1,468
Views
32
CrossRef citations to date
0
Altmetric
Review Article

Application of bacteriophages in post-harvest control of human pathogenic and food spoiling bacteria

, , &
Pages 851-861 | Received 27 Jul 2014, Accepted 20 Apr 2015, Published online: 04 Jun 2015

References

  • Abedon ST. (2011). Lysis from without. Bacteriophage, 1, 46–9
  • Abuladze T, Li M, Menetrez MY, et al. (2008). Bacteriophages reduce experimental contamination of hard surfaces, tomato, spinach, broccoli, and ground beef by Escherichia coli O157:H7. Appl Environ Microbiol, 74, 6230–8
  • Acheson DWK. (2001). Shigella. In: Labbe R, Garcia S, eds. Guide to foodborne pathogens. New York (NY): John Wiley and Sons, 193–200
  • Ailes E, Demma L, Hurd S, et al. (2008). Continued decline in the incidence of Campylobacter infections. FoodNet 1996–2006. Foodborne Pathog Dis, 5, 329–37
  • Akhtar S, Sarker MR, Hossain A. (2014). Microbiological food safety: a dilemma of developing societies. Crit Rev Microbiol, 4, 348–59
  • Anonymous. (2008). Outbreak alert! Closing the gaps in our federal food-safety net. 2008. Center for Science in the Public Interest. Washington, DC. Available at: http://cspinet.org/new/pdf/outbreak_alert_2008_report_final.pdf. [last accessed18 Nov 2014]
  • Atterbury RJ, Connerton PL, Dodd CER, et al. (2003). Application of host-specific bacteriophages to the surface of chicken skin leads to a reduction in recovery of Campylobacter jejuni. Appl Environ Microbiol, 69, 6302–6
  • Atterbury RJ, Van Bergen MA, Ortiz F, et al. (2006). Control of Salmonella in poultry using bacteriophage. In: Colin P, Clement G, eds. Proceedings of the 13th International Symposium Salmonella salmonellosis; 2006 May 10–12, Saint Malo, France, 579–80
  • Atterbury RJ. (2009). Bacteriophage biocontrol in animals and meat products. Microb Biotechnol, 2, 601–12
  • Berger CN, Sodha SV, Shaw RK, et al. (2010). Fresh fruit and vegetables as vehicles for the transmission of human pathogens. Environ Microbiol, 12, 2385–97
  • Bigot B, Lee WJ, McIntyre L, et al. (2011). Control of Listeria monocytogenes growth in a ready-to-eat poultry product using a bacteriophage. Food Microbiol, 28, 1448–52
  • Bigwood T, Hudson JA, Billington C, et al. (2008). Phage inactivation of foodborne pathogens on cooked and raw meat. Food Microbiol, 25, 400–6
  • Boyacioglu O, Goktepe I, Sharma M, et al. (2013). Biocontrol of Escherichia coli O157:H7 on fresh cut leafy greens: using a bacteriophage cocktail in combination with modified atmosphere packaging. Bacteriophage, 3, e24620
  • Braden CR, Tauxe RV. (2013).Emerging trends in foodborne diseases. Infect Dis Clin N Am, 27, 517–33
  • Bueno E, García P, Martínez B, et al. (2012). Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses. Int J Food Microbiol, 158, 23–7
  • Campagna C, Villion M, Labrie SJ, et al. (2014). Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants. Int J Food Microbiol, 171, 41–7
  • Carlton RM, Noordman WH, Biswas B, et al. (2005). Bacteriophage P100 for control of Listeria monocytogenes in foods: genome sequence, bioinformatics analyses, oral toxicity study, and application. Regul Toxicol Pharmacol, 43, 301–12
  • Carpentier B, Cerf O. (2011). Review – persistence of Listeria monocytogenes in food industry equipment and premises. Int J Food Microbiol, 145, 1–8
  • Carter CD, Parks A, Abuladze T, et al. (2012). Bacteriophage cocktail significantly reduces Escherichia coli O157: H7 contamination of lettuce and beef, but does not protect against recontamination. Bacteriophage, 2, 178–85
  • Ceccarelli D, Colwell RR. (2014). Vibrio ecology, pathogenesis, and evolution. Front Microbiol, 5, 256
  • Celia LK, Nelson D, Kerr DE. (2008). Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol, 130, 107–17
  • Centers for Disease Control and Prevention (CDC). (2013). Incidence, and trends of infection with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. sites, 1996–2012. MMWR Morb Mortal Wkly Rep, 62, 283–7
  • Centers for Disease Control and Prevention (CDC). (2014). Incidence and trends of infection with pathogens transmitted commonly through food – foodborne diseases active surveillance network, 10 U.S. Sites, 2006–2013. Morb Mortal Wkly Rep, 63, 328–32
  • Chapot-Chartier MP. (2014). Interactions of the cell-wall glycopolymers of lactic acid bacteria with their bacteriophages. Front Microbiol, 5, 236
  • Chibeu A, Agius L, Gao A, et al. (2013). Efficacy of bacteriophage LISTEXP100 combined with chemical antimicrobials in reducing Listeria monocytogenes in cooked turkey and roast beef. Int J Food Microbiol, 167, 208–14
  • Chighladze E, Alavidze Z, Brown T, et al. (2001). Application of lytic phages for reducing contamination of poultry with selected Salmonella serotypes. ASM General Meeting
  • Croxen MA, Law RJ, Scholz R, et al. (2013). Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev, 26, 822–80
  • Deasy T, Mahony J, Neve H, et al. (2011). Isolation of a virulent Lactobacillus brevis phage and its application in the control of beer spoilage. J Food Prot, 74, 2157–61
  • Deutsch SM, Guezenec S, Piot M, et al. (2004). Mur-LH, the broad-spectrum endolysin of Lactobacillus helveticus temperate bacteriophage phi-0303. Appl Environ Microbiol, 70, 96–103
  • EFSA. (2012). Scientific Opinion on the evaluation of the safety and efficacy of ListexTM P100 for the removal of Listeria monocytogenes surface contamination of raw fish. EFSA J, 10, 2615
  • EFSA-ECDC. (2014). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J, 12, 3547
  • Ellis DE, Whitman PA, Marshall RT. (1973). Effects of homologous bacteriophage on growth of Pseudomonas fragi WY in milk. Appl Microbiol, 25, 24–5
  • Epps SV, Harvey RB, Hume ME, et al. (2013). Foodborne Campylobacter: infections, metabolism, pathogenesis and reservoirs. Int J Environ Res Public Health, 10, 6292–304
  • Ferguson S, Roberts C, Handy E, et al. (2013). Lytic bacteriophages reduce Escherichia coli O157:H7 on fresh-cut lettuce introduced through cross-contamination. Bacteriophage, 3, e24323
  • Fischetti VA. (2010). Bacteriophage endolysins: a novel anti-infective to control Gram-positive pathogens. Int J Med Microbiol, 300, 357–62
  • Gálvez A, Abriouel H, Benomar N, et al. (2010). Microbial antagonists to food-borne pathogens and biocontrol. Curr Opin Biotechnol, 21, 142–8
  • Galvez A, Lopez RL, Abriouel H, et al. (2008). Application of bacteriocins in the control of foodborne pathogenic and spoilage bacteria. Crit Rev Biotechnol, 28, 125–52
  • Ganegama Arachchi GJ, Cridge AG, Dias-Wanigasekera BM, et al. (2013). Effectiveness of phages in the decontamination of Listeria monocytogenes adhered to clean stainless steel, stainless steel coated with fish protein, and as a biofilm. J Ind Microbiol Biotechnol, 40, 1105–16
  • García P, Madera C, Martínez B, et al. (2007). Biocontrol of Staphylococcus aureus in curd manufacturing processes using bacteriophages. Int Dairy J, 17, 1232–9
  • García P, Martínez B, Rodríguez L, et al. (2010). Synergy between the phage endolysin LysH5 and nisin to kill Staphylococcus aureus in pasteurized milk. Int J Food Microbiol, 141, 151–5
  • Gill JJ, Sabour PM, Leslie KE, et al. (2006). Bovine whey proteins inhibit the interaction of Staphylococcus aureus and bacteriophage K. J Appl Microbiol, 101, 377–86
  • Goode D, Allen VM, Barrow PA. (2003). Reduction of experimental Salmonella and Campylobacter contamination of chicken skin by application of lytic bacteriophages. Appl Environ Microbiol, 69, 5032–6
  • Greer GG, Dilts BD. (2002). Control of Brochothrix thermosphacta spoilage of pork adipose tissue using bacteriophages. J Food Prot, 65, 861–3
  • Greer GG, Dilts BD, Ackermann HW. (2007). Characterization of a Leuconostoc gelidum bacteriophage from pork. Int J Food Microbiol, 114, 370–5
  • Greer GG. (1988). Effect of phage concentration, bacterial density, and temperature on phage control of beef spoilage. J Food Sci, 53, 1226–7
  • Greer GG. (2005). Bacteriophage control of foodborne bacteria. J Food Prot, 68, 1102–11
  • Guenther S, Huwyler D, Richard S, et al. (2009). Virulent bacteriophage for efficient biocontrol of Listeria monocytogenes in ready to-eat foods. Appl Environ Microbiol, 75, 93–100
  • Guenther S, Loessner MJ. (2011). Bacteriophage biocontrol of Listeria monocytogenes on soft ripened white mold and red-smear cheeses. Bacteriophage, 1, 94–100
  • Hagens S, Loessner MJ. (2010). Bacteriophage for biocontrol of foodborne pathogens: calculations and considerations. Curr Pharm Biotechnol, 11, 58–68
  • Hagens S, Loessner MJ. (2014). Phages of Listeria offer novel tools for diagnostics and biocontrol. Front Microbiol, 5, 159
  • Healy B, Cooney S, O'Brien S, et al. (2010). Cronobacter (Enterobacter sakazakii): an opportunistic foodborne pathogen. Foodborne Pathog Dis, 7, 339–50
  • Hennekinne JA, De Buyser ML, Dragacci S. (2012). Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev, 36, 815–36
  • Hibma AM, Jassim SA, Griffiths MW. (1997). Infection and removal of L-forms of Listeria monocytogenes with bred bacteriophage. Int J Food Microbiol, 34, 197–207
  • Higgins JP, Higgins SE, Guenther KL, et al. (2005). Use of a specific bacteriophage treatment to reduce Salmonella in poultry products. Poult Sci, 84, 1141–5
  • Holck A, Berg J. (2009). Inhibition of Listeria monocytogenes in cooked ham by virulent bacteriophages and protective cultures. Appl Environ Microbiol, 75, 6944–6
  • Hooton SP, Atterbury RJ, Connerton IF. (2011). Application of a bacteriophage cocktail to reduce Salmonella Typhimurium U288 contamination on pig skin. Int J Food Microbiol, 151, 157–63
  • Jonczyk E, Klak M, Miedzybrodzki R, Gorski A. (2011). The influence of external factors on bacteriophages – review. Folia Microbiol (Praha), 56, 191–200
  • Jun JW, Kim HJ, Yun SK, et al. (2014). Eating oysters without risk of vibriosis: application of a bacteriophage against Vibrio parahaemolyticus in oysters. Int J Food Microbiol, 188, 31–5
  • Juneja VK, Dwivedi HP, Yan X. (2012). Novel natural food antimicrobials. Annu Rev Food Sci Technol, 3, 381–403
  • Kang HW, Kim JW, Jung TS, et al. (2013). wksl3, a new biocontrol agent for Salmonella enterica serovars enteritidis and typhimurium in foods: characterization, application, sequence analysis, and oral acute toxicity study. Appl Environ Microbiol, 79, 1956–68
  • Kim KP, Klumpp J, Loessner MJ. (2007). Enterobacter sakazakii bacteriophages can prevent bacterial growth in reconstituted infant formula. Int J Food Microbiol, 115, 195–203
  • Kirk MD, McKay I, Hall GV, et al. (2008). Foodborne disease in Australia: the OzFoodNet experience. Clin Infect Dis, 47, 392–400
  • Klumpp J, Loessner MJ. (2013). Listeria phages: genomes, evolution, and application. Bacteriophage, 3, e26861
  • Kocharunchitt C, Ross T, McNeil DL. (2009). Use of bacteriophages as biocontrol agents to control Salmonella associated with seed sprouts. Int J Food Microbiol, 128, 453–9
  • Kudva IT, Jelacic S, Tarr PI, et al. (1999). Biocontrol of Escherichia coli O157 with O157-specific bacteriophages. Appl Environ Microbiol, 65, 3767–73
  • Leverentz B, Conway WS, Alavidze Z, et al. (2001). Examination of bacteriophage as a biocontrol method for Salmonella on fresh-cut fruit: a model study. J Food Prot, 64, 1116–21
  • Leverentz B, Conway WS, Camp MJ, et al. (2003). Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol, 69, 4519–26
  • Leverentz B, Conway WS, Janisiewicz W, et al. (2004). Optimizing concentration and timing of a phage spray application to reduce Listeria monocytogenes on honeydew melon tissue. J Food Prot, 67, 1682–6
  • Ly-Chatain MH. (2014). The factors affecting effectiveness of treatment in phages therapy. Front Microbiol, 5, 51
  • Lynch MF, Tauxe RV, Hedberg CW. (2009). The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities. Epidemiol Infect, 137, 307–15
  • Mayer MJ, Payne J, Gasson MJ, et al. (2010). Genomic sequence and characterization of the virulent bacteriophage phiCTP1 from Clostridium tyrobutyricum and heterologous expression of its endolysin. Appl Environ Microbiol, 76, 5415–22
  • Mead PS, Slutsker L, Dietz V, et al. (1999). Food-related illness and death in the United States. Emerg Infect Dis, 5, 607–25
  • Modi R, Hirvi Y, Hill A, et al. (2001). Effect of phage on survival of Salmonella enteritidis during manufacture and storage of cheddar cheese made from raw and pasteurized milk. J Food Prot, 64, 927–33
  • Montanez-Izquierdo VY, Salas-Vazquez DI, Rodriguez-Jerez JJ. (2012). Use of epifluorescence microscopy to assess the effectiveness of phage P100 in controlling Listeria monocytogenes biofilms on stainless steel surfaces. Food Control, 23, 470–7
  • Mullan WM, Crawford RJ. (1985). Partial purification and some properties of phiC2(W) lysin, a lytic enzyme produced by phage-infected cells of Streptococcus lactis C2. J Dairy Res, 52, 123–38
  • Newell DG, Koopmans M, Verhoef L, et al. (2010). Food-borne diseases – the challenges of 20 years ago still persist while new ones continue to emerge. Int J Food Microbiol, 1, S3–15
  • Norberg S, Stanton C, Ross RP, et al. (2012). Cronobacter spp. in powdered infant formula. J Food Prot, 75, 607–20
  • O’Flaherty S, Coffey A, Meaney WJ, et al. (2005). Inhibition of bacteriophage K proliferation on Staphylococcus aureus in raw bovine milk. Lett Appl Microbiol, 41, 274–9
  • Obeso JM, García P, Martínez B, et al. (2010). Use of logistic regression for predicting Staphylococcus aureus fate in pasteurized milk in the presence of two lytic phages. Appl Environ Microbiol, 76, 6038–46
  • Obeso JM, Martínez B, Rodríguez A, et al. (2008). Lytic activity of the recombinant staphylococcal bacteriophage ΦH5 endolysin active against Staphylococcus aureus in milk. Int J Food Microbiol, 128, 212–18
  • O'Flynn G, Ross RP, Fitzgerald GF, et al. (2004). Evaluation of a cocktail of three bacteriophages for biocontrol of Escherichia coli O157:H7. Appl Environ Microbiol, 70, 3417–24
  • Oliveira M, Vinas I, Colas P, et al. (2014). Effectiveness of a bacteriophage in reducing Listeria monocytogenes on fresh-cut fruits and fruit juices. Food Microbiol, 38, 137–42
  • Painter JA, Hoekstra RM, Ayers T, et al. (2013). Attribution of foodborne illnesses, hospitalizations, and deaths to food commodities by using outbreak data, United States, 1998–2008. Emerg Infect Dis, 19, 407–15
  • Pao S, Randolph SP, Westbrook EW, et al. (2004). Use of bacteriophages to control Salmonella in experimentally contaminated sprout seeds. J Food Sci, 69, M127–9
  • Patel J, Sharma M, Millner P, et al. (2011). Inactivation of Escherichia coli O157:H7 attached to spinach harvester blade using bacteriophage. Foodborne Pathog Dis, 8, 541–6
  • Pelon W, Luftig RB, Johnston KH. (2005). Vibrio vulnificus load reduction in oysters after combined exposure to Vibrio vulnificus-specific bacteriophage and to an oyster extract component. J Food Prot, 68, 1188–91
  • Ribelles P, Rodríguez I, Suárez JE. (2012). LysA2, the Lactobacillus casei bacteriophage A2 lysin is an endopeptidase active on a wide spectrum of lactic acid bacteria. Appl Microbiol Biotechnol, 94, 101–10
  • Roach DR, Khatibi PA, Bischoff KM, et al. (2013). Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels, 6, 20
  • Roy B, Ackermann HW, Pandian S, et al. (1993). Biological inactivation of adhering Listeria monocytogenes by listeria phages and a quaternary ammonium compound. Appl Environ Microbiol, 59, 2914–17
  • Schellekens MM, Wouters J, Hagens S, et al. (2007). Bacteriophage P100 application to control Listeria monocytogenes on smeared cheese. Milchwissenschaft, 62, 284–7
  • Sharma M, Patel JR, Conway WS, et al. (2009). Effectiveness of bacteriophages in reducing Escherichia coli O157:H7 on fresh-cut cantaloupes and lettuce. J Food Prot, 72, 1481–5
  • Sharma M, Ryu JH, Beuchat LR. (2005). Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage. J Appl Microbiol, 99, 449–59
  • Sillankorva S, Neubauer P, Azeredo J. (2008). Pseudomonas fluorescens biofilms subjected to phage phiIBB-PF7A. BMC Biotechnol, 27, 79
  • Siringan P, Connerton PL, Payne RJH, et al. (2011). Bacteriophage-mediated dispersal of Campylobacter jejuni biofilms. Appl Environ Microbiol, 77, 3320–6
  • Smith JL, Fratamico PM, Gunther NW. (2014). Shiga toxin-producing Escherichia coli. Adv Appl Microbiol, 86, 145–97
  • Soni KA, Desai M, Oladunjoye A, et al. (2012). Reduction of Listeria monocytogenes in queso fresco cheese by a combination of listericidal and listeriostatic GRAS antimicrobials. Int J Food Microbiol, 155, 82–8
  • Soni KA, Nannapaneni R, Hagens S. (2010). Reduction of Listeria monocytogenes on the surface of fresh channel catfish fillets by bacteriophage Listex P100. Foodborne Pathog Dis, 7, 427–34
  • Soni KA, Nannapaneni R. (2010a). Bacteriophage significantly reduces Listeria monocytogenes on raw salmon fillet tissue. J Food Prot, 73, 32–8
  • Soni KA, Nannapaneni R. (2010b). Removal of Listeria monocytogenes biofilms with bacteriophage P100. J Food Prot, 73, 1519–24
  • Spricigo DA, Bardina C, Cortés P, et al. (2013). Use of a bacteriophage cocktail to control Salmonella in food and the food industry. Int J Food Microbiol, 165, 169–74
  • Stiles ME. (1996). Biopreservation by lactic acid bacteria. Anton van Leeuwen, 70, 331–45
  • Tabla R, Martínez B, Rebollo JE, et al. (2012). Bacteriophage performance against Staphylococcus aureus in milk is improved by high hydrostatic pressure treatments. Int J Food Microbiol, 156, 209–13
  • Tomat D, Migliore L, Aquili V, et al. (2013a). Phage biocontrol of enteropathogenic and Shiga toxin producing Escherichia coli in meat products. Front Cell Infect Microbiol, 3, 1–10
  • Tomat D, Mercanti D, Balague C, et al. (2013b). Phage biocontrol of enteropathogenic and Shiga toxin-producing Escherichia coli during milk fermentation. Lett Appl Microbiol, 57, 3–10
  • Tomat D, Quiberoni A, Mercanti D, et al. (2014). Hard surfaces decontamination of enteropathogenic and Shiga toxin-producing Escherichia coli using bacteriophages. Food Res Int, 57, 123–9
  • Vasala AM, Välkkilä, CJ, Alatossava T. (1995). Genetic and biochemical characterization of the Lactobacillus delbrueckii subsp. lactis bacteriophage LL-H lysin. Appl Environ Microbiol, 61, 4004–11
  • Viazis S, Akhtar M, Feirtag J, et al. (2011). Reduction of Escherichia coli O157:H7 viability on leafy green vegetables by treatment with a bacteriophage mixture and trans-cinnamaldehyde. Food Microbiol, 28, 149–57
  • Viazis S, Akhtar M, Feirtag J, et al. (2011). Reduction of Escherichia coli O157:H7 viability on hard surfaces by treatment with a bacteriophage mixture. Int J Food Microbiol, 145, 37–42
  • Whichard JM, Sriranganathan N, Pierson FW. (2003). Suppression of Salmonella growth by wild-type and large-plaque variants of bacteriophage Felix O1 in liquid culture and on chicken frankfurters. J Food Prot, 66, 220–5
  • WHO. (2005). Making every mother and child count. The World Health Report 2005. Geneva, Switzerland: WHO
  • Woolston J, Parks AR, Abuladze T, et al. (2013). Bacteriophages lytic for Salmonella rapidly reduce Salmonella contamination on glass and stainless steel surfaces. Bacteriophage, 3, e25697
  • Zhang H, Bao H, Billington C, et al. (2012). Isolation and lytic activity of the Listeria bacteriophage endolysin LysZ5 against Listeria monocytogenes in soya milk. Food Microbiol, 31, 133–6
  • Zhang H, Wang R, Bao H. (2013). Phage inactivation of foodborne Shigella on ready-to-eat spiced chicken. Poultry Sci, 92, 211–17
  • Zink R, Loessner MJ, Scherer S. (1995). Characterization of cryptic prophages (monocins) in Listeria and sequence analysis of a holin/endolysin gene. Microbiology, 141, 2577–84
  • Zuber S, Boissin-Delaporte C, Michot L, et al. (2008). Decreasing Enterobacter sakazakii (Cronobacter spp.) food contamination level with bacteriophages: prospects and problems. Microb Biotechnol, 1, 532–43

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.