1,699
Views
137
CrossRef citations to date
0
Altmetric
Review Article

A review of biological delignification and detoxification methods for lignocellulosic bioethanol production

, , , &
Pages 342-354 | Received 13 Jan 2013, Accepted 28 Nov 2013, Published online: 10 Feb 2014

References

  • Almeida JRM, Röder A, Modig T, et al. (2008). NADH- vs NADPH-coupled reduction of 5-hydroxymethylfurfural (HMF) and its applications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 78, 939–45
  • Alvira P, Tomás-Pejó E, Ballesteros M, Negro MJ. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour Technol, 101, 4851–61
  • Alvira P, Moreno AD, Ibarra D, et al. (2013). Improving the fermentation performance of Saccharomyces cerevisiae by laccases during ethanol production from steam-exploded wheat straw at high substrate loadings. Biotechnol Prog, 29, 74–82
  • Ballesteros I, Negro MJ, Oliva JM, et al. (2006). Ethanol production from steam-explosion pretreated wheat straw. Appl Biochem Biotechnol, 129, 496–508
  • Berndes G, Azar C, Kberger T. (2001). The feasibility of large-scale lignocellulose-based bioenergy production. Biomass Bioenergy, 20, 371–83
  • Bourbonnais R, Paice MG. (1990). Oxidation of non-phenolic substrates. An expanded role for laccase in lignin biodegradation. FEBS Lett, 267, 99–102
  • Brandberg T, Sanandaji N, Gustafsson L, Franzén CJ. (2005). Continuous fermentation of undetoxified dilute acid lignocellulose hydrolysate by Saccharomyces cerevisiae ATCC 96581 using cell recirculation. Biotechnol Prog, 21, 1093–101
  • Brett CT, Waldron KW. (1996). Physiology and biochemistry of plant cell walls, 2nd ed. London: Chapman & Hall
  • Canam T, Town JR, Tsang A, et al. (2011). Biological pretreatment with a cellobiose dehydrogenase-deficient strain of Trametes versicolor enhances the biofuel potential of canola straw. Bioresour Technol, 102, 10020–7
  • Cara C, Ruiz E, Ballesteros I, et al. (2006). Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification. Proc Biochem, 41, 423–9
  • Chandel AK, Kapoor RK, Singh A, Kuhad RC. (2007). Detoxification of sugarcane bagasse hydrolysate improves ethanol production by Candida shehatae NCIM 3501. Bioresour Technol, 98, 1947–50
  • Chen Q, Marshall MN, Geib SM, et al. (2012). Effects of laccase on lignin depolymerization and enzymatic hydrolysis of ensiled corn stover. Bioresour Technol, 117, 186–92
  • Ferreira S, Gil N, Queiroz JA, et al. (2011). An evaluation of the potential of Acacia dealbata as raw material for bioethanol production. Bioresour Technol, 102, 4766–73
  • FitzPatrick M, Champagne P, Cunningham MF, Whitney RA. (2010). A biorefinery processing perspective: Treatment of lignocellulosic materials for the production of value-added products. Bioresour Technol, 101, 8915–22
  • Fonseca BG, Moutta RO, Ferraz FO, et al. (2011). Biological detoxification of different hemicellulosic hydrolysates using Issatchenkia occidentalis CCTCC M 206097 yeast. J Ind Microbiol Biotechnol, 38, 199–207
  • Goodey AR, Tubbs RS. (1982). Genetic and biochemical analysis of the ability of Saccharomyces cerevisiae to decarboxylate cinnamic acid. J Gen Microbiol, 128, 2615–20
  • Gorsich SW, Dien BS, Nichols NN, et al. (2006). Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 71, 339–49
  • Guillén F, Martínez AT, Martínez MJ. (1992). Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem, 209, 603–11
  • Guillén F, Martínez MJ, Muñoz C, Martínez AT. (1997). Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys, 339, 190–9
  • Gupta R, Mehta G, Khasa YP, Kuhad RC. (2011). Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation, 22, 797–804
  • Gutiérrez A, Rencoret J, Cadena EM, et al. (2012). Demonstration of laccase-based removal of lignin from wood and non-wood plant feedstocks. Bioresour Technol, 119, 114–22
  • Himmel ME, Ding SY, Johnson DK, et al. (2007). Biomass recalcitrance: engineering plants and enzymes for biofuels production. Science, 315, 804–7
  • Ibarra D, Romero J, Martínez MJ, et al. (2006). Exploring the enzymatic parameters for optimal delignification of eucalypt pulp by laccase mediator. Enzyme Microb Technol, 39, 1319–27
  • Isroi, Millati R, Syamsiah S, et al. (2011). Biological pretreatment of lignocelluloses with with-rot fungi and its applications: a review. BioResources, 6, 5224–59
  • Itoh H, Wada M, Honda Y, et al. (2003). Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol, 103, 273–80
  • Jönsson LJ, Palmqvist E, Nilvebrant NO, Hahn-Hägerdal B. (1998). Detoxification of wood hydrolysates with laccase and peroxidise from the white-rot fungus Trametes versicolor. Appl Microbiol Biotechnol, 49, 691–7
  • Jørgensen H, Kristensen JB, Felby C. (2007). Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod Bioref, 1, 119–34
  • Jun H, Kieselbach T, Jönsson LJ. (2011). Enzyme production by filamentous fungi: analysis of the secretome of Trichoderma reesei grown on unconventional carbon source. Microb Cell Fact, 10, 68
  • Jurado M, Prieto A, Martínez-Alcalá A, et al. (2009). Laccase detoxification of steam-exploded wheat straw for second generation bioethanol. Bioresour Technol, 100, 6378–84
  • Jurado M, Martínez, AT, Martínez MJ, Saparrat MCN. (2011). Application of white-rot fungi in transformation, detoxification, or revalorization of agriculture wastes: role of laccase in the processes. Comprehen Biotechnol, 6, 595–603
  • Kalyani D, Dhiman SS, Kim H, et al. (2012). Characterization of a novel laccase from the isolated Coltricia perennis and its application to detoxification of biomass. Process Biochem, 47, 671–8
  • Kersten PJ. (1990). Glyoxal oxidase of Phanerochaete chrysosporium: Its characterization and activation by lignin peroxidase. Proc Natl Acad Sci USA, 87, 2936–40
  • Klinke HB, Thomsen AB, Ahring BK. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pretreatment of biomass. Appl Microbiol Biotechnol, 66, 10–26
  • Kolb M, Sieber V, Amann M, et al. (2012). Removal of monomer delignification products by laccase from Trametes versicolor. Bioresour Technol, 104, 298–304
  • Koppram R, Albers E, Olsson L. (2012). Evolutionary engineering strategies to enhance tolerance of xylose utilizing recombinant yeast to inhibitors derived from spruce biomass. Biotechnol Biofuels, 5, 32
  • Kuhar S, Nair LM, Kuhad RC. (2008). Pretreatment of lignocellulosic material with fungi capable of higher lignin degradation and lower carbohydrate degradation improves substrate acid hydrolysis and the eventual conversion to ethanol. Can J Microbiol, 54, 305–13
  • Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R. (2011a). Accessibility of enzymatically delignified Bambusa bambos for efficient hydrolysis at minimum cellulase loading: an optimization study. Enzyme Res, 2011, 805795
  • Kuila A, Mukhopadhyay M, Tuli DK, Banerjee R. (2011b). Production of ethanol from lignocellulosics: an enzymatic venture. EXCLI Journal, 10, 85–96
  • Larsson S, Reimann A, Nilvebrant NO, Jönsson LJ. (1999). Comparison of different methods for the detoxification of lignocellulose hydrolysates of spruce. Appl Biochem Biotechnol, 77–79, 91–103
  • Larsson S, Nivelbrant NO, Jönsson LJ. (2001a). Effect of overexpression of Saccharomyces cerevisiae Pad1p on the resistance to phenylacrylic acids and lignocellulose hydrolysates under aerobic and oxygen-limited conditions. Appl Microbiol Biotechnol, 57, 167–74
  • Larsson S, Cassland P, Jönsson LJ. (2001b). Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol, 67, 1163–70
  • Lee JW, Gwak KS, Park JY, et al. (2007). Biological pretreatment of softwood Pinus densiflora by three white rot fungi. J Microbiol, 45, 485–91
  • Li J, Sun F, Li X et al. (2012). Enhanced saccharification of corn straw pretreated by alkali combining crude ligninolytic enzymes. J Chem Technol Biotechnol, 87, 1687–93
  • Lichts FO. (2012). World fuel ethanol production. Renewable Fuels Assoc [Online]. Available at: http://ethanolrfa.org/pages/World-Fuel-Ethanol-Production [last accessed 2 May 2013]
  • Liu ZL, Slininger PJ, Gorsich SW. (2005). Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Appl Biochem Biotechnol, 121–124, 451–60
  • López MJ, Nichols NN, Dien BS, et al. (2004). Isolation of microorganisms for biological detoxification of lignocellulosic hydrolysates. Appl Microbiol Biotechnol, 64, 125–31
  • Lu C, Wang H, Luo Y, Guo L. (2010). An efficient system for pre-delignification of gramineous biofuel feedstock in vitro: application of a laccase from Pycnoporus sanguineus H275. Process Biochem, 45, 1141–7
  • Martín C, Galbe M, Wahlbom CF, et al. (2002). Ethanol production from enzymatic hydrolysates of sugarcane bagasse using recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol, 31, 274–82
  • Martín C, Marcet M, Almazán O, Jönsson LJ. (2007). Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol, 98, 1767–73
  • Martínez AT. (2002). Molecular biology and structure-function of lignin-degrading heme peroxidases. Enz Microb Technol, 30, 425–44
  • Martínez AT, Speranza M, Ruiz-Dueñas FJ, et al. (2005). Biodegradation of lignocellulosics: microbiol, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiol, 8, 195–204
  • Martínez AT, Ruiz-Dueñas FJ, Martínez MJ, et al. (2009). Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol, 20, 348–57
  • Martín-Sampedro R, Eugenio ME, García JC, et al. (2012). Steam explosion and enzymatic pre-treatments as an approach to improve the enzymatic hydrolysis of Eucalyptus globulus. Biomass Bioenerg, 42, 97–106
  • Mayer AM, Staples RC. (2002). Laccase: new functions for an old enzyme. Phytochem, 60, 551–65
  • Moilanen U, Kellock M, Galkin S, Viikari L. (2011). The laccase-catalyzed modification of lignin for enzymatic hydrolysis. Enzyme Microb Technol, 49, 492–8
  • Monavari S, Bennato A, Galbe M, Zacchi G. (2010). Improved one-step steam pretreatment of SO2-impregnated softwood with time-dependent temperature profile for ethanol production. Biotechnol Prog, 26, 1054–60
  • Moreno AD, Ibarra D, Fernández-Rojo JL, Ballesteros M. (2012). Different laccase detoxification strategies for ethanol production from lignocellulosic biomass by the thermotolerant yeast Kluyveromyces marxianus CECT 10875. Bioresour Technol, 106, 101–9
  • Moreno AD, Ibarra D, Ballesteros I, et al. (2013). Comparing cell viability and ethanol fermentation of the thermotolerant yeast Kluyveromyces marxianus and Saccharomyces cerevisiae on steam-exploded biomass treated with laccase. Bioresour Technol, 135, 239–45
  • Morozova OV, Shumakovich GP, Shleev SV, Iaropolov AI. (2007). Laccase–mediator systems and their applications: a review. Appl Biochem Microbiol, 43, 523–35
  • Mukhopadhyay M, Kuila A, Tuli DK, Banerjee R. (2011). Enzymatic depolymerization of Ricinus communis, a potential lignocellulosic for improved saccharification. Biomass Bioenergy, 35, 3584–91
  • Muñoz C, Mendonça R, Baeza J, et al. (2007). Bioethanol production from bio-organosolv pulps of Pinus radiata and Acacia dealbata. J Chem Technol Biotechnol, 82, 767–74
  • Nichols NN, Sharma LN, Mowery RA, et al. (2008). Fungal metabolism of fermentation inhibitors present in corn stover dilute acid hydrolysate. Enzyme Microb Technol, 42, 624–30
  • Nichols NN, Dien BS, Cotta MA. (2010). Fermentation of bioenergy crops into ethanol using biological abatement for removal of inhibitors. Bioresour Technol, 101, 7545–50
  • Okuda N, Soneura M, Ninomiya K, et al. (2008). Biological detoxification of waste house wood hydrolysate using Ureibacillus thermosphaericus for bioethanol production. J Biosci Bioeng, 106, 128–33
  • Oliva JM, Sáez F, Ballesteros I, et al. (2003). Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast Kluyveromyces marxianus. Appl Biochem Biotechnol, 105, 141–53
  • Palmqvist E, Hahn-Hägerdal B, Szengyel Z, et al. (1997). Simultaneous detoxification and enzyme production of hemicellulose hydrolysates obtained after steam pretreatment. Enzyme Microb Technol, 20, 286–93
  • Palmqvist E, Hahn-Hägerdal B. (2000a). Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol, 74, 17–24
  • Palmqvist E, Hahn-Hägerdal B. (2000b). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanism of inhibition. Bioresour Technol, 74, 25–33
  • Palonen H, Viikari L. (2004). Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood. Biotechnol Bioeng, 86, 550–7
  • Panagiotou G, Olsson L. (2007). Effect of compounds released during pre-treatment of wheat straw on microbial growth and enzymatic hydrolysis rates. Biotechnol Bioeng, 96, 250–8
  • Parawira W, Tekere M. (2011). Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol, 31, 20–31
  • Petersson A, Almeida JR, Modig T, et al. (2006). A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast, 23, 455–64
  • Purwadi R, Brandberg T, Taherzadeh MJ. (2007). A possible industrial solution to ferment lignocellulosic hydrolysate to ethanol: continuous cultivation with flocculating yeast. Int J Mol Sci, 8, 920–32
  • Qiu W, Chen H. (2012). Enhanced the enzymatic hydrolysis efficiency of wheat straw after combined steam explosion and laccase pretreatment. Bioresour Technol, 118, 8–12
  • Ragauskas AJ, Williams CK, Davison BH, et al. (2006). The path forward for biofuels and biomaterials. Science, 311, 484–9
  • Reddy N, Yang Y. (2005). Biofibers from agricultural byproducts for industrial applications. Trends Biotechnol, 23, 22–7
  • Ruiz-Dueñas FJ, Martínez MJ, Martínez AT. (1999). Molecular characterization of a novel peroxidase isolated from the ligninolytic fungus Pleurotus eryngii. Mol Microb, 31, 223–35
  • Ruiz-Dueñas FJ, Martínez AT. (2009). Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnol, 2, 164–77
  • Salvachúa D, Prieto A, López-Abelairas M, et al. (2011). Fungal pretreatment: an alternative in second-generation ethanol from wheat straw. Bioresour Technol, 102, 7500–6
  • Schneider H. (1996). Selective removal of acetic acid from hardwood-spent sulfite liquor using a mutant yeast. Enzyme Microb Technol, 19, 94–8
  • Singh P, Suman A, Tiwari P, et al. (2008). Biological pretreatment of sugarcane trash for its conversion to fermentable sugars. World J Microbiol Biotechnol, 24, 667–73
  • Stoutenburg RM, Perrotta JA, Nakas JP. (2011). Overcoming inhibitors in a hemicellulosic hydrolysate: improving fermentability by feedstock detoxification and adaptation of Pichia stipitis. J Ind Microbiol Biotechnol, 38, 1939–45
  • Taherzadeh MJ, Karimi K. (2007a). Acid-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2, 472–99
  • Taherzadeh MJ, Karimi K. (2007b). Enzyme-based hydrolysis processes for ethanol from lignocellulosic materials: a review. BioResources, 2, 707–38
  • Taherzadeh MJ, Karimi K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci, 9, 1621–51
  • Talebnia F, Taherzadeh MJ. (2006). In situ detoxification and continuous cultivation of dilute-acid hydrolysate to ethanol by encapsulated S. cerevisiae. J Biotechnol, 125, 377–84
  • Tejirian A, Xu F. (2011). Inhibition of enzymatic cellulolysis by phenolic compounds. Enzyme Microb Technol, 48, 239–47
  • Thomsen MH, Thygesen A, Thomsen AB. (2009). Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Appl Microbiol Biotechnol, 83, 447–55
  • Tian S, Luo XL, Yang XS, Zhu JY. (2010). Robust cellulosic ethanol production from SPORL-pretreated lodgepole pine using an adapted strain Saccharomyces cerevisiae without detoxification. Bioresour Technol, 101, 8678–85
  • Tomás-Pejó E, Oliva JM, Ballesteros M. (2008). Realistic approach for full-scale ethanol production from lignocellulose: a review. J Sci Industrial Res, 67, 874–84
  • Tomás-Pejó E, Ballesteros M, Oliva JM, Olsson L. (2010). Adaptation of the xylose fermenting yeast Saccharomyces cerevisiae F12 for improving ethanol production in different fed-batch SSF processes. J Ind Microbiol Biotechnol, 37, 1211–20
  • Tomás-Pejó E, Alvira P, Ballesteros M, Negro MJ. (2011). Pretreatment technologies for lignocellulose-to-bioethanol conversion. In: Pandey A, Larroche C, Ricke SC, et al, eds. Biofuels. Alternative feedstocks and conversion processes. Amsterdam, The Netherlands: Elsevier, 149–76
  • Vivekanand V, Dwivedi P, Sharma A, et al. (2008). Enhanced delignification of mixed wood pulp by Aspergillus fumigatus laccase mediator system. World J Microbiol Biotechnol, 24, 2799–804
  • Wan C, Li Y. (2010). Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production. Bioresour Technol, 101, 6398–403
  • Westman JO, Manikondu RB, Franzén CJ, Taherzadeh MJ. (2012). Encapsulation-Induced stress helps Saccharomyces cerevisiae resist convertible lignocellulose derived inhibitors. Int J Molec Sci, 13, 11881–94
  • Yang P, Jiang S, Zheng Z, et al. (2011a). Effect of alkali and laccase pretreatment of Brassica campestris straw: Architecture, crystallisation, and saccharification. Polymers Renew Resources, 2, 21–34
  • Yang X, Zhang S, Zuo Z, et al. (2011b). Ethanol production from the enzymatic hydrolysis of non-detoxified steam-exploded corn stalk. Bioresour Technol, 102, 7840–4
  • Yu H, Du W, Zhang J, et al. (2010). Fungal treatment of cornstalks enhances the delignification and xylan loss during mild alkaline pretreatment and enzymatic digestibility of glucan. Bioresour Technol, 101, 6728–34
  • Yu Y, Feng Y, Xu C, et al. (2011a). Onsite bio-detoxification of steam-exploded corn stover for cellulosic ethanol production. Bioresour Technol, 102, 5123–8
  • Yu Z, Jameel H, Chang HM, Park S. (2011b). The effect of delignification of forest biomass on enzymatic hydrolysis. Bioresour Technol, 102, 9083–9
  • Zhang J, Zhu Z, Wang X, et al. (2010). Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnol Biofuels, 3, 26
  • Zhang LH, Li D, Wang LJ, et al. (2008). Effect of steam explosion on biodegradation of lignin in wheat straw. Bioresour Technol, 99, 8512–5
  • Zuroff TR, Curtis WR. (2012). Developing symbiotic consortia for lignocellulosic biofuel production. Appl Microbiol Biotechnol, 93, 1423–35

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.