1,011
Views
117
CrossRef citations to date
0
Altmetric
Review Article

Biotechnological approaches to develop bacterial chitinases as a bioshield against fungal diseases of plants

, , , , , & show all
Pages 231-241 | Accepted 15 Apr 2010, Published online: 24 Jun 2010

References

  • Bano S. 2006. Enhanced production and extracellular activity of commercially important amylolytic enzyme by a newly isolated strain of Bacillus sp. AS-1. Turk J Biochem 31: 135–140.
  • Berensmeier S, Singh SA, Meens J, Buchholz K. 2004. Cloning of the pelA gene from Bacillus licheniformis 14A and biochemical characterization of recombinant, thermostable, high-alkaline pectate lyase. Appl Microbiol Biotechnol 64: 560–567.
  • Bhattacharya D, Nagpure A, Gupta RK. 2007. Bacterial chitinases: properties and potential. Crit Rev Biotechnol 27: 21–28.
  • Breccia JD, Morán AC, Castro GR, Siñeriz F. 1999. Thermal stabilization by polyols of β-xylanase from Bacillus amyloliquefaciens. J Chem Technol Biotechnol 71: 241–245.
  • Cai W, Sha L, Zhou J, Huang Z, Guan X. 2009. Functional analysis of active site residues of Bacillus thuringiensis WB7 chitinase by site-directed mutagenesis. World J Microbiol Biotechnol 25: 2147–2155.
  • Chan KY, Au KS. 1987. Studies on cellulase production by a Bacillus subtilis. Antonie Van Leeuwenhoek 53: 125–136.
  • Chang W, Chen M, Wang S. 2009. An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World J Microbiol Biotechnol 26: 945–950.
  • Chang WT, Chen YC, Jao CL. 2007. Antifungal activity and enhancement of plant growth by Bacillus cereus grown on shellfish chitin wastes. Bioresour Technol 98: 1224–1230.
  • Chet I, Ordentlich A, Shapira R, Oppenheim A. 1990. Mechanisms of biocontrol of soil borne plant pathogens by rhizobacteria. Plant Soil 129: 85–92.
  • Chuang HH, Lin FP. 2007. New role of C-terminal 30 amino acids on the insoluble chitin hydrolysis in actively engineered chitinase from Vibrio parahaemolyticus. Appl Microbiol Biotechnol 76: 123–133.
  • Chuang HH, Lin HY, Lin FP. 2008. Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis: implication of necessity for enzyme properties. FEBS J 275: 2240–2254.
  • Commare RR, Nandakumar R, Kandan A, Suresh S, Bharathi M, Raguchander T, Samiyappan R. 2002. Pseudomonas fluorescens based bio-formulation for the management of sheath blight disease and leaffolder insect in rice. Crop Prot 21: 671–677.
  • Dahiya N, Tewari R, Tiwari RP, Hoondal GS. 2005. Chitinase production in solid-state fermentation by Enterobacter sp. NRG4 using statistical experimental design. Curr Microbiol 51: 222–228.
  • Desai S, Reddy MS, Kloepper JW. 2002. Comprehensive testing of biocontrol agents. In Gnanamanickam SS, ed. Biological Control of Crop Diseases (pp. 387–420 ). New York: Marcel-Dekker.
  • Driss F, Baanannou A, Rouis S, Masmoudi I, Zouari N, Jaoua S. 2007. Effect of the chitin binding domain deletion from Bacillus thuringiensis subsp. kurstaki chitinase Chi255 on its stability in Escherichia coli. Mol Biotechnol 36: 232–237.
  • Eijsink VG, Veltman OR, Aukema W, Vriend G, Venema G. 1995. Structural determinants of the stability of thermolysin-like proteinases. Nat Struct Biol 2: 374–379.
  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GESTJ. 2000. Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49: 573–583.
  • Felse PA, Panda T. 2000. Production of microbial chitinases—a revisit. Bioprocess Eng 23: 127–134.
  • Gåseidnes S, Synstad B, Jia X, Kjellesvik H, Vriend G, Eijsink VG. 2003. Stabilization of a chitinase from Serratia marcescens by Gly→Ala and Xxx→Pro mutations. Protein Eng 16: 841–846.
  • Ge L, Zhang H, Chen K, Ma L, Xu Z. 2010. Effect of chitin on the antagonistic activity of Rhodotorula glutinis against Botrytis cinerea in strawberries and the possible mechanisms involved. Food Chem 120: 490–495.
  • Gohel V, Singh A, Vimal M, Ashwini P, Chhatpar HS. 2006. Bioprospecting and antifungal potential of chitinolytic microorganisms. Afr J Biotechnol 5: 54–72.
  • Guedon E, Desvaux M, Petitdemange H. 2002. Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl Environ Microbiol 68: 53–58.
  • Gupta C, Kumar B, Dubey R, Maheshwari D. 2006. Chitinase-mediated destructive antagonistic potential of Pseudomonas aeruginosa GRC1 against Sclerotinia sclerotiorum causing stem rot of peanut. Biocontrol 51: 821–835.
  • Gurr SJ, Rushton PJ. 2005a. Engineering plants with increased disease resistance: what are we going to express? Trends Biotechnol 23: 275–282.
  • Gurr SJ, Rushton PJ. 2005b. Engineering plants with increased disease resistance: how are we going to express it? Trends Biotechnol 23: 283–290.
  • Hardt M, Laine RA. 2004. Mutation of active site residues in the chitin-binding domain ChBDChiA1 from chitinase A1 of Bacillus circulans alters substrate specificity: use of a green fluorescent protein binding assay. Arch Biochem Biophys 426: 286–297.
  • Hart PJ, Pfluger HD, Monzingo AF, Hollis T, Robertus JD. 1995. The refined crystal structure of an endochitinase from Hordeum vulgare L. seeds at 1.8 A resolution. J Mol Biol 248: 402–413.
  • Henrissat B, Bairoch A. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(Pt 3): 781–788.
  • Hong TY, Meng M. 2003. Biochemical characterization and antifungal activity of an endo-1,3-beta-glucanase of Paenibacillus sp. isolated from garden soil. Appl Microbiol Biotechnol 61: 472–478.
  • Hoseki J, Yano T, Koyama Y, Kuramitsu S, Kagamiyama H. 1999. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J Biochem 126: 951–956.
  • Huang CJ, Guo SH, Chung SC, Lin YJ, Chen CY. 2009. Analysis of the involvement of chitin-binding domain of ChiCW in antifungal activity, and engineering a novel chimeric chitinase with high enzyme and antifungal activities. J Microbiol Biotechnol 19: 1169–1175.
  • Huang CJ, Wang TK, Chung SC, Chen CY. 2005. Identification of an antifungal chitinase from a potential biocontrol agent, Bacillus cereus 28-9. J Biochem Mol Biol 38: 82–88.
  • Itoh Y, Kawase T, Nikaidou N, Fukada H, Mitsutomi M, Watanabe T, Itoh Y. 2002. Functional analysis of the chitin-binding domain of a family 19 chitinase from Streptomyces griseus HUT6037: substrate-binding affinity and cis-dominant increase of antifungal function. Biosci Biotechnol Biochem 66: 1084–1092.
  • Jo YY, Jo KJ, Jin YL, Kim KY, Shim JH, Kim YW, Park RD. 2003. Characterization and kinetics of 45 kDa chitosanase from Bacillus sp. P16. Biosci Biotechnol Biochem 67: 1875–1882.
  • Joo GJ. 2005. Purification and characterization of an extracellular chitinase from the antifungal biocontrol agent Streptomyces halstedii. Biotechnol Lett 27: 1483–1486.
  • Katouno F, Taguchi M, Sakurai K, Uchiyama T, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T. 2004. Importance of exposed aromatic residues in chitinase B from Serratia marcescens 2170 for crystalline chitin hydrolysis. J Biochem 136: 163–168.
  • Kishore GK, Pande S, Podile AR. 2005a. Biological control of late leaf spot of peanut (Arachis hypogaea) with chitinolytic bacteria. Phytopathology 95: 1157–1165.
  • Kishore GK, Pande S, Podile AR. 2005b. Phylloplane bacteria increase seedling emergence, growth and yield of field-grown groundnut (Arachis hypogaea L.). Lett Appl Microbiol 40: 260–268.
  • Kishore GK, Pande S, Podile AR. 2005c. Biological control of collar rot disease with broad-spectrum antifungal bacteria associated with groundnut. Can J Microbiol 51: 123–132.
  • Kishore GK, Pande S, Podile AR. 2005d. Chitin-supplemented foliar application of Serratia marcescens GPS 5 improves control of late leaf spot disease of groundnut by activating defence-related enzymes. J Phytopathol 153: 169–173.
  • Kobayashi DY, Reedy RM, Bick J, Oudemans PV. 2002. Characterization of a chitinase gene from Stenotrophomonas maltophilia strain 34S1 and its involvement in biological control. Appl Environ Microbiol 68: 1047–1054.
  • Koch R, Canganella F, Hippe H, Jahnke KD, Antranikian G. 1997. Purification and properties of a thermostable pullulanase from a newly isolated thermophilic anaerobic bacterium, Fervidobacterium pennavorans Ven5. Appl Environ Microbiol 63: 1088–1094.
  • Li Q, Wang F, Zhou Y, Xiao X. 2005. Putative exposed aromatic and hydroxyl residues on the surface of the N-terminal domains of Chi1 from Aeromonas caviae CB101 are essential for chitin binding and hydrolysis. Appl Environ Microbiol 71: 7559–7561.
  • Lin FP, Chen HC, Lin CS. 1999. Site-directed mutagenesis of Asp313, Glu315, and Asp391 residues in chitinase of Aeromonas caviae. IUBMB Life 48: 199–204.
  • Lin FP, Juang WY, Chang KH, Chen HC. 2001. G561 site-directed deletion mutant chitinase from Aeromonas caviae is active without its 304 C-terminal amino acid residues. Arch Microbiol 175: 220–225.
  • Liu D, Cai J, Xie C, Liu C, Chen Y. 2010. Purification and partial characterization of a 36-kDa chitinase from Bacillus thuringiensis subsp. colmeri, and its biocontrol potential. Enzyme Microb Technol 46: 252–256.
  • Louw ME, Reid SJ, Watson TG. 1993. Characterization, cloning and sequencing of a thermostable endo-(1,3-1,4) beta-glucanase-encoding gene from an alkalophilic Bacillus brevis. Appl Microbiol Biotechnol 38: 507–513.
  • Machius M, Declerck N, Huber R, Wiegand G. 2003. Kinetic stabilization of Bacillus licheniformis alpha-amylase through introduction of hydrophobic residues at the surface. J Biol Chem 278: 11546–11553.
  • Manjula K, Kishore GK, Podile AR. 2004. Whole cells of Bacillus subtilis AF 1 proved more effective than cell-free and chitinase-based formulations in biological control of citrus fruit rot and groundnut rust. Can J Microbiol 50: 737–744.
  • Manjula K, Podile AR. 2001. Chitin-supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF 1. Can J Microbiol 47: 618–625.
  • Mavromatis K, Feller G, Kokkinidis M, Bouriotis V. 2003. Cold adaptation of a psychrophilic chitinase: a mutagenesis study. Protein Eng 16: 497–503.
  • Mehmood MA, Gai Y, Zhuang Q, Wang F, Xiao X, Wang F. 2010. Aeromonas caviae CB101 contains four chitinases encoded by a single gene chi1. Mol Biotechnol 44: 213–220.
  • Mehmood MA, Xiao X, Hafeez FY, Gai Y, Wang F. 2009. Purification and characterization of a chitinase from Serratia proteamaculans. World J Microbiol Biotechnol 25: 1955–1961.
  • Mondal KC, Pati BR. 2000. Studies on the extracellular tannase from newly isolated Bacillus licheniformis KBR 6. J Basic Microbiol 40: 223–232.
  • Neeraja C, Moerschbacher B, Podile AR. 2010a. Fusion of cellulose binding domain to the catalytic domain improves the activity and conformational stability of chitinase in Bacillus licheniformis DSM13. Bioresour Technol 101: 3635–3641.
  • Neeraja C, Moerschbacher B, Podile AR. 2010b. Swapping of the chitin-binding domain in Bacillus chitinases improves the substrate binding affinity and conformational stability. Mol. Biosyst. DOI:10.1039/B923048C.
  • Pantoom S, Songsiriritthigul C, Suginta W. 2008. The effects of the surface-exposed residues on the binding and hydrolytic activities of Vibrio carchariae chitinase A. BMC Biochem 9: 2.
  • Patil RS, Ghormade VV, Deshpande MV. 2000. Chitinolytic enzymes: an exploration. Enzyme Microb Technol 26: 473–483.
  • Podile AR, Prakash AP. 1996. Lysis and biological control of Aspergillus niger by Bacillus subtilis AF 1. Can J Microbiol 42: 533–538.
  • Poulsen PH, Møller J, Magid J. 2008. Determination of a relationship between chitinase activity and microbial diversity in chitin amended compost. Bioresour Technol 99: 4355–4359.
  • Quecine MC, Araujo WL, Marcon J, Gai CS, Azevedo JL, Pizzirani-Kleiner AA. 2008. Chitinolytic activity of endophytic Streptomyces and potential for biocontrol. Lett Appl Microbiol 47: 486–491.
  • Reyes-Ramírez A, Escudero-Abarca BI, Aguilar-Uscanga G, Hayward-Jones PM, Barboza-Corona JE. 2006. Antifungal activity of Bacillus thuringiensis chitinase and its potential for the biocontrol of phytopathogenic fungi in soybean seeds. J Food Sci 69: 131–134.
  • Ruiz-Sánchez A, Cruz-Camarillo R, Salcedo-Hernández R, Barboza-Corona JE. 2005. Chitinases from Serratia marcescens Nima. Biotechnol Lett 27: 649–653.
  • Saules JEM, Waliszewski KN, Garcia MA, Cruz-Camarillo R. 2006. The use of crude shrimp shell powder for chitinase production by Serratia marcescens WF. Food Technol Biotechnol 44: 95–100.
  • Seddon B, Edwards EG. 1993. Analysis of and strategies for the biocontrol of Botrytis cinerea by Bacillus brevis on protected Chinese cabbage. IOBC Bull 16: 38–41.
  • Shapira R, Ordentlich A, Chet I, Oppenheim AB. 1989. Control of plant diseases by chitinase expressed from cloned cDNA in Escherichia coli. Phytopathology 79: 1246–1249.
  • Shiau RJ, Hung HC, Jeang CL. 2003. Improving the thermostability of raw-starch-digesting amylase from a Cytophaga sp. by site-directed mutagenesis. Appl Environ Microbiol 69: 2383–2385.
  • Singh AK, Ghodke I, Chhatpar HS. 2009. Pesticide tolerance of Paenibacillus sp. D1 and its chitinase. J Environ Manage 91: 358–362.
  • Singh PP, Shin YC, Park CS, Chung YR. 1999. Biological control of Fusarium wilt of cucumber by chitinolytic bacteria. Phytopathology 89: 92–99.
  • Someya N, Kataoka N, Komagata T, Hirayae K, Hibi T, Akutsu K. 2000. Biological control of cyclamen soil borne diseases by Serratia marcescens. Plant Dis 84: 334–340.
  • Song JK, Rhee JS. 2000. Simultaneous enhancement of thermostability and catalytic activity of phospholipase A(1) by evolutionary molecular engineering. Appl Environ Microbiol 66: 890–894.
  • Songsiriritthigul C, Pesatcha P, Eijsink VG, Yamabhai M. 2009. Directed evolution of a Bacillus chitinase. Biotechnol J 4: 501–509.
  • Stuiver MH, Custers JH. 2001. Engineering disease resistance in plants. Nature 411: 865–868.
  • Suginta W, Songsiriritthigul C, Kobdaj A, Opassiri R, Svasti J. 2007. Mutations of Trp275 and Trp397 altered the binding selectivity of Vibrio carchariae chitinase A. Biochim Biophys Acta 1770: 1151–1160.
  • Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Song JK, Rhee JS. 2000. Simultaneous enhancement of thermostability and catalytic activity of phospholipase A1 by evolutionary molecular engineering. Appl Environ Microbiol 66: 890–894.
  • Suzuki K, Sugawara N, Suzuki M, Uchiyama T, Katouno F, Nikaidou N, Watanabe T. 2002. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66: 1075–1083.
  • Swain MR, Ray RC, Nautiyal CS. 2008. Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against postharvest yam (Dioscorea rotundata L.) pathogens. Curr Microbiol 57: 407–411.
  • Tanaka H, Watanabe T. 1995. Glucanases and chitinases of Bacillus circulans WL-12. J Ind Microbiol 14: 478–483.
  • Tanaka T, Fujiwara S, Nishikori S, Fukui T, Takagi M, Imanaka T. 1999. A unique chitinase with dual active sites and triple substrate binding sites from the hyperthermophilic archaeon Pyrococcus kodakaraensis KOD1. Appl Environ Microbiol 65: 5338–5344.
  • Tanaka T, Fukui T, Imanaka T. 2001. Different cleavage specificities of the dual catalytic domains in chitinase from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. J Biol Chem 276: 35629–35635.
  • Teixidó N, Usall J, Palou L, Asensio A, Nunes C, Viñas I. 2001. Improving control of green and blue molds of oranges by combining Pantoea agglomerans (CPA-2) and sodium bicarbonate. Eur J Plant Pathol 107: 685–694.
  • Terahara T, Ikeda S, Noritake C, Minamisawa K, Ando K, Tsuneda S, Harayama S. 2009. Molecular diversity of bacterial chitinases in arable soils and the effects of environmental factors on the chitinolytic bacterial community. Soil Biol Biochem 41: 473–480.
  • Terayama H, Takahashi S, Kuzuhara H. 2005. Large scale preparation of N,N′-diacetylchitobiose by enzymic degradation of chitin and its chemical modifications. J Carbohydr Chem 12: 81–93.
  • Thompson BN, Gould SJ, Kraus J, Loper JE. 1994. Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5. Can J Microbiol 40: 1064–1066.
  • Uchiyama T, Katouno F, Nikaidou N, Nonaka T, Sugiyama J, Watanabe T. 2001. Roles of the exposed aromatic residues in crystalline chitin hydrolysis by chitinase A from Serratia marcescens 2170. J Biol Chem 276: 41343–41349.
  • Vaaje-Kolstad G, Horn SJ, van Aalten DM, Synstad B, Eijsink VG. 2005. The non-catalytic chitin-binding protein CBP21 from Serratia marcescens is essential for chitin degradation. J Biol Chem 280: 28492–28497.
  • van Aalten DM, Synstad B, Brurberg MB, Hough E, Riise BW, Eijsink VG, Wierenga RK. 2000. Structure of a two-domain chitotriosidase from Serratia marcescens at 1.9-A resolution. Proc Natl Acad Sci USA 97: 5842–5847.
  • Vidhyasekaran P, Rabindran R, Muthamilan M, Nayar K, Rajappan K, Subramanian N, Vasumathi K. 1997. Development of a powder formulation of Pseudomonas fluorescens for control of rice blast. Plant Pathol 46: 291–297.
  • Vieille C, Zeikus GJ. 2001. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol Mol Biol Rev 65: 1–43.
  • Wang SL, Chang WT. 1997. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl Environ Microbiol 63: 380–386.
  • Wang SL, Lin TY, Yen YH, Liao HF, Chen YJ. 2006. Bioconversion of shellfish chitin wastes for the production of Bacillus subtilis W-118 chitinase. Carbohydr Res 341: 2507–2515.
  • Wang SL, Shih IL, Liang TW, Wang CH. 2002. Purification and characterization of two antifungal chitinases extracellularly produced by Bacillus amyloliquefaciens V656 in a shrimp and crab shell powder medium. J Agric Food Chem 50: 2241–2248.
  • Watanabe T. 2002. Chitinases A, B, and C1 of Serratia marcescens 2170 produced by recombinant Escherichia coli: enzymatic properties and synergism on chitin degradation. Biosci Biotechnol Biochem 66: 1075–1083.
  • Watanabe T, Ishibashi A, Ariga Y, Hashimoto M, Nikaidou N, Sugiyama J, Matsumoto T, Nonaka T. 2001. Trp122 and Trp134 on the surface of the catalytic domain are essential for crystalline chitin hydrolysis by Bacillus circulans chitinase A1. FEBS Lett 494: 74–78.
  • Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S, Tanaka H. 1994. The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J Bacteriol 176: 4465–4472.
  • Watanabe T, Kobori K, Miyashita K, Fujii T, Sakai H, Uchida M, Tanaka H. 1993. Identification of glutamic acid 204 and aspartic acid 200 in chitinase A1 of Bacillus circulans WL-12 as essential residues for chitinase activity. J Biol Chem 268: 18567–18572.
  • Wilson CL, Wisniewski ME, Biles CL, MacLaughlin R, Chalutz E, Droby E. 1991. Biological control of post-harvest diseases of fruits and vegetables: alternatives to synthetic fungicides. Crop Prot 10: 172–177.
  • Yang CY, Ho YC, Pang JC, Huang SS, Tschen JS. 2009. Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour Technol 100: 1454–1458.
  • Yasir M, Aslam Z, Kim SW, Lee SW, Jeon CO, Chung YR. 2009. Bacterial community composition and chitinase gene diversity of vermicompost with antifungal activity. Bioresour Technol 100: 4396–4403.
  • Zakariassen H, Aam BB, Horn SJ, Vårum KM, Sørlie M, Eijsink VG. 2009. Aromatic residues in the catalytic center of chitinase A from Serratia marcescens affect processivity, enzyme activity, and biomass converting efficiency. J Biol Chem 284: 10610–10617.
  • Zees AC, Pyrpassopoulos S, Vorgias CE. 2009. Insights into the role of the (alpha+beta) insertion in the TIM-barrel catalytic domain, regarding the stability and the enzymatic activity of chitinase A from Serratia marcescens. Biochim Biophys Acta 1794: 23–31.
  • Zhang JH, Dawes G, Stemmer WP. 1997. Directed evolution of a fucosidase from a galactosidase by DNA shuffling and screening. Proc Natl Acad Sci USA 94: 4504–4509.
  • Zhang Z, Yuen GY. 2000. The role of chitinase production by Stenotrophomonas maltophilia strain C3 in biological control of Bipolaris sorokiniana. Phytopathology 90: 384–389.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.