vacuolar membrane transporter. EMBO J 11: 3491–3499.
  • Ott LS, Hornstein BJ, Finke RG. 2006. A test of the transition-metal nanocluster formation and stabilization ability of the most common polymeric stabilizer, poly(vinylpyrrolidone), as well as four other polymeric protectants. Langmuir 22: 9357–9367.
  • Philip D. 2009. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2): 374–381.
  • Philipse AP, Maas D. 2002. Magnetic colloids from magnetotactic bacteria: chain formation and colloidal stability. Langmuir 18: 9977–9984.
  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S. 2006. Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24: 58–68.
  • Pooley FD. 1982. Bacteria accumulate silver during leaching of sulphide ore minerals. Nature 296: 642–643.
  • Pósfai M, Moskowitz BM, Arató B, Schüler D, Flies C, Bazylinski DA, Frankel RB. 2006. Properties of intracellular magnetite crystals produced by Desulfovibrio magneticus strain RS-1. Earth Planet Sci Lett 249: 444–455.
  • Prasad K, Jha AK, Kulkarni AR. 2007. Lactobacillus assisted synthesis of titanium nanoparticles. Nanoscale Res Lett 2: 248–250.
  • Prozorov T, Mallapragada SK, Narasimhan B, Wang LJ, Palo P, Nilsen-Hamilton M, Williams TJ, Bazylinski DA, Prozorov R, Canfield PC. 2007a. Protein-mediated synthesis of uniform superparamagnetic magnetite nanocrystal. Adv Funct Mater 17(6): 951–957.
  • Prozorov T, Palo P, Wang L, Nilsen-Hamilton M, Orr D, Jones D, Mallapragada SK, Narasimhan B, Canfield PC, Prozorov R. 2007b. Cobalt ferrite nanocrystals: out-performing magnetotactic bacteria. ACS NANO 1(3): 228–233.
  • Rai A, Singh A, Ahmad A, Sastry M. 2006. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir 22: 736–741.
  • Ramezani N, Ehsanfar Z, Shamsa F, Aminc G, Shahverdi HR, Monsef Esfahanic HR, Shamsaiea A, Dolatabadi Bazazb R, Shahverdi AR. 2008. Screening of medicinal plant methanol extracts for the synthesis of gold nanoparticles by their reducing potential. Z Naturforsch 63b: 903–908.
  • Raper KB, Fennel DI. 1965. The Genus Aspergillus. Baltimore, MD: Williams & Wilkins.
  • Rashamuse K, Whiteley CG. 2007. Bioreduction of platinum (IV) from aqueous solution using sulphate reducing bacteria. Appl Microbiol Biotechnol 75: 1429–1435.
  • Rauser WE. 1995. Phytochelatins and related peptides. Structure, biosynthesis and function. Plant Physiol 109: 1141–1149.
  • Rauser WE. 2000. Roots of maize seedlings retain most of their cadmium through two complexes. J Plant Physiol 156: 545–551.
  • Reese RN, Winge DR. 1988. Sulfide stabilization of the cadmium-g-Glutamyl peptide complex of Schizosaccharomyces pombe. J Biol Chem 263: 12832–12835.
  • Reese RN, Mehra RK, Tarbet EB, Winge DR. 1988. Studies on the g-Glutamyl Cu-binding peptide from Schizosaccharomyces pombe. J Biol Chem 263: 4186–4192.
  • Richard JP. 1978. The Chemistry of Gold. Amsterdam: Elsevier.
  • Riddin TL, Gericke M, Whiteley CG. 2006. Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f.sp. Lycopersici using response surface methodology. Nanotechnology 17: 1–8.
  • Rivadenevra MA, Delgado G, Soriano M, Ramos-Cormenzana A, Delgado R. 1999. Biomineralization of carbonates by Marinococcus albus and Marinococcus halophilus isolated from the Salar de Atacama (Chile). Curr Microbiol 39: 53–57.
  • Roden EE, Lovley DR. 1993. Dissimilatory Fe(III) reduction by the marine microorganism Desulfuromonas acetoxidans. Appl Environ Microbiol 59: 734–742.
  • Rogers WJ, Basu P. 2005. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging. Atherosclerosis 178(1): 67.
  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ. 2001. Microbial synthesis and the characterization of metal-substituted magnetites. Solid State Comm 118: 529–534.
  • Roh Y, Gao H, Vali H, Kennedy DW, Yang ZK, Gao W, Dohnalkova AC, Stapleton RD, Moon JW, Phelps TJ, Fredrickson JK, Zhou J. 2006. Metal reduction and iron biomineralization by a psychrotolerant Fe(III)-reducing bacterium, Shewanella sp. Strain PV-4. Appl Environ Microbiol 72: 3236–3244.
  • Rouch DA, Lee BTO, Morby AP. 1995. Understanding cellular responses to toxic agents: a model for mechanism choice in bacterial metal resistance. J Ind Micro 14: 132–141.
  • Royston ES, Brown AD, Harris MIT, Culvera JN. 2009. Preparation of silica stabilized Tobacco mosaic virus templates for the production of metal and layered nanoparticles. J Colloid Interface Sci 332(2): 402–407.
  • Sadowski Z, Maliszewska IH, Grochowalska B, Polowczyk I, Kozlecki T. 2008. Synthesis of silver nanoparticles using microorganisms. Mater Sci Poland 26(2): 419–424.
  • Safety Data for Aflatoxin B1. 2007. Available from http://msds.chem.ox.ac.uk/AF/aflatoxin_B1.html.
  • Saifuddin N, Wong CW, Nur Yasumira AA. 2009. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. E-J Chem 6(1): 61–70.
  • Salata OV. 2004. Application of nanoparticles in biology and medicine. J Nanobiotechnology 2(3). doi: 10.1186/1477-3155-2-3.
  • Sanghi R, Verma P. 2009. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100: 501–504.
  • Sastry M, Ahmad A, Khan MI, Kumar R. 2003. Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2): 162–170.
  • Satomi M, Oikawa H, Yano Y. 2003. Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53: 491–499.
  • Scarano G, Morelli E. 2003. Properties of phytochelatin-coated CdS nanocrystallites formed in a marine phytoplanktonic alga (Phaeodactylum tricornutum, Bohlin) in response to Cd. Plant Sci 165(4): 803–810.
  • Schabes-Retchkiman PS, Canizal G, Herrera-Becerra R, Zorrilla C, Liu HB, Ascencio JA. 2006. Biosynthesis and characterization of Ti/Ni bimetallic nanoparticles. Opt Mater 29: 95–99.
  • Scheffel A, Gardes A, Grunberg K, Wanner G, Schuler D. 2008. The major magnetosome proteins MamGFDC are not essential for magnetite biomineralization in Magnetospirillum gryphiswaldense but regulate the size of magnetosome crystals. J Bacteriol 190: 377–386.
  • Scheidegger KA, Payne GA. 2003. Unlocking the secrets behind secondary metabolism: a review of Aspergillus flavus from pathogenicity to functional genomics. J Toxicol 22: 423–459.
  • Schmid G. 1992. Large clusters and colloids. Metals in the embryonic state. Chem Rev 92: 1709–1727.
  • Schüler D. 1999. Formation of magnetosomes in magnetotactic bacteria. J Mol Microbiol Biotechnol 1: 79–86.
  • Schuler D. 2008. Genetics and cell biology of magnetosome formation in magnetotactic bacteria. FEMS Microbiol Rev 32: 654–672.
  • Schultze-Lam S, Harauz G, Beveridge TJ. 1992. Participation of a cyanobacterial S layer in fine-grain mineral formation. J Bacteriol 174: 7971–7981.
  • Senapati S, Mandal D, Ahmad A, Khan MI, Sastry M, Kumar R. 2004. Fungus mediated synthesis of silver nanoparticles: a novel biological approach. Indian J Phys 78A: 101–105.
  • Senapati S, Ahmad A, Khan MI, Sastry M, Kumar R. 2005. Extracellular biosynthesis of bimetallic Au–Ag alloy nanoparticles. Small 1(5): 517–520.
  • Senapati S. 2005. Biosynthesis and Immobilization of Nanoparticles and Their Applications. India: University of Pune.
  • Shahverdi AR, Minaeian S, Shahverdi HR, Jamalifar H, Nohi AA. 2007. Rapid synthesis of silver nanoparticles using culture supernatants of Enterobacteria: a novel biological approach process. Biochemistry 42: 919–923.
  • Shankar SS, Absar A, Murali S. 2003a. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19: 1627–1631.
  • Shankar SS, Ahmad A, Pasricha R, Sastry M. 2003b. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. Mater Chem 13: 1822–1826.
  • Shankar SS, Rai A, Ahmad A, Sastry MJ. 2004a. Rapid synthesis of Au, Ag and bimetallic Au shell nanoparticles using Neem. J Colloid Interface Sci 275: 496–502.
  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M. 2004b. Biological synthesis of triangular gold nanoprisms. Nat Mater 3: 482–488.
  • Shankar SS, Rai A, Ahmad A, Sastry M. 2005. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater 17: 566.
  • Sharma NC, Sahi SV, Nath S, Parsons JG, Gardea-Torresdey JL, Pal T. 2007. Synthesis of plant-mediated gold nanoparticles and catalytic role of biomatrix-embedded nanomaterials. Environ Sci Technol 41: 5137–5142.
  • Shenton W, Douglas T, Young M, Stubbs G, Mann S. 1999. Inorganic organic nanotube composites from template mineralization of tobacco mosaic virus. Adv Mater 11: 253.
  • Shiwers DW, Brock TD. 1973. Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J Bacteriol 114: 706–710.
  • Singaravelu G, Arockiamary JS, Ganesh Kumar V, Govindaraju K. 2007. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids Surf B Biointerfaces 57: 97–101.
  • Slawson RM, Van DM, Lee H, Trevor J. 1992. Germanium and silver resistance, accumulation and toxicity in microorganisms. Plasmid 27: 73–79.
  • Smith A, Ruan G, Rhyner M, Nie S. 2006. Engineering luminescent quantum dots for in vivo molecular and cellular imaging. Ann Biomed Eng 34(1): 3–14.
  • Song JY, Kim BS. 2008. Biological synthesis of bimetallic Au/Ag nanoparticles using persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25: 808–811.
  • Song JY, Kim BS. 2009. Rapid biological synthesis of silver nanoparticles using plant leaf extracts. Bioprocess Biosyst Eng 32: 79–84.
  • Southam G, Beveridge TJ. 1994. The in vitro formation of placer gold by bacteria. Geochim Cosmochim Acta 58: 4527–4530.
  • Southam G, Beveridge TJ. 1996. The occurrence of sulfur and phosphorus within bacterially derived crystalline and pseudocrystalline octahedral gold formed in vitro. Geochim Cosmochim Acta 60: 4369–4376.
  • Speiser DM, Ortiz DF, Kreppel L, Scheel G, McDonald G, Ow DW. 1992. Purine biosynthetic genes are required for cadmium tolerance in Schizosaccharomyces pombe. Mol Cell Biol 12: 5301–5310.
  • Stas NS, Lyudmila MB, Pyotr MV, Jürgen H, Helmut C, Heimo S, Markus A. 1999. Stabilization of metal nanoparticles in aqueous medium by polyethyleneoxide–polyethyleneimine block copolymers. J Colloid Interface Sci 212(2): 197–211.
  • Stephen JR, Macnaughton SJ. 1999. Developments in terrestrial bacterial remediation of metals. Curr Opin Biotechnol 10: 230–233.
  • Sun JB, Zhao F, Tang T, Jiang W, Tian JS, Li Y, Li JL. 2008. High-yield growth and magnetosome formation by Magnetospirillum gryphiswaldense MSR-1 in an oxygen-controlled fermentor supplied solely with air. Appl Microbiol Biotechnol 79: 389–397.
  • Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL. 2004. Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11: 1553–1559.
  • Taylor DE. 1999. Bacterial tellurite resistance. Trends Microbiol 7: 111–115.
  • Thorek D, Chen A, Czupryna J, Tsourkas A. 2006. Superparamagnetic iron oxide nanoparticle probes for molecular imaging. Ann Biomed Eng 34(1): 23–38.
  • Tian Z, Ren B. 2004. Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 55: 197.
  • Tilaki RM, Irajizad A, Mahdavi SM. 2006. Stability, size and optical properties of silver nanoparticles prepared by laser ablation in different carrier media. Appl Phys A 84: 215–219.
  • Torres E, Cid A, Fidalgo P, Herrero C, Abalde J. 1997. Long-chain class III metallothioneins as a mechanism of cadmium tolerance in the marine diatom Phaeodactylum tricornutum Bohlin. AquatToxicol 39: 231–246.
  • Torresdey JLG, Gomez E, Videa JRP, Parsons JG, Troiani H, Jos’e-Yacam’an M. 2003. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19: 1357.
  • Venkateswaran K, Moser D, Dollhopf ME, Lies DP, Saffarini DA, MacGregor BJ, Ringelberg DB, White DC, Nishijima M, Sano H, Burghardt J, Stackebrandt E, Nealson KH. 1999. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49: 705–724.
  • Verkleij JAC, Koevoets P, Van’t Riet J, Bark R, Mijdam Y, Ernst WHO. 1990. Poly(g-glutamylcysteinyl)-glycines or phytochelatins and their role in cadmium tolerance of Silene vulgaris. Plant Cell Environ 13: 913–921.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B Biointerfaces 53: 55–59.
  • Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH. 2007a. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61: 1413–1418.
  • Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. 2007b. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 23(13): 7113–7117.
  • Vilchis-Nestora AR, Sánchez-Mendieta V, Camacho-López MA, Gómez-Espinosa RM, Camacho-López MA, Arenas-Alatorre JA. 2008. Solventless synthesis and optical properties of Au and Ag nanoparticles using Camellia sinensis extract. Mater Lett 62: 3103–3105.
  • Wang Y, Herron N. 1991. Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95: 525–532.
  • Wang Y. 1991. Nonlinear optical properties of nanometer sized semi-conductor clusters. Acc Chem Res 24: 133–139.
  • Wang YT. 2000. Microbial reduction of chromate. In Lovley DR, ed. Environmental Microbe-Metal Interactions (pp. 225–235 ). Washington, DC: ASM Press.
  • Watson JHP, Ellwood DC, Soper AK, Charnock J. 1999. Nanosized strongly-magnetic bacterially-produced iron sulfide materials. J Magn Magn Mater 203: 69–72.
  • Watson JHP, Croudace IW, Warwick PE, James PAB, Charnock JM, Ellwood DC. 2001. Adsorption of radioactive metals by strongly magnetic iron sulfide nanoparticles produced by sulfate-reducing bacteria. Separ Sci Technol 36: 2571–2607.
  • Weller H. 1998. Transistors and light emitters from single nanoclusters. Angew Chem Int Ed Engl 37: 1658–1659.
  • Wen L, Lin Z, Gu P, Zhou J, Yao B, Chen G, Fu J. 2008. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route. J Nanopart Res 11: 279–288.
  • Williams P, Keshavarz-Moore E, Dunnill P. 1996. Production of cadmium sulphide microcrystallites in batch cultivation by Schizosaccharomyces pombe. J Biotech 48: 259–267.
  • Winge DR, Dameron CT, Mehra RK. 1992. Metal: sulfide quantum crystallites in yeast. In Stillman MJ, Shaw CF, Suzuki KT, eds. Metallothioneins (pp. 257–270 ). New York: VCH Publishers.
  • Woolfolk CA, Whiteley HR. 1962. Reduction of inorganic compounds with molecular hydrogen by Micrococcus lactilyticus. J Bacteriol 84: 647–658.
  • Xie J, Chen K, Chen X. 2009. Production, modification and bio-applications of magnetic nanoparticles gestated by Magnetotactic bacteria. Nano Res 2: 261–278.
  • Yan S, Hea W, Sun C, Zhang X, Zhao H, Li Z, Zhou W, Tian X, Sun X, Han X. 2009. The biomimetic synthesis of zinc phosphate nanoparticles. Dyes Pigm 80(2): 254–258.
  • Yeary LW, Moon J-W, Love LJ, Thompson JR, Rawn CJ, Phelps TJ. 2005. Magnetic properties of biosynthesized magnetite nanoparticles. Robotics & Energetic Syst 41: 4384–4389.
  • Yoffe AD. 1993. Low-dimensional system: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional system) and some quasi-two dimensional systems. Adv Phys 42: 173–266.
  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE. 2002a. Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77: 593–601.
  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE. 2002b. Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80: 369–379.
  • Yoshino T, Hirabe H, Takahashi M, Kuhara M, Takeyama H, Matsunaga T. 2008. Magnetic cell separation using nano-sized bacterial magnetic particles with reconstructed magnetosome membrane. Biotechnol Bioeng 101: 470–477.
  • Zenk MH. 1996. Heavy metals detoxification in higher plants. Gene 179: 21–30.
  • Zhang C, Liu S, Logan J, Mazumder R, Phelps TJ. 1996. Enhancement of Fe(III), Co(III) and Cr(VI) reduction at elevated temperatures by a thermophilic bacterium. Appl Biochem Biotechnol 57/58: 923–932.
  • Zhang C, Vali H, Romanek CS, Phelps TJ, Liu SV. 1998. Formation of single-domain magnetite by a thermophilic bacterium. Am Mineralogist Pages 83: 1409–1418.
  • Zhang HR, Li QB, Lu YH, Sun DH, Ling XP, He N, Zheng SZ. 2005. Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80(3): 285–290.
  • Zhang W, Wang G. 2003. Research and development for antibacterial materials of silver nanoparticle. New Chem Mater 31(2): 42–44.
  • Zhao JS, Manno D, Beaulieu C, Paquet L, Hawari J. 2005. Shewanella sediminis sp. nov., a novel Na+ requiring and hexahydro-1,3,5-trinitro-1,3,5-triazine-degrading bacterium from marine sediment. Int J Syst Evol Microbiol 55: 1511–1520.
  • Zharov VP, Kim J-W, Curiel DT, Everts M. 2005. Self-assembling nanoclusters in living systems: application for integrated photothermal nanodiagnostics and nanotherapy. Nanomedicine 1: 326–345.
  • Zierenberg RA, Schiffman P. 1990. Microbial control of silver mineralization at a seafloor hydrothermal site on the northern Gorda Ridge. Nature 348: 155–157.
  • Zurkiya O, Chan AW, Hu X. 2008. MagA is sufficient for producing magnetic nanoparticles in mammalian cells, making it an MRI reporter. Magn Reson Med 59: 1225–1231.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.