70
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Transmembrane Amino Acid Flux in Bacterial Cells

, &
Pages 1-47 | Published online: 24 Jan 2010

References

  • Office of Technology Assessment. U.S. Government Printing Office, Washington, DC 1984, Congress of the U.S., Commercial Biotechnology: An International Analysis, OTA-BA-218
  • Demain A. L., Birnbaum J. Alteration of permeability for the release of metabolites from the microbial cell. Curr. Top. Microbiol. Immunol. 1968; 46: 1
  • Demain A. L. Cellular and environmental factors affecting the synthesis and excretion of metabolites. J. Appl. Chem. Biotechnol. 1972; 22: 345
  • Momose H. New genetic approaches to amino acid producing strains. Developments in Industrial Microbiology, C. E. Nash, III, L. A. Underkofler. Society for Industrial Microbiology, Arlington, Virginia 1983; Vol. 24, cha8
  • Furuya A., Misawa M., Nara T., Abe S., Kinoshita S. Metabolic controls of accumulation of amino acids and nucleotides. Fermentation Advances, D. Perlman. Academic Press, New York 1969; 177
  • Shockman G. D., Barrett J. F. Structure, function, and assembly of cell walls of Gram-positive bacteria. Annu. Rev. Microbiol 1983; 37: 501
  • Beveridge T. J. Ultrastructure, chemistry, and function of the bacterial wall. Int. Rev. Cytol. 1981; 72: 229
  • Scherrer R., Gerhardt P. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 1971; 107: 718
  • DiRienzo J. M., Nakamura K., Inouye M. The outer membrane proteins of Gram-negative bacteria: biosynthesis, assembly and functions. Annu. Rev. Biochem. 1978; 47: 481
  • Lugtenberg B., van Alphen L. Molecular architecture and functioning of the outer membrane of Escherichia coli and other Gram-negative bacteria. Biochim. Biophys. Acta 1983; 737: 51
  • Osborn M. J., Wu H. C. P. Proteins of the outer membrane of Gram-negative bacteria. Annu. Rev. Microbiol. 1980; 34: 369
  • Nikaido H., Vaara M. Molecular basis of bacterial outer membrane permeability. Microbiol. Rev. 1985; 49: 1
  • Nikaido H. Nonspecific transport through the outer membrane. Bacterial Outer Membranes, M. Inouye. JohnWiley & Sons, New York 1979; 361
  • Nikaido H., Rosenberg E. Y. Effect of solute size on diffusion rates through the transmem-brane pores of the outer membrane of Escherichia coli. J. Gen. Physiol. 1981; 77: 121
  • Nakae T. Identification of the outer membrane protein of E. coli that produces transmembrane channels in reconstituted vesicle membranes. Biochem. Biophys. Res. Commun. 1976; 71: 877
  • Decad G. M., Nikaido H. Outer membrane of Gram-negative bacteria. XII. Molecular-sieving function of cell wall. J. Bacteriol. 1976; 128: 325
  • Nikaido H., Luckey M., Rosenberg E. Y. Nonspecific and specific diffusion channels in the outer membrane of Escherichia coli. J. Supramol. Struct. 1980; 13: 305
  • Nikaido H., Rosenberg E. Y. Porin channels in Escherichia coli: studies with liposomes reconstituted from purified proteins. J. Bacteriol. 1983; 153: 241
  • Benz R., Hancock R. E. W. Properties of the large ion-permeable pores formed from protein F of Pseudomonas aeruginosa in lipid bilayer membranes. Biochim. Biophys. Acta 1981; 646: 298
  • Benz R., Schmid A., Hancock R. E. W. Ion selectivity of Gram-negative bacteria porins. J. Bacteriol. 1985; 162: 722
  • Luckey M., Nikaido H. Specificity of diffusion channels produced by Λ phage receptor protein of Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 167
  • Renkin E. M. Filtration diffusion and molecular sieving through porous cellulose membranes. J. Gen. Physiol. 1954; 38: 225
  • Nikaido H., Rosenberg E. Y., Foulds J. Porin channels in Escherichia coli: studies with β-lactams in intact cells. J. Bacteriol. 1983; 153: 232
  • Bavoil P., Nikaido H., von Meyenburg K. Pleiotropic transport mutants of Escherichia coli lack porin, a major outer membrane protein. Mol. Gen. Genet. 1977; 158: 23
  • Hobot J. A., Carlemaln E., Villiger W., Kellenberger E. Periplasmic gel: new concept resulting from the reinvestigation of bacterial cell envelope ultrastructure by new methods. J. Bacteriol. 1984; 160: 143
  • Costerton J. W., Irvin R. I., Cheng K.-J. The bacterial glycocalyx in nature and disease. Annu. Rev. Microbiol. 1981; 35: 299
  • Sleytr U. B., Messner P. Crystalline surface layers on bacteria. Annu. Rev. Microbiol. 1983; 37: 311
  • Messner P., Hollaus F., Sleytr U. B. Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int. J. Syst. Bacteriol. 1984; 34: 202
  • Deatherage J. F., Taylor K. A., Amos L. A. Three dimensional arrangement of cell wall protein of Sulfolobus acidocaldorius. J. Mol. Biol 1983; 167: 823
  • Robinson G. B. The isolation and composition of membranes. Biological Membranes, D. S. Parsons. Clarendon Press, Oxford 1975; 8
  • Goldfine H. Lipids of prokaryotes — structure and distribution. Curr. Top. Membr. Transp. 1982; 17: 1
  • Russell N. J. Mechanisms of thermal adaptation in bacteria: blueprints for survival. Trends Biochem. Sci. 1984; 9: 108
  • Langworthy T. A. Lipids of bacteria living in extreme environments. Curr. Top. Membr. Transp. 1982; 17: 45
  • Ourisson G., Rohmer M. Prokaryotic polyterpenes: phylogenetic precursors of sterols. Curr. Top. Membr. Transp. 1982; 17: 154
  • Marr A. G., Ingraham J. L. Effect of temperature on the composition of fatty acids in Escherichia coli. J. Bacteriol. 1962; 84: 1260
  • Lechevalier M. P. Lipids in bacterial taxonomy — a taxonomist's view. Crit. Rev. Microbiol. 1977; 5: 109
  • deMendoza D., Cronan J. E., Jr. Thermal regulation of membrane lipid fluidity in bacteria. Trends Biochem. Sci. 1983; 8: 49
  • D'Agnolo G., Rosenfeld I. S., Vagelos P. R. Multiple forms of the β-ketoacyl-acyl carrier protein synthetase in Escherichia coli. J. Biol. Chem. 1975; 250: 5289
  • Nishihara M., Ishinaga M., Kato M., Kito M. Temperature-sensitive formation of the phos-pholipid molecular species in Escherichia coli membranes. Biochim. Biophys. Acta 1976; 431: 54
  • Garwin J. L., Cronan J. E., Jr. Thermal modulation of fatty acid synthesis in Escherichia coli does not involve de novo enzyme synthesis. J. Bacteriol. 1980; 141: 1457
  • Alberts A. W., Vagelos P. R. Acyl-CoA carboxylases. The Enzymes, P. D. Boyer. Academic Press, New York 1972; Vol. 6: 37
  • Levin R. A. Effect of cultural conditions on the fatty acid composition of Thiobacillus novellus. J. Bacteriol. 1972; 112: 903
  • Croom J. A., McNeill J. J., Tove S. B. Biotin deficiency and the fatty acids of certain biotin requiring bacteria. J. Bacteriol. 1964; 88: 389
  • Gavin J. J., Umbreit W. W. Effect of biotin on fatty acid distribution in Escherichia coli. J. Bacteriol. 1965; 89: 437
  • Johnston N. C., Goldfine H. Phospholipid aliphatic chain composition modulates lipid class composition, but not lipid asymmetry in Costridium butyricum. Biochim. Biophys. Actda 1985; 813: 10
  • Rock C. O., Cronan J. E., Jr. Regulation of bacterial membrane lipid synthesis. Curr. Top. Membr. Transp. 1982; 17: 207
  • Singer S. J., Nicolson G. L. The fluid mosaic model of the structure of cell membranes. Science 1972; 175: 720
  • Benga G., Holmes R. P. Interactions between components in biological membranes and their implications for membrane function. Prog. Biophys. Mol. Biol. 1984; 43: 195
  • Quinn P. J. The fluidity of cell membranes and its regulation. Prog. Biophys. Mol. Biol. 1981; 38: 1
  • Quinn P. J. A lipid-phase separation model of low-temperature damage to biological membranes. Cryobiology 1985; 22: 128
  • McElhaney R. N. The relationship between membrane lipid fluidity and phase state and the ability of bacteria and mycoplasmas to grow and survive at various temperatures. Membrane Fluidity, M. Kates, L. A. Manson. Plenum Press, New York 1984; 249
  • Collander R. The permeability of Nitella cells to non-electrolytes. Physiol. Plant. Pathol. 1954; 7: 420
  • Walsby A. E. The water relations of gas-vacuolate prokaryotes. Proc. R. Soc. London 1980; 208: 73
  • Galey W. R., Owen J. D., Solomon A. K. Temperature dependence of nonelectrolyte permeation across red cell membranes. J. Gen. Physiol. 1973; 61: 727
  • deGier J., Mandersloot J. G., Hupkes J. V., McElhaney R. N., van Beek W. P. On the mechanism of non-electrolyte permeation through lipid bilayers and through biomembranes. Biochim. Biophys. Acta 1971; 233: 610
  • Deuticke B. Properties and structural basis of simple diffusion pathways in the erythrocyte membrane. Rev. Physiol. Biochem. Pharmacol. 1977; 78: 1
  • Kaback H. R. Bacterial membranes. Methods Enzymol. 1971; 22: 99
  • Kaback H. R. Transport studies in bacterial membrane vesicles. Science 1974; 186: 882
  • Rosen B. P., Tsuchiya T. Preparation of inverted membrane vesicles from E. coli for the measurement of calcium transport. Methods Enzymol. 1979; 56: 233
  • Eytan G. D. Use of liposomes for reconstitution of biological functions. Biochim. Biophys. Acta 1982; 694: 185
  • Montal M. Experimental membranes and mechanisms of bioenergy transductions. Annu. Rev. Biophys. Bioeng. 1976; 5: 119
  • Sha'afi R. I., Gary-Bobo C. M. Water and nonelectrolyte permeability in mammalian red cell membranes. Prog. Biophys. Mol. Biol. 1973; 26: 103
  • Shulman R. G., Brown T. R., Ugurbil K., Ogawa S., Cohen S. M., den Hollander J. A. Cellular applications of 31P and 13C nuclear magnetic resonance. Science 1979; 205: 160
  • Haran N., Kahana Z. E., Lapidot A. In vivo 15N NMR studies of regulation of nitrogen assimilation and amino acid production by Brevibacterium lactofermentum. J. Biol. Chem. 1983; 258: 12929
  • Inbar L., Kahana Z. E., Lapidot A. Natural abundance 13C nuclear magnetic resonance studies of regulation and overproduction of L-lysine by Brevibacterium flavum. Eur. J. Biochem. 1985; 149: 601
  • Wright E. M., Diamond J. M. Patterns of non-electrolyte permeability. Proc. R. Soc. London Ser. B. 1969; III: 227
  • Leo A., Hansch C., Elkins D. Partition coefficients and their uses. Chem. Rev. 1971; 71: 525
  • Nozaki Y., Tanford C. The solubility of amino acids and two glycine peptides in aqueous ethanol and dioxane solutions. J. Biol. Chem. 1971; 246: 2211
  • Mellors A., McGowan J. C. Uses of molecular volume in biochemical pharmacology. Biochem. Pharmacol. 1985; 34: 2413
  • McLaughlin S. Electrostatic potentials at membrane-solution interfaces. Curr. Top. Membr. Transp. 1977; 9: 71
  • Stock J. B., Rauch B., Roseman S. Periplasmic space in Salmonella typhimurium and Escherichia coli. J. Biol. Chem. 1977; 252: 7850
  • Borst-Pauwels G. W. F. H. Ion transport in yeast. Biochim. Biophys. Acta 1981; 650: 88
  • Theuvenet A. P. R., van deWijngaard W. M. H., van deRijke J. W., Borst-Pauwels G. W. F. H. Applications of 9-aminoacridine as a probe of the surface potential experienced by cation transporters in the plasma membrane of yeast cells. Biochim. Biophys. Acta 1984; 775: 161
  • Theuvenet A. P. R., Borst-Pauwels G. W. F.H. Effect of surface potential on Rb+ uptake in yeast. Biochim. Biophys. Acta 1983; 734: 62
  • Bramhall J. Electrostatic forces control the penetration of membranes by charged solutes. Biochim. Biophys. Acta 1984; 778: 393
  • Krishnamoorthy G., Hinkle P. C. Non-ohmic proton conductance of mitochondria and lipo-somes. Biochemistry 1984; 23: 1640
  • Blok M. C., van der Neut-kok E. C. M., van Deenen L. L. M., deGier J. The effect of chain length and lipid phase transitions on the selective permeability properties of liposomes. Biochim. Biophys. Acta 1975; 406: 187
  • van derSteen A. T. M., deKruijff B., deGier J. Glycophorin incorporation increases the bilayer permeability of large unilamellar vesicles in a lipid-dependent manner. Biochim. Biophys. Acta 1982; 691: 13
  • van derSteen A. T. M., Taraschi T. F., Voorhout W. F., deKruijff B. Barrier properties of glycophorin-phospholipid systems prepared by different methods. Biochim. Biophys. Acta 1983; 733: 51
  • Thilo L., Trauble H., Overath P. Mechanistic interpretation of the influence of lipid phase transitions on transport functions. Biochemistry 1977; 16: 1283
  • Klein R. A., Moore M. J., Smith M. W. Selective diffusion of neutral amino acids across lipid bilayers. Biochim. Biophys. Acta 1971; 233: 420
  • Papahadjopoulos D. Na+-K+ discrimination by “pure” phospholipid membranes. Biochim. Biophys. Acta 1971; 241: 254
  • Honig B. H., Hubbell W. L. Stability of “salt bridges” in membrane proteins. Proc. Nad. Acad. Sci. U.S.A. 1984; 81: 5412
  • Greenstein J. P., Winitz M. Chemistry of the Amino Acids. John Wiley & Sons, New York 1961
  • Wilson P. D., Wheeler K. P. Permeability of phospholipid vesicles to amino acids. Biochem. Soc. Trans. 1973; 1: 369
  • Piperno J. R., Oxender D. L. Amino acid transport systems in Escherichia coli K12. J. Biol. Chem. 1968; 243: 5914
  • Rancourt D. E., Stephenson J. T., Vickell G. A., Wood J. M. Proline excretion by Escherichia coli K12. Biotechnol. Bioeng. 1984; 26: 74
  • Csonka L. N. Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet. 1981; 182: 82
  • Stalmach M. E., Grothe S., Wood J. M. Two proline porters in Escherichia coli K-12. J. Bacteriol. 1983; 156: 481
  • Wookey P. J., Pittard J., Forrest S. M., Davidson B. E. Cloning of the tryPgene and further characterization of the tyrosine-specific transport system in Escherichia coli K-12. J. Bacteriol. 1984; 160: 169
  • Sanno Y., Wilson T. H., Lin E. C.C. Control of permeation to glycerol in cells of Escherichia coli. Biochem. Biophys. Res. Commun. 1968; 32: 344
  • Kundig W., Ghosh S., Roseman S. Phosphate bound to histidine in a protein as an intermediate in a novel phospho-transferase system. Proc. Natl. Acad. Sci. U.S.A. 1964; 52: 1067
  • Hays J. B. Group translocation transport systems. Bacterial Transport, B. P. Rosen. Marcel Dekker, New York 1978; 43
  • Berger E. A., Heppel L. A. Different mechanisms of energy coupling for the shock-sensitive and shock-resistant amino acid permeases of Escherichia coli. J. Biol. Chem. 1974; 249: 7747
  • Ramos S., Schuldiner S., Kaback H. R. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. U.S.A. 1976; 73: 1892
  • Maloney P. C, Kashket E. R., Wilson T. H. Methods for studying transport in bacteria. Methods Membr. Biol. 1975; 5: 1
  • Pardee A. B. Purification and properties of a sulfate-binding protein from Salmonella typhimu-rium. J. Biol. Chem. 1966; 241: 5886
  • Neu H. C., Heppel L. A. The release of enzymes from Escherichia coli by osmotic shock and during the formation of spheroplasts. J. Biol. Chem. 1965; 240: 3685
  • Konings W. N. Active transport of solutes in bacterial membrane vesicles. Adv. Microb. Physiol. 1977; 15: 175
  • Owen P., Kaback H. R. Antigenic architecture of membrane vesicles from Escherichia coli. J. Biol. Chem. Biochemistry 1979; 18: 1422
  • Rotman B., Guzman R. Galactose binding protein dependent transport in reconstituted Esch-erichia coli membrane vesicles. Microbiology — 1984, L. Leive, D. Schlessinger. American Society for Microbiology, Washington, DC 1984; 57
  • Hunt A. G., Hong J.-S. The reconstitution of binding protein-dependent active transport of glutamine in isolated membrane vesicles from Escherichia coli. J. Biol. Chem. 1981; 256: 11988
  • Hertzberg E. L., Hinkle P. C. Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli. Biochem. Biophys. Res. Commun. 1974; 58: 178
  • Reenstra W. W., Patel L., Rottenberg H., Kaback H. R. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli. Biochemistry 1980; 19: 1
  • Lancaster J. R., Jr., Hinkle P. C. Studies of the β-galactoside transporter in inverted membrane vesicles of Escherichia coli. I. Symmetrical facilitated diffusion and proton gradient coupled transport. J. Biol. Chem. 1977; 252: 7657
  • Newman M. J., Wilson T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 1980; 255: 10583
  • Newman M. J., Wilson T. H. Solubilization and reconstitution of the lactose and melibiose transport systems from Escherichia coli. Abstr. Annu. Meet. Am. Soc. Microbiol.. 1981; 158
  • Foster D. L., Garcia M. L., Newman M. J., Patel L., Kaback H. R. Lactose-proton symport by purified lac carrier protein. Biochemistry 1982; 21: 5634
  • Wright J. K., Schwarz H., Straub E., Overath P., Bieseler B., Beyreuther K. Lactose carrier protein of Escherichia coli. Reconstitution of galactoside binding and countertransport. Eur. J. Biochem. 1982; 124: 545
  • Kaczorowski G. J., Kaback H. R. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. I. Effect of pH on efflux, exchange and counterflow. Biochemistry 1979; 18: 3691
  • Whipp M. J., Pittard A. J. Regulation of aromatic acid transport systems in Escherichia coli K-12. J. Bacteriol. 1977; 132: 453
  • Morikawa A., Suzuki H., Anraku Y. Transport of sugars and amino acids in bacteria. VIII. Properties and regulation of the active transport reaction of proline in Escherichia coli. J. Biochem. 1974; 75: 229
  • Wood J. M. Leucine transport in Escherichia coli. J. Biol. Chem. 1975; 250: 4477
  • Ames G. F.-L. Components of histidine transport. Membrane Research, C. F. Fox. Academic Press, New York 1972; 409
  • Anderson R. R., Menzel R., Wood J. M. Biochemistry and regulation of a second L-proline transport system in Salmonella typhimurium. J. Bacteriol. 1980; 141: 1071
  • Wilson D. B. Properties of the entry and exit reactions of the beta-methyl-galactoside transport system in Escherichia coli. J. BacterioL 1976; 126: 1156
  • Silvius J. R., McElhaney R. N. Non-linear Arrhenius plots and the analysis of reaction and motional rates in biological membranes. J. Theor. Biol. 1981; 88: 135
  • Harold F. M. Membranes and energy transduction in bacteria. Curr. Top. Bioenerg. 1977; 6: 83
  • Wilson D. B. Cellular transport mechanisms. Annu. Rev. Biochem. 1978; 47: 933
  • Rottenberg H. The driving force for proton(s) metabolites cotransport in bacterial cells. FEBS Lett. 1976; 66: 159
  • Booth I. R., Hamilton W. A. Quantitative analysis of proton-linked transport systems. β-Galactoside exit in Escherichia coli. Biochem. J. 1980; 188: 467
  • Geek P., Heinz E. Coupling in secondary transport: effect of electrical potentials on the kinetics of ion linked co-transport. Biochim. Biophys. Acta 1976; 443: 49
  • Turner R. J. Quantitative studies of cotransport systems: models and vesicles. J. Membr. Biol. 1983; 16: 1
  • Turner R. J. Stoichiometry of cotransport systems. Ann. N.Y. Acad. Sci. 1985; 456: 10
  • Mitchell P. Performance and conservation of osmotic work by proton-coupled solute porter systems. Bioenergetics 1973; 4: 63
  • Mitchell P. Compartmentation and communication in living systems. Ligand conduction: a general catalytic principle in chemical, osmotic and chemiosmotic reaction systems. Eur. J. Biochem. 1979; 95: 1
  • MacLeod R. A. Observations on the role of inorganic ions in the physiology of marine bacteria. 1980 Japanese Conference on Halophilic Microbiology, H. Morishita, M. Masui. Nakan-ishi Printing, Tokyo 1980; 5
  • MacDonald R. E., Greene R. V., Lanyi J. K. Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. Biochemistry 1977; 16: 3227
  • Jarrell K. F., Bird S. E., Sprott G. D. Sodium-dependent isoleucine transport in the methan-ogenic archaebacterium Methanococcus voltae. FEBS Lett. 1984; 166: 357
  • Schellenberg G. D., Furlong C. E. Resolution of the multiplicity of the glutamate transport systems of Escherichia coli. J. Biol. Chem. 1977; 252: 9055
  • Tanaka K., Niiya S., Tsuchiya T. Melibiose transport in Escherichia coli. J. Bacteriol. 1980; 141: 1031
  • Stewart L. M. D., Booth I. R. Na+ involvement in proline transport in Escherichia coli. FEMS Microbiol. Lett. 1983; 19: 161
  • Chen C. C, Tsuchiya T., Yamane Y., Wood J. M., Wilson T. H. Na+ (Li+)-proline cotrans-port in Escherichia coli. J. Membr. Biol. 1985; 84: 157
  • Cairney J., Higgins C. F., Booth I. R. Proline uptake through the major transport system of Salmonella typhimurium is coupled to sodium ions. J. Bacteriol. 1984; 160: 22
  • Skulachev V. P. Sodium bioenergetics. Trends Biochem. Sci. 1984; 9: 483
  • Ramos S., Kaback H. R. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 1977; 16: 848
  • Padan E., Zilberstein D., Rottenberg H. The proton electrochemical gradient in Escherichia coli cells. Eur. J. Biochem. 1976; 63: 533
  • Padan E., Zilberstein D., Schuldiner S. pH homeostasis in bacteria. Biochim. Biophys. Acta 1981; 650: 151
  • Kashket E. R. Effects of aerobiosis and nitrogen source on the proton motive force in growing Escherichia coli and Klebsiella pneumoniae cells. J. Bacteriol. 1981; 146: 377
  • Konings W. M., Veld Kamp H. Energy transduction and solute transport mechanisms in relation to environments occupied by microorganisms. Microbes in Their Natural Environments, J. H. Slater, R. Whittenburg, J. W. T. Wimpenny. Society for General Microbiology, Cambridge University Press, Cambridge 1983; 153
  • Ramos S., Kaback H. R. The relationship between the electrochemical proton gradient and active transport in Escherichia coll membrane vesicles. Biochemistry 1977; 16: 854
  • Ramos S., Kaback H. R. pH-dependent changes in proto:substrate stoichiometries during active transport in Escherichia coli membrane vesicles. Biochemistry 1977; 16: 4271
  • Berger E. A. Different mechanisms of energy coupling for the active transport of proline and glu-tamine in Escherichia coli. Proc. Nad. Acad. Sci. U.S.A. 1973; 70: 1514
  • Plate C. A., Suit J. L., Jetten A. M., Luria S. E. Effects of colicin K on a mutant of Escherichia coli deficient in the Ca2+, Mg2+ adenosine triphosphatase. J. Biol. Chem. 1974; 249: 6138
  • Plate C. A. Requirement for membrane potential in active transport of glutamine by Escherichia coli. J. Bacteriol. 1979; 137: 221
  • Lieberman M. A., Hong J.-S. Energization of osmotic-shock sensitive transport systems in Escherichia coli requires more than ATP. Arch. Biochem. Biophys. 1976; 112: 312
  • Lieberman M. A., Simon M., Hong J.-S. Characterization of Escherichia coli mutant incapable of maintaining a transmembrane potential. J. Biol. Chem. 1977; 252: 4056
  • Hunt A. G., Hong J.-S. Properties and characterization of binding protein dependent active transport of glutamine in isolated membrane vesicles of Escherichia coli. Biochemistry 1983; 22: 844
  • Masters P. S., Hong J.-S. Reconstitution of binding protein dependent active transport of glutamine in spheroplasts of Escherichia coli. Biochemistry 1981; 20: 4900
  • Fowden L., Lewis D., Tristram H. Toxic amino acids: their action as antimetabolites. Adv. Enzymol. 1967; 29: 89
  • Somerville R. L. Tryptophan: biosynthesis, regulation, and large-scale production. Amino Acids: Biosynthesis and Genetic Regulation, K. M. Herrmann, R. L. Somerville. Addison-Wes-ley, Reading, Mass 1983; 351
  • Ames G. F.-L. The histidine transport system of Salmonella typhimurium. Curr. Top. Membr. Transp. 1985; 23: 103
  • Krajewska-Grynkiewicz K., Walczak W., Klopotowski T. Mutants of Salmonella typhimurium able to utilize D-histidine as a source of L-histidine. J. Bacteriol. 1971; 105: 28
  • Rahmanian M., Claus D. R., Oxender D. L. Multiplicity of leucine transport systems in Escherichia coli K-12. J. Bacteriol. 1973; 116: 1258
  • Oxender D. L., Anderson J. J., Mayo M. M., Quay S. C. Leucine binding protein and regulation of transport in E. coli. J. Supramol. Struct. 1977; 6: 419
  • Guardiola J., DeFelice M., Klopotowski T., Iaccarino M. Mutations affecting the different transport systems for isoleucine, leucine, and valine in Escherichia coli K-12. J. Bacteriol. 1974; 117: 393
  • Brown K. D. Formation of aromatic amino acid pools in Escherichia coli K-12. J. Bacteriol. 1970; 104: 177
  • Ardeshir F., Ames G. F.-L. Cloning of the histidine transport genes from Salmonella typhimurium and characterization of an analogous transport system in Escherichia coli. J. Supramol. Struct. 1980; 13: 117
  • Whipp M. J., Halsall D. M., Pittard A. J. Isolation and characterization of an Escherichia coli K-12 mutant defective in tyrosine- and phenylalanine-specific transport systems. J. Bacteriol. 1980; 143: 1
  • Edwards R. M., Yudkin M. D. Location of the gene for the low-affinity tryptophan-specific permease of Escherichia coli. Biochem. J. 1982; 204: 617
  • Masters P. S., Hong J.-S. Genetics of glutamine transport system in Escherichia coli. J. Bacteriol. 1981; 147: 805
  • Celis T. F. R., Rosenfeld H. J., Maas W. K. Mutant of Escherichia coli K-12 defective in the transport of basic amino acids. J. Bacteriol. 1973; 116: 619
  • Kadner R. J., Watson W. J. Methionine transport in Escherichia coli: physiological and genetic evidence for two uptake systems. J. Bacteriol. 1974; 119: 401
  • Robbins J. C., Oxender D. L. Transport systems for alanine, serine, and glycine in Escherichia coli K-12. J. Bacteriol. 1973; 116: 12
  • Templeton B. A., Savageau M. A. Transport of biosynthetic intermediates: homoserine and threonine uptake in Escherichia coli. J. Bacteriol. 1974; 117: 1002
  • Willis R. C., Woolfolk C. A. L-asparagine uptake in Escherichia coli. J. Bacteriol. 1975; 123: 937
  • Beger E. A., Heppel L. A. A binding protein involved in the transport of cystine and diami-nopimelic acid in Escherichia coli. J. Biol. Chem. 1972; 247: 7684
  • Wood J. M., Zadworny D. Characterization of an inducible porter required for L-proline catabolism by Escherichia coli K-12. Can. J. Biochem. 1979; 57: 1191
  • Wood J. M. Genetics of L-proline utilization in Escherichia coli. J. Bacteriol. 1981; 146: 895
  • Ratzkin B., Roth J. Cluster of genes controlling proline degradation in Salmonella typhimu-rium. J. Bacteriol. 1978; 133: 744
  • Menzel R., Roth J. Identification and mapping of a second proline permease in Salmonella typhimurium. J. Bacteriol. 1980; 141: 1064
  • Csonka L. N. A third L-proline permease in Salmonella typhimurium which functions in media of elevated osmotic strength. J. Bacteriol. 1982; 151: 1433
  • Sprott G. D., Wood J. M., Martin W. G., Schneider H. A relation between amino acid hydrophobicity and rate of uptake in Escherichia coli. Biochem. Biophys. Res. Commun. 1977; 76: 1099
  • Lombardi F. J., Kaback H. R. Mechanisms of active transport in isolated bacterial membrane vesicles. VIII. The transport of amino acids by membranes prepared from Escherichia coli. J. Biol. Chem. 1972; 247: 7844
  • Ratzkin B., Grabnar M., Roth J. Regulation of the major proline permease gene of Salmonella typhimurium. J. Bacteriol. 1978; 133: 737
  • Dunlap V. J., Csonka L. N. Osmotic regulation of L-proline transport in Salmonella typhimurium. J. Bacteriol. 1985; 163: 296
  • Cairney J., Booth I. R., Higgins C. F. Salmonella typhimurium proP gene encodes a transport system for the osmoprotectant betaine. J. Bacteriol. 1985; 164: 1218
  • Cairney J., Booth I. R., Higgins C. F. Osmoregulation of gene expression in Salmonella typhimurium: proU encodes an osmotically induced betaine transport system. J. Bacteriol. 1985; 164: 1224
  • Grothe S., Krogsrud R. L., McClellan D. J., Milner J. L., Wood J. M. Proline transport and the osmotic stress response in Escherichia coli K-12. J. Bacteriol. 1986; 166: 253
  • Anraku Y. Molecular organization and physiological functions of bacterial amino acid transport systems. Transport and Bioenergetics in Biomembranes, R. Sato, Y. Kagawa. Plenum Press, New York 1982; 87
  • Antonucci T., Oxender D. L. The molecular biology of amino acid transport in bacteria. Annu. Rev. Microb. Physiol. 1986; 28: 145
  • Overath P., Wright J. K. Lactose permease: a carrier on the move. Trends Biochem. Sci. 1983; 8: 404
  • Kaback H. R. The lac carrier protein in Escherichia coli. J. Membr. Biol. 1983; 76: 95
  • Teather R. M., Bramhall J., Riede I., Wright J. K., Furst M., Aichele G., Wilhelm U., Overath P. Lactose carrier protein of Escherichia coli. Structure and expression of plasmids carrying the Y gene of the lac operon. Eur. J. Biochem. 1980; 108: 223
  • Buchel D. E., Gronenborn B., Muller-Hiil B. Sequence of the lactose permease gene. Nature (London) 1980; 283: 541
  • Foster D. L., Boublik M., Kaback H. R. Structure of the lac carrier protein of Escherichia coli. J. Biol. Chem. 1983; 258: 31
  • Carrasco N., Herzlinger D., Mitchell R., DeChiara S., Danko W., Gabriel T. F., Kaback H. R. Intramolecular dislocation of the COOH terminus of the lac carrier protein in reconstituted proteoliposomes. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 4672
  • Wright J. K., Seckler R. The lactose/H+ carrier of Escherichia coli: lacYUN mutation decreases the rate of active transport and mimics an energy-uncoupled phenotype. Biochem. J. 1985; 227: 287
  • Kaczorowski G. J., Robertson D. E., Kaback H. R. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed ΔΨ ΔpH, Δμ H+,. Biochemistry 1979; 18: 3697
  • Shiota S., Yamane Y., Futai M., Tsuchiya T. Escherichia coli mutants possessing an Li+-resistant melibiose carrier. J. Bacteriol. 1985; 162: 106
  • Lee S.-H., Cohen N. S., Jacobs A. J., Brodie A. F. Isolation, purification, and reconstitution of a proline carrier protein from Mycobacterium phlei. Biochemistry 1979; 18: 2232
  • Hirata H., Kambe T., Kagawa Y. A purified alanine carrier composed of a single polypeptide from thermophilic bacterium PS3 driven by either proton or sodium ion gradient. J. Biol. Chem. 1984; 259: 10653
  • Kusaka I., Kanai K. Purification and characterization of alanine carrier isolated from H-pro-teins of Bacillus subtilis. Eur. J. Biochem. 1978; 83: 307
  • Kaback H. R., Deuel T. F. Proline uptake by disrupted membrane preparations from Escherichia coli. Arch. Biochem. Biophys. 1969; 132: 118
  • Hirata H., Altendorf K., Harold F. M. Energy coupling in membrane vesicles of Escherichia coli. Accumulation of metabolites in response to an electrical potential. J. Biol. Chem. 1974; 249: 2939
  • Cohn D. E., Kaczorowski G. J., Kaback H. R. Effect of proton electrochemical gradient on maleimide inactivation of active transport in Escherichia coli membrane vesicles. Biochemistry 1981; 20: 3308
  • Kayama-Gonda Y., Kawasaki T. Role of lithium ions in proline transport in Escherichia coli. J. Bacteriol. 1979; 139: 560
  • Mogi T., Anraku Y. Mechanism of proline transport in Escherichia coli K12. I. Effect of a membrane potential on the kinetics of 2H+/ proline symport in cytoplasmic membrane vesicles. J. Biol. Chem. 1984; 259: 7791
  • Mogi T., Anraku Y. Mechanism of proline transport in Escherichia coli K12. I Effect I. of alkaline cations on the binding of proline to a H+/ proline symport carrier in cytoplasmic membrane vesicles. Biol. J. Chem. 1984; 259: 7797
  • Mogi T., Anraku Y. Mechanism of proline transport in Escherichia coli K12. III. Inhibition of membrane potential driven proline transport by syn coupled ions and evidence for symmetrical transition states of the 2H+/ proline symport carrier. J. Biol. Chem. 1984; 259: 7802
  • Wilson D. B., Smith J. B. Bacterial transport proteins. Bacterial Transport, B. P. Rosen. Marcel Dekker, New York 1978; 495
  • Higgins C. F., Haag P. D., Nikaido K., Ardeshir F., Garcia G., Ames G. F.-L. Complete nucleotide sequence and identification of membrane components of the histidine transport operon of S. typhimurium. Nature (London) 1982; 298: 723
  • Ames G. F.-L., Lever J. Components of histidine transport: histidine-binding proteins and hisP protein. Proc. Natl. Acad. Sci. U.S.A. 1970; 66: 1096
  • Robertson D. E., Kroon P. A., Ho C. Nuclear magnetic resonance and fluorescence studies of substrate-induced conformational changes of histidine-binding protein J of Salmonella typhimurium. Biochemistry 1977; 16: 1443
  • Weiner J. H., Heppel L. A. A binding protein for glutamine and its relation to active transport in Escherichia coli. J. Biol. Chem. 1971; 246: 6933
  • Ames G. F.-L., Noel K. D., Taber H., Negri Spudich E., Nikaido K., Afong J., Ardeshir F. Fine structure map of the histidine transport genes in Salmonella typhimurium. J. Bacteriol. 1977; 129: 1289
  • Hobson A. C, Weatherwax R., Ames G. F.-L. ATP-binding sites in the membrane components of histidine permease, a periplasmic transport system. Proc. Natl. Acad. Sci. U.S.A. 1984; 81: 7333
  • Celis R. T. F. Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli. Eur. J. Biochem. 1984; 145: 403
  • Parnes J. R., Boos W. Unidirectional transport activity mediated by the galactose-binding protein of Escherichia coli. J. Biol. Chem. 1973; 248: 4436
  • Layman P. L. Capacity jumps for amino acids. Chem. Eng. News 1983; 61(1)18
  • Soda K., Tanaka H., Esaki N. Amino acids. Biotechnology. A Comprehensive Treatise in 8 Volumes, H. J. Rehm, G. Reed. Verlag Chemie, Weinheim 1981, cha3.
  • Yoshinaga F., Nakamori S. Production of amino acids. Amino Acids: Biosynthesis and Genetic Regulation, K. M. Herrmann, R. L. Somerville. Addison Wesley, Reading, Mass 1983; 405
  • Hwang S. O., Gil G. H., Cho Y. J., Kang K. R., Lee J. H., Bae J. C. The fermentation process for L-phenylalanine production using an auxotrophic regulatory mutant of Escherichia coli. Appl. Microbiol. Biotechnol. 1985; 22: 108
  • Aiba S., Tsunekawa H., Imanaka T. New approach to tryptophan production by Escherichia coli: genetic manipulation of composite plasmids in vitro. Appl. Environ. Microbiol. 1982; 43: 289
  • Brown K. D. Regulation of aromatic amino acid biosynthesis in Escherichia coli K12. Genetics 1968; 60: 31
  • Camakaris H., Pittard J. Tyrosine biosynthesis. Amino Acids: Biosynthesis and Genetic Regulation, K. M. Herrmann, R. L. Somerville. Addison Wesley, Reading, Mass 1983; 339
  • Burrous S. E., DeMoss R. D. Studies on tryptophan permease in Escherichia coli. Biochim. Biophys. Acta 1963; 73: 623
  • Tribe D. E., Pittard J. Hyperproduction of tryptophan by Escherichia coli: genetic manipulation of the pathways leading to tryptophan formation. Appl. Environ. Microbiol. 1979; 38: 181
  • Drozdov-Tikhomirov L. N., Skurida G. I. Mathematical model of the synthesis and secretion of tryptophan by E. coli. Mol. Biol. (USSR) 1977; 11: 653
  • Halpern Y. S. Further studies of glutamate transport in Escherichia coli. Some features of the exit process. Biochim. Biophys. Acta 1967; 148: 718
  • Halpern Y. S., Barash H., Druck K. Glutamate transport in Escherichia coli K-12: non-identity of carriers mediating entry and exit. J. Bacteriol. 1973; 113: 51
  • Halpern Y. S., Ennis H. L. Analysis of glutamate exit in Escherichia coli. J. Bacteriol. 1975; 122: 332
  • Shiio I., Ujigawa-Takeda K. Presence and regulation of α-ketoglutarate dehydrogenase complex in a glutamate-producing bacterium, Brevibacterium flavum. Agric. Biol. Chem. 1980; 44: 1897
  • Shiio I., Ozaki H., Mori M. Glutamate metabolism in a glutamate-producing bacterium. Brevibacterium flavum, Agric. Biol. Chem. 1982; 46: 493
  • Shiio I., Ozaki H. Regulation of nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase from Brevibacterium flavum, a glutamate-producing bacterium. J. Biochem. 1970; 68: 633
  • Sung H.-C, Tachiki T., Kamagai H., Tochikura T. Properties of glutamate synthase from Brevibacterium flavum. J. Ferment. Technol. 1984; 62: 569
  • Vandecasteele J. P., Lemal J., Coudert M. Pathways and regulation of glutamate synthesis in a Corynebacterium sp. overproducing glutamate. J. Gen. Microbiol. 1975; 90: 178
  • Tochikura T., Sung H.-C., Tachiki T., Kamagai H. Occurrence of glutamate synthase in Brevibacterium flavum. Agric. Biol. Chem. 1984; 48: 2149
  • Mori M., Shiio I. Glutamate transport and production in Brevibacterium flavum. Agric. Biol. Chem. 1983; 47: 983
  • Shiio I., Narui K., Yahaba M., Takahashi M. Free intracellular amino acid of a glutamate-forming bacterium, Brevibacterium flavumno. 2247: analysis and release. J. Biochem. 1962; 51: 109
  • Takinami K., Yoshii H., Tsuri H., Okada H. Biochemical effects of fatty acid and its derivatives on L-glutamic acid fermentation. III. Biotin-Tween 60 relationship in the accumulation of L-glutamic acid and the growth of Brevibacterium lactofermentum. Agric. Biol. Chem. 1965; 29: 351
  • Shiio I., Otsuka S.-I., Takahashi M. Effect of biotin on the bacterial formation of glutamic acid. I. Glutamate formation and cellular permeability of amino acids. J. Biochem. 1962; 51: 56
  • Shiio I., Otsuka S. I., Katsuya N. Cellular permeability and extracellular formation of glutamic acid in Brevibacterium flavum. J. Biochem. 1963; 53: 333
  • Nakao Y., Kanamaru T., Kikuchi M., Yamatodani S. Extracellular accumulation of phos-pholipids, UDP-N-acetylhexosamine derivatives and L-glutamic acid by penicillin-treated C. alkan-olyticum. Agric. Biol. Chem. 1973; 37: 2399
  • Clement Y., Escoffier B., Trombe M. C., Laneelle G. Is glutamate excreted by its uptake system in Corynebacterium glutamicum? A working hypothesis. J. Gen. Microbiol. 1984; 130: 2589
  • Huchenq A., Marquet M., Welby M., Montrozier H., Goma G., Laneelle G. Glutamate excretion triggering mechanism: a reinvestigation of the surfactant-induced modification of cell lip-ids. Ann. Microbiol. (Inst. Pasteur) 1984; 135: 53
  • Shubukawa M., Takahashi H., Oshawa T. L-Glutamic acid fermentation with molasses. V. Relationship between biotin and oleate to the intracellular accumulation of L-glutamate. Agric. Biol. Chem. 1965; 29: 813
  • Shiio I., Ozaki H., Ujigawa-Takeda K. Production of aspartic acid and lysine by citrate synthase mutants of Brevibacterium flavum. Agric. Biol. Chem. 1982; 46: 101
  • Patte J.-C. Diaminopimelate and lysine. Amino Acids: Biosynthesis and Genetic Regulation, K. M. Herrman, R. L. Somerville. Addison-Wesley, Reading, Mass 1983; 213
  • Bhattacharjee J. K. Lysine biosynthesis in eukaryotes. Amino Acids: Biosynthesis and Genetic Regulation, K. M. Herrmann, R. L. Somerville. Addison-Wesley, Reading, Mass 1983; 229–229
  • Halsall D. M. Overproduction of lysine by mutant strains of Escherichia coli with defective lysine transport systems. Biochem. Genet. 1975; 13: 109
  • Rosen B. P. Basic amino acid transport in Escherichia coli. J. Biol. Chem. 1971; 246: 3653
  • Ko Y. T., Chipley J. R. Role of biotin in the production of lysine by Brevibacterium lactofer-mentum. Microbios 1984; 40: 161
  • Tosaka O., Morioka H., Takinami K. The role of biotin-dependent pyruvate carboxylase in L-lysine production. Agric. Biol. Chem. 1979; 43: 1513
  • Sambanthamurthi R., Laverack P. D., Clarke P. H. Lysine excretion by a mutant strain of Pseudomonas aeruginosa. FEMS Microbiol. Lett. 1984; 23: 11
  • Hanel F., Hilliger M., Grafe U. Effect of oxygen limitation on cellular L-lysine pool and lipid spectrum of Corynebacterium glutamicum. Biotechnol. Lett. 1981; 3: 461
  • Menzel R., Roth J. Purification of pufAgene product. J. Biol. Chem. 1981; 256: 9755
  • Scarpulla R. C., Soffer R. L. Membrane bound proline dehydrogenase from Escherichia coli. Solubilization, purification, and characterization. J. Biol. Chem. 1978; 253: 5997
  • Menzel R., Roth J. Regulation of the genes for proline utilization in Salmonella typhimurium: autogenous repression by the put A gene product. J. Mol. Biol. 1981; 148: 21
  • Maloy S. R., Roth J. Regulation of proline utilization in Salmonella typhimurium:characterization of Putmud(Ap, lac)operon fusions. J. Bacteriol. 1983; 154: 561
  • Gowrishankar S. Identification of osmoresponsive genes in Escherichia coli: evidence for participation of potassium and proline transport systems in osmoregulation. J. Bacteriol. 1985; 164: 434
  • Motojima K., Yamato I., Anraku Y. Proline transport carrier defective mutants of Escherichia coli K12: properties and mapping. J. Bacteriol. 1978; 136: 5
  • Smith C. J., Deutch A. H., Rushlow K. E. Purification and characteristics of a γ-glutamyl kinase involved in Escherichia coli proline synthesis. J. Bacteriol. 1984; 157: 545
  • Nakamori S., Morioka H., Yoshinaga F., Yamanaka S. Fermentative production of L-proline by DL-3,4-dehydroproline resistant mutants of L-glutamate producing bacteria. Agric. Biol. Chem. 1982; 6: 487
  • Sugiura M., Kisumi M. Proline hyperproducing strains of Serratia marcescens:enhancement of proline analog-mediated growth inhibition by increasing osmotic stress. Appl. Environ. Microbiol. 1985; 49: 782
  • Sugiura M., Takagi T., Kisumi M. Proline production by regulatory mutants of Serratia marcescens. Appl. Microbiol. Biotechnol. 1985; 21: 213
  • Furuya A., Abe S., Kinoshita S. Production of nucleic acid-related substances by fermentative processes. XIX. Accumulation of 5′-inosinic acid by a mutant of Brevibacterium ammoniagenes. Appl. Microbiol. 1968; 16: 981
  • Misawa M., Nara T., Udagawa K., Abe S., Kinoshita S. Production of nucleic acid-related substances by fermentative processes. XXII. Fermentative production of 5′-xanthylic acid by a guanine auxotroph of Brevibacterium ammoniagenes. Agric. Biol. Chem. 1969; 33: 370
  • Misawa M., Nara T., Kinoshita S. Production of nucleic acid-related substances by fermentative processes. XXV. Control of ratio among quantities of purine nucleoside mono-, di-, and triphosphates accumulated by Brevibacterium ammoniagenes. Agric. Biol. Chem. 1969; 33: 532
  • Teshiba S., Furuya A. Mechanisms of 5′-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. I. Genetical improvement of 5′ IMP productivity of a permeability mutant of B. ammoniagenes. Agric. Biol. Chem. 1982; 46: 2257
  • Teshiba S., Furuya A. Mechanisms of 5′-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. II. Sensitivities of a series of mutants to various drugs. Agric. Biol. Chem. 1983; 47: 1035
  • Teshiba S., Furuya A. Mechanisms of 5′-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. III. Intracellular 5′-IMP pool and excretion mechanisms of 5′-IMP. Agric. Biol. Chem. 1983; 47: 2357
  • Teshiba S., Furuya A. Mechanisms of 5′-inosinic acid accumulation by permeability mutants of Brevibacterium ammoniagenes. IV. Excretion mechanisms of 5′-IMP. Agric. Biol. Chem. 1984; 48: 1311
  • Henderson J. F., Paterson A. R. P. Nucleotide Metabolism: An Introduction. Academic Press, New York 1973
  • Michels P. A. M., Michels J. P. J., Boonstra J., Konings W. N. Generation of an electrochemical proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiol. Lett. 1979; 5: 357
  • Otto R., Sonnenberg A. S. M., Veldkamp H., Konings W. N. Generation of an electrochemical proton gradient in Streptococcus cremorisby lactate efflux. Proc. Natl. Acad. Sci. U.S.A. 1980; 77: 5502
  • Momose H., Takagi T. Glutamic acid production in biotin-rich media by temperature-sensitive mutants of Brevibacterium lactofermentum, a novel fermentation process. Agric. Biol. Chem. 1978; 42: 1911

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.