888
Views
42
CrossRef citations to date
0
Altmetric
Review Article

The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update

&
Pages 11-25 | Received 02 Jul 2015, Accepted 06 Aug 2015, Published online: 02 Nov 2015

References

  • Aam BB, Heggset EB, Norberg AL, et al. (2010). Production of chitooligosaccharides and their potential applications in medicine. Mar Drugs, 8, 1482–517
  • Abla M, Marmuse L, Delolme F, et al. (2013). Access to tetra-N-acetyl-chitopentaose by chemical N-acetylation of glucosamine pentamer. Carbohydr Polym, 98, 770–7
  • Akiyama K, Kawazu K, Kobayashi A. (1995). A novel method for chemo-enzymatic synthesis of elicitor-active chitosan oligomers and partially N-deacetylated chitin oligomers using N-acylated chitotrioses as substrates in a lysozyme catalyzed transglcosylation reaction system. Carbohydr Res, 279, 151–60
  • Aly MR, Ibrahim E-SI, El Ashry ESH, Schmidt RR. (2001). Synthesis of chitotetraose and chitohexaose based on dimethylmaleoyl protection. Carbohydr Res, 331, 129–42
  • Amano K, Ito E. (1978). The action of lysozyme on partially deacetylated chitin. Eur J Biochem, 85, 97–104
  • Aminoff D, Morgan WTJ, Watkins WM. (1952). The action of dilute alkali on the N-acetylhexosamines and the specific blood-group mucoids. Stud Immunochem, 51, 379–89
  • Anthon G, Barrett D. (2002). Kinetic parameters for the thermal inactivation of quality-related enzymes in carrots and potatoes. J Agric Food Chem, 50, 4119–25
  • Atkinson E, Palcic MM, Hindsgaul O, Long SR. (1994). Biosynthesis of Rhizobium meliloti lipooligosaccharide Nod factors: NodA is required for an N-acyltransferase activity. Proc Natl Acad Sci USA, 9, 8418–22
  • Barroca-Aubry N, Pernet-Poil-Chevrier A, Domard A, Trombotto S. (2010). Towards a modular synthesis of well-defined chitooligosaccharides: synthesis of the four chitodisaccharides. Carbohydr Res, 345, 1685–97
  • Beaudoin ME, Gauthier J, Boucher I, Waldron KC. (2005). Capillary electrophoresis separation of a mixture of chitin and chitosan oligosaccharides derivatized using a modified fluorophore conjugation procedure. J Sep Sci, 28, 1390–8
  • Bettler E, Samain E, Chazalet V, et al. (1999). The living factory: in vivo production of N-acetyllactosamine containing carbohydrates in E. coli. Glycoconj J, 16, 205–12
  • Bettler E, Imberty A, Priem B, et al. (2003). Production of recombinant xenotransplantation antigen in Escherichia coli. Biochem Biophys Res Commun, 302, 620–4
  • Bloemberg G, Thomas-Oates JE, Lugtenberg B, Spaink H. (1994). Nodulation protein NodL of Rhizobium leguminosarum O-acetylates lipo-oligosaccharides, chitin fragments and N-acetylglucosamine in vitro. Mol Microbiol, 11, 793–804
  • Bosso C, Defaye J, Domard A, Gadelle A. (1986). The behavior of chitin towards anhydrous hydrogen fluoride. Preparation of β-(1-4)-linked 2-acetamido-2-deoxy-d-glucopyranosyl oligosaccharides. Carbohydr Res, 156, 57–68
  • Braccini I, Perez S. (2001). Molecular Basis of Ca2+ induced gelation in alginates and pectins: the Egg-Box model revisited. Biomacromolecules, 2, 1089–96
  • Cabrera JC, Van Cutsem P. (2005). Preparation of chitooligosaccharides with degree of polymerization higher than 6 by acid or enzymatic degradation of chitosan. Biochem Eng J, 25, 165–72
  • Cardenas L, Dominguez J, Quinto C, et al. (1995). Isolation, chemical structures and biological activity of the lipo-chitin oligosaccharide nodulation signals from Rhizobium etli. Plant Mol Biol, 29, 453–64
  • Conroy R. (2008). Force spectroscopy with optical and magnetic tweezers. In: Nov A, ed. Handbook of molecular force spectroscopy. US: Springer; 1970, 23–96
  • Cottaz S, Samain E. (2005). Genetic engineering of Escherichia coli for the production of NI,NII-diacetylchitobiose (chitinbiose) and its utilization as a primer for the synthesis of complex carbohydrates. Metab Eng, 7, 311–17
  • Cottaz S, Brasme B, Driguez H. (2000). A fluorescence-quenched chitopentaose for the study of endo-chitinases and chitobiosidases. Eur J Biochem, 267, 5593–600
  • Crout DHG, Vic G. (1998). Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis. Curr Opin Chem Biol, 2, 98–111
  • Das SN, Madhuprakash J, Sarma PVSRN, et al. (2015). Biotechnological approaches for field applications of chitooligosaccharides (COS) to induce innate immunity in plants. Crit Rev Biotechnol, 35, 29–43
  • Das S, Van Dellen K, Bulik D, et al. (2006). The cyst wall of Entamoeba invadens contains chitosan (deacetylated chitin). Mol Biochem Parasitol, 148, 86–92
  • De Iannino NI, Pueppke SG, Ugalde RA. (1995). Biosynthesis of the Nod factor chito-oligosaccharide backbone in Rhizobium fredii is controlled by the concentration of UDP-N-acetyl-d-glucosamine. Mol Plant Microbe interact, 8, 292–301
  • Debellé F, Plazanet C, Roche P, et al. (1996). The NodA proteins of Rhizobium meliloti and Rhizobium tropici specify the N-acylation of Nod factors by different fatty acids. Mol Microbiol, 22, 303–14
  • Defaye J, Gadelle A, Pedersen C. (1994). A convenient access to beta-(1-4)-linked 2-amino-2-deoxy-d-glucopyranosyl fluoride oligosaccharides and beta-(1-4)-linked 2-amino-2-deoxy-d-glucopyranosyl oligosaccharides by fluorolysis and fluorohydrolysis of chitosan. Carbohydr Res, 261, 267–77
  • Djordjevic MA, Bezos A, Susanti, et al. (2014). Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro. PLoS One, 9, 1–18
  • Domard A, Carter C. (1989). Glucosamine oligomers: preparation and characterization. Int J Biol Macromol, 11, 297–302
  • Doner LW, Irwin PL. (1992). Assay of reducing end groups in oligosaccharides homologues with 2,2′-bicinchoninate. Anal Biochem, 202, 50–3
  • Dos SA, El Gueddari NE, Trombotto S, Moerschbacher BM. (2008). Partially acetylated chitosan oligo-and polymers induce an oxidative burst in suspension cultured cells of the gymnosperm Araucaria angustifolia. Biomacromolecules, 9, 3411–15
  • Ehrhardt DW, Atkinson EM, Faull KF, et al. (1995). In vitro sulfotransferase activity of NodH, a nodulation protein of Rhizobium meliloti required for host-specific nodulation. J Bacteriol, 177, 6237–45
  • Einbu A, Vårum KM. (2007). Depolymerization and de-N-acetylation of chitin oligomers in hydrochloric acid. Biomacromolecules, 8, 309–14
  • El Gueddari NE, Schaaf A, Kohlhoff M, et al. (2007). Substrates and products of chitin- and chitosan-modifying enzymes. Adv Chitin Sci, 10, 119–26
  • El Gueddari NE, Kolkenbrock S, Schaaf A, et al. (2014). Chitin and chitosan modifying enzymes: versatile novel tools for the analysis of structure–function relationships of partially acetylated chitosans. Adv Chitin Sci, 14, 40–7
  • Faijes M, Fairweather JK, Driguez H, Planas A. (2001). Oligosaccharide synthesis by coupled endo-glycosynthases of different specificity: a straightforward preparation of two mixed-linkage hexasaccharide substrates of 1,3/1,4-β-glucanases. Chem Eur J, 7, 4651–5
  • Faijes M, Perez X, Perez O, Planas A. (2003). Glycosynthase activity of Bacillus licheniformis 1,3-1,4-β-glucanase mutants: specificity, kinetics and mechanism. Biochemistry, 42, 13304–18
  • Faijes M, Imai T, Bulone V, Planas A. (2004). In vitro synthesis of a crystalline (1–3,1–4)-β-d-glucan by a mutated (1–3,1–4)-β-d-glucanase from Bacillus. Biochem J, 380, 635–41
  • Fairweather J, Faijes M, Drigues H, Planas A. (2002). Specificity studies of Bacillus 1, 3-1, 4-β-glucanases and application to glycosynthase-catalyzed transglycosylation. ChemBioChem, 3, 866–73
  • Ferrari AR, Gaber Y, Fraaije MW. (2014). A fast, sensitive and easy colorimetric assay for chitinase and cellulase activity detection. Biotechnol Biofuels, 7, 37. [DOI 10.1186/1754-6834-7-37]
  • Fierfort N, Samain E. (2008). Genetic engineering of Escherichia coli for the economical production of sialylated oligosaccharides. J Biotechnol, 134, 261–5
  • Fujimoto H, Miyasato M, Ito Y, et al. (1998). Purification and properties of recombinant beta-galactosidase from Bacillus circulans. Glycoconj J, 15, 155–60
  • Geelen D, Leyman B, Mergaert P, et al. (1995). NodS is an S-adenosyI-l-methionine-dependent methyltransferase that methylates chitooligosaccharides deacetylated at the non-reducing end. Mol Microbiol, 17, 387–97
  • Geremia RA, Mergaert P, Geelen D, et al. (1994). The NodC protein of Azorhizobium caulinodans is an N-acetylglucosaminyltransferase. Proc Nat Acad Sci, 91, 2669–73
  • Haebel S, Bahrke S, Peter MG. (2007). Quantitative sequencing of complex mixtures of heterochitooligosaccharides by vMALDI-linear ion trap mass spectrometry. Anal Chem, 79, 5557–66
  • Hai Y, Xi C. (2008). Enzymatic synthesis of carbohydrate containing biomolecules. Wiley Encyclopedia of Chemical Biology. Hoboken, New Jersey: John Wiley & Sons Inc.; 521544
  • Hamer SN, Cord-Landwehr S, Biarnés X, et al. (2015). Enzymatic production of defined chitosan oligomers with a specific pattern of acetylation using a combination of chitin oligosaccharide deacetylases. Sci Rep, 5, 8716. [DOI 10.1038/srep08716]
  • Hamer SN, Moerschbacher BM, Kolkenbrock S. (2014). Enzymatic sequencing of partially acetylated chitosan oligomers. Carbohydr Res, 392, 16–20
  • Harvey DJ. (2011). Derivatization of carbohydrates for analysis by chromatography; electrophoresis and mass spectrometry. J Chromatogr B, 879, 1196–225
  • Hattori T, Anraku N, Kato R. (2010). Capillary electrophoresis of chitooligosaccharides in acidic solution: simple determination using a quaternary-ammonium-modified column and indirect photometric detection with crystal violet. J Chromatogr B, 878, 477–80
  • Hattori T, Nobuhiro A, Kato R. (2013). Separation of chitooligosaccharides in acidic solution by capillary electrophoresis. In: Volpi N, Maccari F, eds. Capillary electrophoresis of biomolecules. Totowa, New Jersey: Springer protocols, Humana press. Vol. 984. 61–66
  • Hauser T, Cummins R. (1964). Increasing sensitivity of 3-methyl-2-benzothiazolone hydrozone test for analysis of aliphatic aldehydes in air. Anal Chem, 36, 679–81
  • Hirano S. (1996a). Chitin biotechnology applications. Biotechnol Annu Rev, 2, 237–58
  • Hirano S. (1999b). Chitin and chitosan as novel biotechnological materials. Polym Int, 48, 732–4
  • Honda Y, Kitaoka M. (2006). The first glycosynthase derived from an inverting glycoside hydrolase. J Biol Chem, 281, 1426–31
  • Horn SJ, Eijsink VGH. (2004). A reliable reducing end assay for chito-oligosaccharides. Carbohydr Polym, 56, 35–9
  • Horn SJ, Sørbotten A, Synstad B, et al. (2006). Endo/exo mechanism and processivity of family 18 chitinases produced by Serratia marcescens. FEBS J, 273, 491–503
  • Huang G-L, Mei X-Y. (2007). Production and chitinase-binding ability of lipo-chitopentaose nodulation factor. J Enzyme Inhib Med Chem, 22, 247–9
  • Huang G-L, Zhang D-W, Zhao H-J, et al. (2006). Chemo-enzymatic synthesis of allyl penta-N-acetyl-chitopentaose. Bioorg Med Chem Lett, 16, 2042–3
  • Imoto T, Yagishita K. (1971). Activity measurement of lysozyme-modified Schales procedure. Agric Biol Chem, 35, 1154–6
  • Izume M, Nagae S, Kawagishi H, et al. (1992). Action pattern of Bacillus sp. no. 7-M chitosanase on partially N-acetylated chitosan. Biosci Biotechnol Biochem, 56, 448–53
  • Jahn M, Stoll D, Warren R, et al. (2003). Expansion of the glycosynthase repertoire to produce defined manno-oligosaccharides. Chem Commun, 12, 1327–9
  • Jahn M, Chen H, Muellegger J, et al. (2004). Thioglycosynthases: double mutant glycosidases that serve as scaffolds for thioglycoside synthesis. ChemInform, 35, 274–5
  • Jeffries TW, Yang VW, Davis MW. (1998). Comparative study of xylanase kinetics using dinitrosalicylic, arsenomolybdate, and ion chromatographic assays. Appl Biochem Biotechnol, 70–72, 257–65
  • Jeon Y-J, Shahidi F, Kim S-K. (2000). Preparation of chitin and chitosan oligomers and their applications in physiological functional foods. Food Rev Int, 16, 159–76
  • John M, Röhrig H, Schmidt J, et al. (1993). Rhizobium NodB protein involved in nodulation signal synthesis is a chitooligosaccharide deacetylase. Proc Natl Acad Sci, 90, 625–9
  • John M, Schmidt J, Wieneke U, et al. (1985). Expression of the nodulation gene nodC of Rhizobium meliloti in Escherichia coli: role of the nod C gene product in nodulation. EMBO J, 4, 2425–30
  • Johnson DC, LaCourse WR. (1990). Liquid chromatography with pulsed electrochemical detection at gold and platinum electrodes. Anal Chem, 62, 589–97
  • Johnson DC, Dobberpuhl D, Roberts R, Vandeberg P. (1993). Pulsed amperometric detection of carbohydrates, amines and sulfur species in ion chromatography – the current state of research. J Chromatogr, 640, 79–96
  • Jung W, Park R. (2014). Bioproduction of chitooligosaccharides: present and perspectives. Mar Drugs, 12, 5328–56
  • Kabel MA, Heijnis WH, Bakx EJ, et al. (2006). Capillary electrophoresis fingerprinting, quantification and mass-identification of various 9-aminopyrene-1,4,6-trisulfonate-derivatized oligomers derived from plant polysaccharides. J Chromatogr A, 1137, 119–26
  • Kadokura K, Sakamoto Y, Saito K, et al. (2007). Production of a recombinant chitin oligosaccharide deacetylase from Vibrio parahaemolyticus in the culture medium of Escherichia coli cells. Biotechnol Lett, 29, 1209–15
  • Kamst E, van der Drift KM Thomas-Oates JE, et al. (1995). Mass spectrometric analysis of chitin oligosaccharides produced by rhizobium NodC protein in Escherichia coli. J Bacteriol, 177, 6282–5
  • Kamst E, Bakkers J, Quaedvlieg NE, et al. (1999a). Chitin oligosaccharide synthesis by rhizobia and zebrafish embryos starts by glycosyl transfer to O-4 of the reducing-terminal residue. Biochemistry, 38, 4045–52
  • Kamst E, Zegelaar-Jaarsveld K, van der Marel GA, et al. (1999b). Chemical synthesis of N-acetylglucosamine derivatives and their use as glycosyl acceptors by the Mesorhizobium loti chitin oligosaccharide synthase NodC. Carbohydr Res, 321, 176–89
  • Kamst E, Pilling J, Raamsdonk LM, et al. (1997). Rhizobium nodulation protein NodC is an important determinant of chitin oligosaccharide chain length in Nod factor biosynthesis. J Bacteriol, 179, 2103–8
  • Kamst E, Breek C, Spaink H. (2000). Functional analysis of chimeras derived from the Sinorhizobium meliloti and Mesorhizobium loti nodC genes identifies regions controlling chitin oligosaccharide chain length. Mol Gen Genet, 264, 75–81
  • Kawada T, Yoneda Y. (2009). Synthesis of a chito-tetrasaccharide β-1,4-GlcNAc-β-1,4-GlcN repeating unit. Chem Mon, 140, 1251–6
  • Kim J, Kim J, Hong J, et al. (2013). LC–MS/MS analysis of chitooligosaccharides. Carbohydr Res, 372, 23–9
  • Kittur FS, Vishu Kumar AB, Tharanathan RN. (2003). Low molecular weight chitosans – preparation by depolymerization with Aspergillus niger pectinase, and characterization. Carbohydr Res, 338, 1283–90
  • Kittur FS, Vishu Kumar AB, Varadaraj MC, Tharanathan RN. (2005). Chitooligosaccharides – preparation with the aid of pectinase isozyme from Aspergillus niger and their antibacterial activity. Carbohydr Res, 340, 1239–45
  • Kobayashi S. (1990). Ethylenimine polymers. Prog Polym Sci, 15, 751–823
  • Kohri M, Kobayashi A, Noguchi M, et al. (2006). Stepwise synthesis of chitooligosaccharides through a transition-state analogue substrate catalyzed by mutants of chitinase A1 from Bacillus circulans WL-12. Holzforschung, 60, 485–491
  • Kuyama H, Nakahara Y, Nukada T, et al. (1993). Preliminary communication stereocontrolled synthesis of chitosan dodecamer. Carbohydr Res, 243, 1–7
  • Lamarque G, Lucas J, Viton C, Domard A. (2005). Physicochernical behavior of homogeneous series of acetylated chitosans in aqueous solution: role of various structural parameters. Biomacromolecules, 6, 131–42
  • Lee D-X, Xia W-S, Zhang J-L. (2008). Enzymatic preparation of chitooligosaccharides by commercial lipase. Food Chem, 111, 291–5
  • Liu T, Liu Z, Song C, et al. (2012). Chitin-induced dimerization activates a plant immune receptor. Science, 336, 1160–4
  • López-Lara IM, van Der Drift KMGM, van Brussel AAN, et al. (1995). Induction of nodule primordia on Phaseolus and Acacia by lipo-chitin oligosaccharide nodulation signals from broad-host-range Rhizobium strain GRH2. Plant Mol Biol, 29, 465–77
  • Machida S, Niimi S, Shi X. (2001). Expression of the cytoplasmic domain of NodC as an active form in Drosophila S2 cells. J Biosci Bioeng, 91, 251–5
  • Mackenzie LF, Wang Q, Warren RAJ, Withers SG. (1998). Glycosynthases: mutant glycosidases for oligosaccharide synthesis. J Am Chem Soc, 120, 5583–4
  • Madhuprakash J, Tanneeru K, Purushotham P, et al. (2012). Transglycosylation by chitinase D from Serratia proteamaculans improved through altered substrate interactions. J Biol Chem, 287, 44619–27
  • Maillet F, Poinsot V, André O, et al. (2011). Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature, 469, 58–63
  • Malet C, Planas A. (1998). From β-glucanase to β-glucansynthase: glycosyl transfer to α-glycosyl fluorides catalyzed by a mutant endoglucanase lacking its catalytic nucleophile. FEBS Lett, 440, 208–12
  • Martinez EA, Boer H, Koivula A, et al. (2012). Engineering chitinases for the synthesis of chitin oligosaccharides: catalytic amino acid mutations convert the GH-18 family glycoside hydrolases into transglycosylases. J Mol Catal B Enzym, 74, 89–96
  • Mayer C, Zechel DL, Reid SP, et al. (2000). The E358S mutant of Agrobacterium sp. β-glucosidase is a greatly improved glycosynthase. FEBS Lett, 466, 40–4
  • Mengin Lecreulx D, Flouret B, Van Heijenoort J. (1983). Pool levels of UDP N-acetylglucosamine and UDP N-acetylglucosamine-enolpyruvate in Escherichia coli and correlation with peptidoglycan synthesis. J Bacteriol, 154, 1284–90
  • Mengin-Lecreulx D, Van Heijenoort J. (1994). Copurification of glucosamine-1-phosphate acetyltransferase and N-acetylglucosamine-1-phosphate uridyltransferase activities of Escherichia coli: characterization of the glmU gene product as a bifunctional enzyme catalyzing two subsequent steps in the PA. J Bacteriol, 176, 5788–95
  • Mergaert P, D’Haeze W, Geelen D, et al. (1995). Biosynthesis of Azorhizobium caulinodans nod factors. J Biol Chem, 270, 29217–23
  • Miller G. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem, 31, 426–8
  • Mitsutomi M, Kidoh H, Tomita H, Watanabe T. (1995). The action of Bacillus circulans WL-12 chitinases on partially N-acetylated chitosan. Biosci Biotechnol Biochem, 59, 529–31
  • Morales V, Sanz ML, Olano A, Corzo N. (2006). Rapid separation on activated charcoal of high oligosaccharides in honey. Chromatographia, 64, 1–6
  • Morley K, Chauve G, Kazlauskas R, et al. (2006). Acetyl xylan esterase-catalyzed deacetylation of chitin and chitosan. Carbohydr Polym, 63, 310–15
  • Nanjo F, Katsumi R, Sakai K. (1991). Enzymatic method for determination of the degree of deacetylation of chitosan. Anal Biochem, 193, 164–7
  • Nashiru O, Zechel DL, Stoll D, et al. (2001). β-Mannosynthase: synthesis of β-Mannosides with a mutant β-mannosidase. Angew Chem Int Ed Engl, 40, 417–20
  • Nelson N. (1944). A photometric adaptation of the Somogyi method for the determination of Glucose. J Biol Chem, 3, 375–80
  • Nothnagel EA, Mcneil M, Albersheim P, Dell A. (1983). Host-pathogen interactions. Plant Physiol, 71, 916–26
  • Oguchi M, Oguchi MS. (1979). Tetraborate concentration on Morgan–Elson reaction and an improved method for hexosamine determination. Anal Biochem, 98, 433–7
  • Ohishi K, Yamagishi M, Ohta T, et al. (1997). Purification and properties of two deacetylases produced by Vibrio alginolyticus H-8. Biosci Biotechnol Biochem, 61, 1113–17
  • Ohnuma T, Fukuda T, Dozen S, et al. (2012). A glycosynthase derived from an inverting GH19 chitinase from the moss Bryum coronatum. Biochem J, 444, 437–43
  • Ohsten Rasmussen M, Hogg B, Bono J, et al. (2004). New access to lipo-chitooligosaccharide nodulation factors. Org Biomol Chem, 2, 1908–10
  • Osburn RM, Smith RS. (2009). EP2101583 A1. Merck Patent GmbH
  • Pacios-Bras C, van der Burgt YEM, Deelder AM, et al. (2002). Novel lipochitin oligosaccharide structures produced by Rhizobium etli KIM5s. Carbohydr Res, 337, 1193–202
  • Purushotham P, Podile AR. (2012). Synthesis of long chain chitooligosaccharides by a hypertransglycosylating processive endochitinase of Serratia proteomaculans 568. J Bacteriol, 194, 4260–71
  • Quinto C, Wijfjes A, Bloemberg GV, et al. (1997). Bacterial nodulation protein NodZ is a chitin oligosaccharide fucosyltransferase which can also recognize related substrates of animal origin. Proc Natl Acad Sci, 94, 4336–41
  • Rahman MH, Shovan LR, Hjeljord LG, et al. (2014). Inhibition of fungal plant pathogens by synergistic action of chito-oligosaccharides and commercially available fungicides. PLoS One, 9, 1–10
  • Reissig JL, Strominger JL, Leloir LF. (1955). A modified colorimetric method for the estimation of N-acetylamino sugars. J Biol Chem, 217, 959–66
  • Remoroza C, Cord-Landwehr S, Leijdekkers AGM, et al. (2012). Combined HILIC-ELSD/ESI-MS n enables the separation, identification and quantification of sugar beet pectin derived oligomers. Carbohydr Polym, 90, 41–8
  • Roche P, Debellé F, Maillet F, et al. (1991). Molecular basis of symbiotic host specificity in Rhizobium meliloti: nodH and nodPQ genes encode the sulfation of lipo-oligosaccharide signals. Cell, 67, 1131–43
  • Ruffing A, Chen RR. (2006). Metabolic engineering of microbes for oligosaccharide and polysaccharide synthesis. Microb Cell Fact, 5, 25. [DOI:10.1186/1475-2859-5-25]
  • Ruhaak LR, Zauner G, Huhn C, et al. (2010). Glycan labeling strategies and their use in identification and quantification. Anal Bioanal Chem, 397, 3457–81
  • Sakamoto J, Kobayashi S. (2004). Enzymatic synthesis of 3-O-methylated chitin oligomers from new derivatives of a chitobiose oxazoline. Chem Lett, 33, 698–9
  • Samain E, Drouillard S, Heyraud A, et al. (1997). Gram-scale synthesis of recombinant chitooligosaccharides in Escherichia coli. Carbohydr Res, 302, 35–42
  • Samain E, Chazalet V, Geremia R. (1999). Production of O-acetylated and sulfated chitooligosaccharides by recombinant Escherichia coli strains harboring different combinations of nod. J Biotechnol, 72, 33–47
  • Schales O, Schales S. (1945). A simple method for the determination of glucose in blood. Arch Biochem, 8, 285–92
  • Schultze M, Staehelin C, Rohrig H, et al. (1995). ln vitro sulfotransferase activity of Rhizobium meliloti NodH protein: lipochitooligosaccharide nodulation signals are sulfated after synthesis of the core structure. Proc Natl Acad Sci, 92, 2706–9
  • Scigelova M, Crout DHG. (1999). Microbial β-N-acetylhexosaminidases and their biotechnological applications. Enzym Microb Technol, 25, 3–4
  • Sharp JK, McNeil M, Albersheim P. (1984). The primary structures of one elicitor-active and seven elicitor-inactive hexa(β-d-glucopyranosyl)-d-glucitols isolated from the mycelial walls of Phytophthera megasperma f.sp. glycinea. J Biol Chem, 259, 11321–36
  • Sharrock KR. (1988). Cellulase assay methods: a review. J Biochem Biophys Methods, 17, 81–105
  • Singh S, Gallagher R, Derrick PJ, Crout DHG. (1995a). Glycosidase-catalysed oligosaccharide synthesis: preparation of the N-acetylchitooligosaccharides penta-N-acetylchitopentaose and hexa-N-acetylchitohexaose using the β-N-acetylhexosaminidase of Aspergillus oryzae. Tetrahedron Assym, 6, 2803–10
  • Singh S, Packwood J, Samuel CJ, et al. (1995b). Glycosidase-catalysed oligosaccharide synthesis: preparation of N-acetylchitooligosaccharides using the β-N-acetylhexosaminidase of Aspergillus oryzae. Carbohydr Res Res, 279, 293–305
  • Sinha S, Tripathi P, Chand S. (2012). A new bifunctional chitosanase enzyme from Streptomyces sp. and its application in production of antioxidant chitooligosaccharides. Appl Biochem Biotechnol, 167, 1029–39
  • Somogyi M. (1952). Notes on sugar determination. J Biol Chem, 195, 19–23
  • Sørbotten A, Horn SJ, Eijsink VGH, Vårum KM. (2005). Degradation of chitosans with chitinase B from Serratia marcescens: production of chito-oligosaccharides and insight into enzyme processivity. FEBS J, 272, 538–49
  • Southwick AM, Wang L-X, Long SR, Lee YC. (2002). Activity of Sinorhizobium meliloti NodAB and NodH enzymes on thiochitooligosaccharides. J Bacteriol, 184, 4039–43
  • Spaink H, Sheeley D, van Brussel AA, et al. (1991). A novel highly unsaturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature, 354, 125–30
  • Spaink HP, Wijfjes AHM, van der Drift KMGM, et al. (1994). Structural identification of metabolites produced by the NodB and NodC proteins of Rhizobium leguminosarum. Mol Microbiol, 13, 821–31
  • Stokke BT, Brant DA. (1990). The reliability of wormlike polysaccharide chain dimensions estimated from electron micrographs. Biopolymers, 30, 1161–81
  • Suma K, Podile AR. (2013). Chitinase A from Stenotrophomonas maltophilia shows transglycosylation and antifungal activities. Bioresour Technol, 133, 213–20
  • Tang M-C, Nisole A, Dupont C, et al. (2011). Chemical profiling of the deacetylase activity of acetyl xylan esterase A (AxeA) variants on chitooligosaccharides using hydrophilic interaction chromatography–mass spectrometry. J Biotechnol, 155, 257–65
  • Thunberg L, Bäckström G, Lindahl U. (1982). Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res, 100, 393–410
  • Tian F, Liu Y, Hu K, Zhao B. (2003). The depolymerization mechanism of chitosan by hydrogen peroxide. J Mater Sci, 38, 4709–12
  • Tokuyasu K, Ono H, Ohnishi-Kameyama M, et al. (1997). Deacetylation of chitin oligosaccharides of dp 2–4 by chitin deacetylase from Colletotrichum lindemuthianum. Carbohydr Res, 303, 353–8
  • Tokuyasu K, Ono H, Mitsutomi M, et al. (2000). Synthesis of a chitosan tetramer derivative, β-d-GlcNAc-(1–4)-d-GlcN through a partial N-acetylation reaction by chitin deacetylase. Carbohydr Res, 325, 211–15
  • Tokuyasu K, Ono H, Hayashi K, Mori Y. (1999). Reverse hydrolysis reaction of chitin deacetylase and enzymatic synthesis of β-d-GlcNAc-(1–4)GlcN from chitobiose. Carbohydr Res, 322, 26–31
  • Tolborg JF, Petersen L, Jensen KJ, et al. (2002). Solid-phase oligosaccharide and glycopeptide synthesis using glycosynthases. J Org Chem, 67, 4143–9
  • Tømmeraas K, Vårum K, Christensen BE, Smidsrod O. (2001). Preparation and characterisation of oligosaccharides produced by nitrous acid depolymerisation of chitosans. Carbohydr Res, 333, 137–44
  • Trombotto S, Ladavière C, Delolme F, Domard A. (2008). Chemical preparation and structural characterization of a homogeneous series of chitin/chitosan oligomers. Biomacromolecules, 9, 1731–8
  • Tsigos I, Zydowicz N, Martinou A, et al. (1999). Mode of action of chitin deacetylase from Mucor rouxii on N-acetylchitooligosaccharides. Eur J Biochem, 261, 698–705
  • Usui T, Matsui H, Isobe K. (1990). Enzymic synthesis of useful chito-oligosaccharides utilizing transglycosylation by chitinolytic enzymes in a buffer containing ammonium sulfate. Carbohydr Res, 203, 65–77
  • Uzawa H, Zeng X, Minoura N. (2003). Synthesis of 6-sulfodisaccharides by β-N-acetylhexosaminidase-catalyzed transglycosylation. Chem Commun, 34, 100–1
  • Vander P, Vårum K, Domard A, et al. (1998). Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol, 118, 1353–9
  • Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O. (1991a). 13C NMR studies of the acetylation sequences in partially N-deacetylated chitins (chitosans). Carbohydr Res, 217, 19–27
  • Varum KM, Anthonsen MW, Grasdalen H, Smidsrod O. (1991b). Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field NMR. Carbohydr Res, 211, 17–23
  • Viladot J, Canals F, Batllori X, Planas A. (2001). Long-lived glycosyl-enzyme intermediate mimic produced by formate re-activation of a mutant endoglucanase lacking its catalytic nucleophile. Biochem J, 355, 79–86
  • Vishu Kumar AB, Varadaraj MC, Lalitha RG, Tharanathan RN. (2004). Low molecular weight chitosans: preparation with the aid of papain and characterization. Biochim Biophys Acta, 1670, 137–46
  • Waffenschmidt S, Jaenicke L. (1987). Assay of reducing sugars in the nanomole range with 2,2′-bicinchoninate. Anal Biochem, 165, 337–40
  • Wang CY, Hsieh YZ. (2002). Analysis of chitin oligosaccharides by capillary electrophoresis with laser-induced fluorescence. J Chromatogr A, 979, 431–8
  • Wang L-X, Lee YC. (1996). Stereoselective synthesis of N-acetyl thiochitooligosaccharides. Different behaviours of methyl N-acetyl-alpha and β-thiochitobiosides during acetolysis. J Chem Soc, 6, 581–91
  • Weinhold MX, Sauvageau JCM, Kumirska J, Thöming J. (2009). Studies on acetylation patterns of different chitosan preparations (C-13 NMR). Carbohydr Polym, 78, 678–84
  • Yoon JH. (2005). Enzymatic synthesis of chitooligosaccharides in organic cosolvents. Enzyme Microb Technol, 37, 663–8
  • Zakariassen H, Hansen MC, Jøranli M, et al. (2011). Chitinases and construction of a hypertransglycosylating mutant. Biochemistry, 50, 5693–703
  • Zhang H, Neau S. (2001). In vitro degradation of chitosan by a commercial enzyme preparation: effect of molecular weight and degree of deacetylation. Biomaterials, 22, 1653–8
  • Zhang H, Du Y, Yu X, et al. (1999). Preparation of chitooligosaccharides from chitosan by a complex enzyme. Carbohydr Res, 320, 257–60
  • Zhang D, Wang PG, Qi Q. (2007). A two-step fermentation process for efficient production of penta-N-acetyl-chitopentaose in recombinant Escherichia coli. Biotechnol Lett, 29, 1729–33

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.