420
Views
200
CrossRef citations to date
0
Altmetric
Research Article

Microbiological and Enzymatic Production of Flavor and Fragrance Chemicals

, , &
Pages 105-169 | Published online: 27 Sep 2008

References

  • Good Housekeeping Institute, Food Attitude Study. A Good Housekeeping Institute report from the Consumer Research Department. Good Housekeeping Institute, New York 1985
  • Mott D., Craig C. The New World of Food. A Good Housekeeping Institute Report. Good Housekeeping Institute, New York 1988
  • Dziezak J. D. Biotechnology and flavor development: an industrial perspective. Food Technol. 1986; 40: 108
  • Lugay J. C. Biogeneration of aromas. An industrial perspective. Biogeneration of Aromas, T. Parliment, R. Croteau. ACS Symposium Series 317, American Chemical Society, Washington, D.C. 1986; 11
  • Stofberg J., Grundschober F. Composition ratio and food predominance of flavoring materials. Perfumer and Flavorist 1987; 12: 27
  • Bauer K., Garbe D. Common Fragrance and Flavor Materials. VCH Publishers, Deerfield Beach, FL 1985
  • , Code of Federal Regulations 21; 101.22.a.3.
  • Hardinge A. J. Flavor legislation — the current position. Flavor Fragrance J. 1986; 1: 49
  • Anon. FAC acts on ‘natural’ claims. Chem. Ind. News 1988; 4
  • Wasserman B. P., Montville T. J., Korwek E. L. Food biotechnology. A scientific status summary by the Institute of Food Technologists expert panel on food safety and nutrition. Food Technol. 1988; 42: 133
  • Korwek E. L. FDA regulation of biotechnology as a new method of manufacture. Food Drug Cosmetic Law J. 1982; 37: 289
  • Kahan J. S., Gibbs J. N. Food and Drug Administration regulation of medical device biotechnology and food and food additive biotechnology. Appl. Biochem. Biotechnol. 1985; 11: 507
  • Gibbs J. N., Kahan J. S. Biotechnology and the food industry: leaping the regulatory hurdles. Bio/Technology 1986; 4: 199
  • Korwek E. L. FDA regulation of food ingredients produced by biotechnology. Food Technol. 1986; 40: 70
  • McNamera S. H. FDA regulation of food substances produced by new techniques of biotechnology. Food Drug Cosmetic Law J. 1987; 42: 50
  • Miller H. I. FDA regulation of products of the new biotechnology. Am. Biotechnol. Lab. January, 1988; 38
  • Sprecher E., Hanssen H.-P. Recent trends in the research on flavors produced by fungi. Topics in Flavor Research, R. G. Berger, S. Nitz, P. Schreier. Eichhorn, West Germany 1985; 387
  • Zahner H., Anke H., Anke T. Evolution of secondary pathways. Secondary Metabolism and Differentiation in Fungi, J. W. Bennet, A. Ciegler. Marcel Dekker, New York 1983
  • McKay L. L., Baldwin K. A. Altered metabolism in Streptococcus lactis C2 mutant deficient in lactic dehydrogenase. J. Dairy Sci. 1974; 51: 181
  • Kuila R. K., Ranganathan B. UV light induced mutants of Streptococcus lactis ssp. diacetylactis with enhanced flavor producing abilities. J. Dairy Sci. 1978; 61: 379
  • Mattiasson B., Larsson M. Extractive bioconversions with emphasis on solvent production. Biotechnol. Genet. Eng. Rev. 1985; 3: 137
  • Schindler J., Bruns K., German Patent No. 2,840,143, 1980
  • Roffler S. R., Blanch H. W., Wilke C. R. In situ recovery of fermentation products. Trends Biotechnol. 1984; 2: 129
  • Kempler G. M. Production of flavor compounds by microorganisms. Adv. Appl. Microbiol. 1983; 29: 29
  • Sharpell F. H. Microbial flavors and fragrances. Comprehensive Biotechnology: The Principles, Applications and Regulations in Industry, Agriculture and Medicine, M. Moo Young. Pergamon Press, Toronto 1985; Vol. 3: 965
  • Ciegler A. Microbiological transformation of terpenes. Fermentation Advances, D. Perlman. Academic Press, New York 1969; 689
  • Klingenberg A., Sprecher E. Production of monoterpenes in liquid culture by the yeast Ambrosiozyma monospora. Planta Med. 1985; 3: 264
  • Hanssen H.-P., Sprecher E., Klingenberg A. Screening for volatile terpenes in yeasts. Progress in Essential Oil Research, E.-J. Brunke. Walter de Gruyter, New York 1986; 395
  • Lanza E., Palmer J. K. Biosynthesis of monoterpenes by Ceratocystis moniliformis. Phytochemistry 1977; 16: 1555
  • Francke W., Brummer B. Terpenes from Ascoidea hylecoeti. Planta Med. 1978; 34: 426
  • Sprecher E., Kubeczka K.-H., Ratschko M. Volatile terpenes in fungi. Arch. Pharm. 1975; 308: 843
  • Hanssen H.-P., Sprecher E. Volatile terpenes from Ceratocystis fimbriata. Z. Naturforsch. 1981; 36c: 1075
  • Lanza E., Ko K. H., Palmer J. K. Aroma production of cultures of Ceratocystis moniliformis. J. Agric. Food Chem. 1976; 24: 1247
  • Collins R. P. The production of volatile flavor compounds by filamentous fungi. Dev. Ind. Microbiol. 1978; 20: 239
  • Laseter J. L., Weete J. D., Walkinshaw C. H. Volatile terpenoids from aeciospores of Cronartium fusiforme. Phytochemistry 1973; 12: 387
  • Mironov V. A., Tsibul'skaya M. I., Yanotovskii M. Ts. Synthesis of monoterpenes by the ascomycete Eremothecium ashbyii. Appl. Biochem. Microbiol. 1982; 18: 269
  • Berger R. G., Neuhauser K., Drawert F. Biotechnological production of flavor compounds. III. High productivity fermentation of volatile flavors using a strain of Ischnoderma benzoinum. Biotechnol. Bioeng. 1987; 30: 987
  • Hock R., Benda I., Schreier P. Formation of terpenes by yeasts during alcohol fermentation. Z. Lebensm. Unters. Forsch. 1984; 179: 450
  • Drawert F., Barton H. Biosynthesis of flavor compounds by microorganisms. III. Production of monoterpenes by the yeast Kluyveromyces lactis. J. Agric. Food Chem. 1978; 26: 765
  • Hanssen H.-P. Sesquiterpene hydrocarbons from Lentinus lepideus. Phytochemistry 1982; 21: 1159
  • Halim A. F., Narciso J. A., Collins R. P. Odorous constituents of Penicillium decumbens. Mycologia 1975; 67: 1158
  • Collins R. P., Halim A. F. An analysis of the odorous constituents produced by various species of Phellinus. Can. J. Microbiol 1971; 18: 65
  • Trevidi N. Use of microorganisms in the production of unique ingredients. Biotechnology in Food Processing, S. K. Harlander, T. P. Labuza. Noyes Publications, Park Ridge, NJ 1986; 115
  • Drawert F., Berger R. G., Neuhauser K. Biosynthesis of flavor compounds by microorganisms. IV. Characterization of the major principles of the odor of Pleurotus eusomus. Eur. J. Appl. Microbiol. Biotechnol. 1983; 18: 124
  • Berger R. G., Neuhauser K., Drawert F. Biosynthesis of flavor compounds. VI. Odorous constituents of Polyporus durus (Basidiomycetes). Z. Naturforsch. 1986; 41c: 963
  • Fagan G. L., Kepner R. E., Webb A. D. Production of linalool, cis- and trans-nerolidol and trans, trans-farnesol by Saccharomyces fermentati growing on a film of simulated wine. Vitis 1981; 20: 36
  • Halim A. F., Collins R. P. An analysis of the odorous constituents of Trametes odorata. Lloydia 1971; 34: 451
  • Vanhaelen M., Vanhaelen-Fastre R., Geeraerts J. Volatile constituents of Trichothecium roseum. Sabouraudia 1978; 16: 141
  • Hubbal J. A., Collins R. P. A study of factors affecting the synthesis of terpenes by Ceratocystis variospora. Mycologia 1978; 70: 117
  • Schindler J. Terpenoids by microbial fermentation. Ind. Eng. Chem. Prod. Dev. 1982; 21: 537
  • Jourdain N., Goli T., Jallageas J. C., Crouzet C., Ghommidh Ch., Navarro J. M., Crouzet J. Aroma components production by immobilized cells. Topics in Flavor Research, R. G. Berger, P. Schreier. Eichhorn, West Germany 1985; 427
  • Krasnobajew V. Terpenoids. Biotechnology, H.-J. Rehm, G. Reed. Verlag-Chemie, Weinheim 1984; Vol. 6: 98
  • Voishvillo N. E., Akhrem A. A. Transformation of terpenes by microorganisms. Appl. Biochem. Microbiol 1970; 6: 409
  • Schindler J., Schmid R. D. Fragrance and aroma chemicals — microbial synthesis and enzymatic transformation — a review. Process Biochem. 1982; 17: 2
  • Kieslich K., Abraham W. R., Stumpf B., Thede B., Washausen P. Transformations of terpenoids. Process in Essential Oil Research, E.-J. Brunke. Walter de Gruyter, New York 1986; 387
  • Nakajima O., Iriye R., Hayashi T. Conversion of (—)-menthone by Pseudomonas putida strain YK-2 (2) Metabolic intermediate and stereochemical structure of the metabolic products. Nippon Nogei Kagaku Kaishi 1978; 52: 167
  • Oritani T., Yamashita K. Enzymatic resolution of (+)-unsaturated cyclic terpene alcohols via asymmetric hydrolysis of corresponding acetates by microorganisms. Agric. Biol. Chem. 1980; 44: 2637
  • Yamaguchi Y., Oritani T., Tajima N., Komatsu A., Moroe T. Optical resolution of menthols and related compounds. I. Screening of DL-methyl ester hydrolysing microorganisms and species identification of microbial esterases. Nippon Nogei Kagaku Kaishi 1976; 50: 475
  • Omata T., Iwamoto N., Kimura T., Tanaka A., Fukui S. Stereoselective hydrolysis of DL-menthyl succinate by gel-entrapped Rhodotorula minuta var. texensis cells in organic solvent. Appl. Microbiol. Biotechnol. 1981; 11: 199
  • Brookes I. K., Lilly M. D., Drozd J. W. Stereospecific hydrolysis of DL-menthyl acetate by Bacillus subtilis: mass transfer-reaction interactions in a liquid-liquid system. Enzyme Microb. Technol. 1986; 8: 53
  • Inagaki T., Ueda H. Enantioselective esterification of racemic terpene alcohols with fatty acids by Pseudomonas sp. NOF-5 strain. Agric. Biol. Chem. 1987; 51: 1345
  • Japanese Patent No. 73 161 91, 1970, Takasago Perfumery Co., Ltd.
  • Babicka J., Volf J., Lebada J., Czechoslovakia Patent No. 84,320, 1955, Chem. Abstr., 9686b, 1956.
  • Oritani T., Yamashita K. Microbial resolution of DL-isopugenol. Agric. Biol. Chem. 1973; 37: 1687
  • Klausner A. Common scents for biotech?. Bio/Technology 1985; 3: 534
  • Sariaslani F. S., Rosazza J. P. N. Biocatalysts in natural product chemistry. Enzyme Microb. Technol. 1984; 6: 242
  • Lamare V., Fourneron J. D., Furstoss R., Ehret R., Corbier B. Microbial transformations. Biohydroxylation of α-cedrene and cedrol. Synthesis of an odoriferous minor component of cederwood oil. Tetrahedron Lett. 1987; 50: 6269
  • Teissaire P. (1979) Recent developments in the chemistry and biochemistry of patchoulol. Proc. 7th Int. Congr. Essential Oils, Japan, 1977. Japan Flavor Fragrance Manufacturers Association, TokyoJapan, 315
  • Mookerjee B. D., Light K. K., Hill I. D. A study of the odor-structure relationship of patchouli compounds. Essential Oils, B. D. Mookerjee, C. J. Mussinan. American Chemical Society, Washington, D.C. 1981; 250
  • Suhara Y., Itoh S., Ogawa M., Yokose K., Sawada T., Sano T., Ninomiya R., Maruyama H. B. Regioselective 10-hydroxylation of patchoulol, a sesquiterpene, by Pithomyces species. Appl. Environ. Microbiol. 1981; 42: 187
  • Fujiwara A., Tazoe M., Shiomi Y., Fujiwara M. Microbiological hydroxylation of patchoulol. Adv. Biotechnol. 1980; 3: 519
  • Dhavalikar R. S., Battacharyya P. K. Microbiological transformations of terpenes. VIII. Fermentation of limonene by a soil pseudomonad. Ind. J. Biochem. 1966; 3: 144
  • Dhavalikar R. S., Rangachari P. N., Battacharyya P. K. Microbiological transformations of terpenes. XI. Pathways of degradation of limonene in a soil pseudomonad. Ind. J. Biochem. 1966; 3: 158
  • Trudgill P. W. Terpenoid metabolism by Pseudomonas. The Bacteria, I. C. Gunsalus, J. R. Sokatch, L. N. Ornston. Academic Press, Toronto 1986; 483
  • Yamada Y., Motoi H., Kinoshita S., Takada N., Okada H. Oxidative degradation of squalene by Arthrobacter species. Appl. Microbiol. 1975; 29: 400
  • Yamada Y., Kusuhara N., Okada H. Oxidation of linear terpenes and squalene variants by Arthrobacter sp. strain Y-11. Appl. Environ. Microbiol. 1977; 33: 771
  • Ikeguchi N., Nihira T., Kishimoto A., Yamada Y. Oxidative pathway from squalene to geranylacetone in Artrobacter sp. strain Y-11. Appl. Environ. Microbiol. 1988; 54: 381
  • Abraham W.-R., Stumpf B., Kieslich K. Microbial transformations of terpenoids with 1-p-menthane skeleton. Appl. Microbiol. Biotechnol. 1986; 24: 24
  • Abraham W.-R., Stumpf B., Kieslich K., Reif S., Hoffmann H. M. R. Biotransformation of tetramethyl-limonene. Appl. Microbiol. Biotechnol. 1986; 24: 31
  • Shulka O. P., Bartholomus R. C., Gunsalus I. C. Microbial transformation of menthol and menthane-3,4-diol. Can. J. Microbiol. 1987; 33: 489
  • Garcia-Granados A., Martinez A., Onorato E., Arias J. M. Microbial transformation of tetracyclic diterpenes: conversion of ent-beyerenes by Rhizopus nigricans cultures. J. Nat. Prod. 1985; 48: 371
  • Arias J. M., Breton J. L., Gavin J. A., Garcia-Granados A., Martinez A., Onorato M. E. Microbial transformations of sesquiterpenoids: conversion of deoxyvulgarin by Rhizopus nigricans and Aspergillus ochraceous. J. Chem. Soc. Perkin Trans. 1987; 1: 147
  • Narushima H., Omari T., Minoda Y. Microbial oxidation of β-myrcene. Adv. Biotechnol. 1980; 3: 535
  • Nishimura H., Noma Y., Mizutani J. Eucalyptus as biomass. Novel compounds from microbial conversion of 1,8-cineole. Agric. Biol. Chem. 1982; 46: 2601
  • Kingston B. H. Aromagraphia III — the ionone family. Pafai J. 1983; 5: 15
  • Mikami Y., Watanabe E., Fukunaga Y., Kisaki T. Formation of 2S-hydroxy-β-ionone and 4E-hydroxy-β-ionone by microbial hydroxylation of β-ionone. Agric. Biol. Chem. 1978; 42: 1075
  • Mikami Y., Fukunaga Y., Arita M., Kisaki T. Microbial transformation of β-ionone and β-methylionone. Appl. Environ. Microbiol. 1981; 41: 610
  • Krasnobajew V., Helmlinger D. Fermentation of fragrances: biotransformation of β-ionone by Lasiodiplodia theobromae. Helv. Chim. Acta 1982; 65: 1590
  • Krasbonajew V. Microbiological Transformations of Ionone Compounds. U.S. Patent No. 4,311,860, 1982
  • Maga J. A. Lactones in foods. Crit. Rev. Food Sci. Nutr. 1976; 10: 1
  • Okui S., Uchiyama M., Mizugaki M. Metabolism of hydroxy fatty acids. II. Intermediates of the oxidative breakdown of ricinoleic acid by genus Candida. J. Biochem. 1963; 54: 536
  • Mizugaki M., Uchiyama M., Okui S. Metabolism of hydroxy fatty acids. V. Metabolic conversion of homoricinoleic acid by Escherichia coli K 12. J. Biochem. 1965; 58: 273
  • Tressl R., Apetz M., Arrieta R., Grunewald K. G. Formation of lactones and terpenoids by microorganisms. Flavor of Food and Beverages, G. Charalambous, G. E. Inglett. Academic Press, New York 1978; 145
  • Lobows J. N., McGinley K. J., Leyden J. J., Webster G. F. Characteristic γ-lactone odor production of the genus Pithyrosporum. Appl. Environ. Microbiol. 1979; 38: 412
  • Tahara S., Mizutani J. γ-Lactones produced by Sporobolomyces odorus. Agric. Biol. Chem. 1975; 39: 281
  • Wong N. P., Ellis R., LaCroix D. E. Quantitative determination of lactones in cheddar cheese. J. Dairy Sci. 1975; 58: 1437
  • Boldingh J., Taylor R. J. Trace constituents of butter fat. Nature 1962; 194: 909
  • Collins R. P., Halim A. F. Characterization of the major aroma constituent of the fungus Trichoderma viride (Pers.). J. Agric. Food Chem. 1972; 20: 437
  • Moss M. O., Jackson R. M., Rogers D. The characterization of 6-(pent-1-enyl)-α-pyrone from Trichoderma viride. Phytochem. Rep. 1975; 14: 2706
  • Tahara S., Fujiwara K., Mizutani J. Neutral constituents of volatiles in culture broth of Sporobolomyces odorus. Agric. Biol. Chem. 1973; 37: 2855
  • Farbood H., Willis B., European Patent No. PCT 1072, 1983
  • Muys G. T., van der Ven B., De Jonge A. P. Synthesis of optically active γ-and δ-lactones by microbial reduction. Nature 1962; 194: 995
  • Goldman I. M., Perret M. C., French Patent No. 1,406,122, 1965
  • Roxburgh J. M., Spencer J. F. T., Sallens H. R. Submerged culture fermentation. Factors affecting the production of ustilagic acid by Ustilago zeae. J. Agric. Food Chem. 1954; 2: 1121
  • Haskins R. H., U.S. Patent No. 2,698,843, 1955
  • Lemieux R. V., Canadian Patent No. 600,121, 1960
  • Bernardi R., Fuganti C., Grasselli P., Marinoni G. Synthesis of the enantiomeric forms of 4-hexanolide (γ-caprolactone) from the optically active 5-phenyl-4-pentene-2,3-diol prepared from cinna-maldehyde and baker's yeast. Synthesis 1980; 1: 50
  • Abushanab E., Reed D., Suzuki F., Sih C. J. Stereospecific microbial oxidation of thioesters to sulfoxides. Application to the synthesis of R-mevalonolactone. Tetrahedron Lett. 1978; 37: 3415
  • Shimizu S., Hata H., Yamada H. Reduction of ketopantoyl lactone to D-(-)-pantoyl lactone by microorganisms. Agric. Biol. Chem. 1984; 48: 2285
  • Shimizu S., Hattori S., Hata H., Yamada H. One-step microbial conversion of a racemic mixture of pantoyl lactone to optically active D-(-)-pantoyl lactone. Appl. Environ. Microbiol. 1987; 53: 519
  • Nordstrom K. Formation of ethyl acetate in fermentation with brewer's yeast. IV. Metabolism of acetyl-coenzyme A. J. Inst. Brew. 1963; 69: 142
  • Morgan M. E. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 1976; 18: 953
  • Howard D., Anderson R. G. Cell-free synthesis of ethyl acetate by extracts of Saccharomyces cerevisiae. J. Inst. Brew. 1976; 82: 70
  • Voshioka K., Hashimoto N. Ester formation by alcohol acetyltransferase from brewer's yeast. Agric. Biol. Chem. 1981; 45: 2183
  • Berry D. R., Watson D. C. Production of organoleptic compounds. Yeast Biotechnology, D. R. Berry, I. Russell, G. G. Stewart. Allen and Unwin, London 1987; 345
  • Berry D. R. The physiology and microbiology of scotch wiskey production. Progress in Industrial Microbiology, M. E. Bushell. Elsevier, Amsterdam 1982; Vol. 19: 199
  • Thurston P. A., Quain P. E., Tubb R. S. Lipid metabolism and the regulation of volatile ester synthesis in Saccharomyces cerevisiae. J. Inst. Brew. 1982; 88: 90
  • MacDonald J., Reeve P. T. V., Ruddleston J. D., White F. H. Current approaches to brewery fermentations. Progress in Industrial Microbiology, M. E. Bushell. Elsevier, Amsterdam 1984; Vol. 19: 47
  • Thomas K. C., Dawson P. S. S. Relationship between iron-limited growth and energy limitation during phased cultivation of Candida utilis. Can. J. Microbiol. 1978; 24: 440
  • Armstrong D. W., Martin S. M., Yamasaki H. Production of ethyl acetate from dilute ethanol solutions by Candida utilis. Biotechnol. Bioeng. 1984; 26: 1038
  • Gray W. D. Initial studies on the metabolism of Hansenula anomala (Hanson) Sydow. Am. J. Bot. 1949; 36: 475
  • Tabachnick J., Josyln M. A. Formation of esters by yeast. I. The production of ethyl acetate by standing surface cultures of Hansenula anomala. J. Bacteriol. 1953; 65: 1
  • Farbood M. I., Morris J. A., Seitz E. W., U.S. Patent No. 4,657,862, 1987
  • Reddy M. C., Bills D. D., Lindsey R. C., Libbey L. M., Miller A., III, Morgan M. E. Ester production by Pseudomonas fragi. I. Identification and quantitation of some esters produced in milk cultures. J. Dairy Sci. 1968; 51: 656
  • Hosono A., Elliot J. A., McGugan W. A. Production of ethyl esters by some lactic acid and psychrotrophic bacteria. J. Dairy Sci. 1974; 57: 535
  • Hosono A., Elliot J. A. Properties of crude ethyl ester-forming enzyme preparations from some lactic acid and psychrotrophic bacteria. J. Dairy Sci. 1974; 57: 1432
  • Morgan M. E. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 1976; 18: 953
  • Bills D. D., Morgan M. E., Libbey L. M., Day E. A. Identification of compounds responsible for fruity flavor defect of experimental cheddar cheeses. J. Dairy Sci. 1965; 48: 1168
  • Seo C. W., Yamada Y., Okada H. Synthesis of fatty acid esters by Corynebacterium sp. S-401. Agric. Biol. Chem. 1982; 46: 405
  • Blain J. A., Patterson J. D. A., Shaw C. E., Akhtar W. Study of phospholipase activities of fungal mycelia using an organic solvent system. Lipids 1976; 11: 553
  • Bell G., Blain J. A., Patterson J. D. A., Shaw C. E. L., Todd R. Ester and glyceride synthesis by Rhizopus arrhizus mycelia. FEMS Microbiol. Lett. 1978; 3: 223
  • Patterson J. D. A., Blain J. A., Shaw C. E. L., Todd R., Bell G. Synthesis of glycerides and esters by fungal cell-bound enzymes in continuous reactor systems. Biotechnol. Lett. 1979; 1: 211
  • Knox T., Cliffe K. R. Synthesis of long-chain esters in a loop reactor system using a fungal cell bound enzyme. Process Biochem. 1984; 19: 188
  • Anon. Enzymatic esterification: an effective alternative to chemical synthesis. Biotechnol. News 1983; 3: 5
  • Gancet C., Guignard C. Hydrolyse et synthese de liaison ester par la lipase d'un mycelium devitalise de Rhizopus arrhizus et milieu nonaqueux. Rev. Fr. Corps GRAS 1986; 33: 423
  • Kinsella J. E., Hwang D. Biosynthesis of flavors by Penicillium roqueforti. Biotechnol. Bioeng. 1976; 18: 927
  • Karahadian C., Josephson D. B., Lindsey R. C. Contribution of Penicillium sp. to the flavors of Brie and Camembert cheese. J. Dairy Sci. 1985; 68: 1865
  • Jolly R., Kosikowski F. W. Blue cheese flavor by microbial lipases and mold spores utilizing whey powder, butter and coconut fats. J. Food Sci. 1975; 40: 285
  • Adda J. Flavor of dairy products. Developments in Food Flavors, G. G. Birch, M. G. Lindley. Elsevier, New York 1986; 151
  • Bosset J. O., Liardon R. The aroma composition of Swiss Gruyere cheese. III. Relative changes in the content of alkaline and neutral volatile components during ripening. Lebensm. Wiss. Technol. 1985; 18: 178
  • Meinhart E., Schreier P. Study of the flavor compounds from Parmigiano Reggiano cheese. Mikhwissenschaft 1986; 41: 689
  • Lawrence R. C., Hawke J. C. The oxidation of fatty acids by mycelium of Penicillium roqueforti. J. Gen. Microbiol. 1968; 51: 289
  • Law B. A. The formation of aroma and flavor compounds in fermented dairy products. Dairy Sci. Abstr. 1981; 43: 143
  • Watt J. C., Nelson J. H., U.S. Patent No. 3,072,488, 1963
  • Dwivedi B. K., Kinsella J. E. Continuous production of blue-type cheese flavor by submerged fermentation of Penicillium roqueforti. J. Food Sci. 1974; 39: 620
  • Kanisawa T., Itoh H. Production of methyl ketone mixture from lipolyzed milk fat by fungi isolated from blue cheese. Nippon Shokuhin Kogyo Gakkai-Shi 1984; 31: 483
  • Okumura J., Kinsella J. E. Methyl ketone formation by Penicillium camemberti in model systems. J. Dairy Sci. 1985; 68: 11
  • Knight S., U.S. Patent No. 3,100,153, 1963
  • Luksas A. J., U.S. Patent No. 3,720,520, 1973
  • Dzeizak D. Biotechnology and flavor development: enzyme modification of dairy flavors. Food Technol. 1986; 40: 114
  • Larroche C., Tallu B., Gros J.-B. Aroma production by spores of Penicillium roqueforti on a synthetic medium. J. Ind. Microbiol. 1988; 3: 1
  • Hou C.-T., Patel R. N., Laskin A. I. Epoxidation and ketone formation by C1-utilizing microbes. Adv. Appl. Microbiol. 1980; 26: 41
  • Merita M., Hamada N., Sakai K., Watanabe Y. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas. Agric. Biol. Chem. 1979; 43: 1225
  • Coleman J. P., Perry J. J. Purification and characterization of the secondary alcohol dehydrogenase from propane utilizing Mycobacterium vaccae strain JOB-5. J. Gen. Microbiol. 1985; 131: 2901
  • Hou C. T., Patel R., Laskin A. I., Barnabe N., Marczak I. Microbial oxidation of gaseous hydrocarbons: production of methyl ketones from their corresponding secondary alcohols by methane- and methanol-grown microbes. Appl. Environ. Microbiol. 1979; 38: 135
  • Patel R. N., Hou C. T., Laskin A. I., Derelanko P., Felix A. Microbial production of methyl ketones: purification and properties of a secondary alcohol dehydrogenase from yeast. Eur. J. Biochem. 1979; 101: 401
  • Lamed R. J., Zeikus J. G. Novel NADP-linked alcohol-aldehyde/ketone oxidoreductase in ther-mophilic ethanologenic bacteria. Biochem. J. 1981; 195: 183
  • Collins E. B. Biosynthesis of flavor compounds by microorganisms. J. Dairy Sci. 1972; 55: 1022
  • Cogan T. M. Mesophilic lactic cultures. Int. Dairy Fed. Bull. 1984; 179: 77
  • Cogan T. M. The Leuconostocs: milk products. Bacterial Starter Cultures for Foods, S. E. Gilliland. CRC Press, Boca Raton, FL 1985; 25
  • Marshall V. M. Lactic acid bacteria: starters for flavor. FEMS Microbiol. Rev. 1987; 46: 327
  • Joensson H., Pettersson H. E., Andersson K., Belgian Patent No. 883,752, 1980
  • Joensson H., Pettersson H. E., Andersson K., Johansson S. Production and use of starter distillate for flavoring butter. Milchwissenschaft 1980; 35: 461
  • Troller A., U.S. Patent No. 4,304,862, 1981
  • Cavin J. F., Saint C., Divies C. Continuous production of Emmental cheese flavors and propionic acid starters by immobilized cells of propionic acid bacterium. Biotechnol. Lett. 1985; 7: 821
  • Montville T. J., Meyer M. E., Hsu A. H.-M. Influence of carbon substrates on lactic acid, cell mass and diacetyl production in Lactobacillus plantarum. J. Food Prot. 1987; 50: 42
  • Montville T. J., Hsu A. H.-M., Meyer M. E. High-efficiency conversion of pyruvate to acetoin by Lactobacillus plantarum during pH-controlled and fed-batch fermentations. Appl. Environ. Microbiol. 1987; 53: 1789
  • Gupta K. G., Yadav N. K., Dhawan S. Laboratory scale production of acetoin plus diacetyl by Enterobacter cloacae, ATCC 27613. Biotechnol. Bioeng. 1978; 20: 1895
  • Tsai H.-J., Sandine W. E. Conjugal transfer of lactose fermenting ability of Streptococcus lactis C2 to Leuconostoc cremoris CAF7 yields Leuconostoc that ferment lactose and produce diacetyl. J. Ind. Microbiol. 1987; 2: 25
  • Vedamutha E. R. Microbiologically induced desirable flavors in the fermented foods of the west. Dev. Ind. Microbiol. 1979; 20: 187
  • Hanssen H.-P., Sprecher A., Klingenberg A. Accumulation of volatile flavor compounds in liquid cultures of Kluyveromyces lactis strains. Z. Naturforsch. 1984; 39c: 1030
  • Reps A., Hammond E. G., Glatz B. A. Carbonyl compounds produced by growth of Lactobacillus bulgaricus. J. Dairy Sci. 1987; 70: 559
  • Bedoukian P. Z. Vanillin. Perfumery and Flavoring Synthetics. Elsevier, New York 1967; 344
  • Leisola M. S. A., Schmidt B., Thanei-Wyss U., Flechter A. Aromatic ring cleavage of veratryl alcohol by Phanerochaete chrysosporium. FEBS Lett. 1987; 189: 167
  • Haemmerli S. D., Schoemaker H. E., Schmidt H. W. H., Leisola M. S. A. Oxidation of veratryl alcohol by the lignin peroxidase of Phanerochaete chrysosporium. FEBS Lett. 1987; 220: 149
  • Geiger E., Piendl A. Technology factors in the formation of acetaldehyde during fermentation. MBAA Tech. Q. 1976; 13: 51
  • Rogers P., Palosaari N. Clostridium acetobutylicum mutants that produce butyraldehyde and altered quantities of solvents. Appl. Environ. Microbiol. 1987; 53: 2761
  • Lees G. J., Jago G. R. Role of acetaldehyde in metabolism: a review. I. Enzymes catalysing reactions involving acetaldehyde. J. Dairy Sci. 1978; 61: 1205
  • Lees G. J., Jago G. R. Role of acetaldehyde in metabolism. a review. II. The metabolism of acetaldehyde in cultured dairy products. J. Dairy Sci. 1978; 61: 1216
  • Wilkins D. W., Schmidt R. H., Shireman R. B., Smith K. L., Jezeski J. J. Evaluating acetaldehyde synthesis from L-14C(U)-threonine by Streptococcus thermophilus and Lactobacillus bulgaricus. J. Dairy Sci. 1986; 69: 1219
  • Marshall V. M., Cole W. M. Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavor production in fermented milks. J. Dairy Res. 1983; 50: 375
  • Armstrong D. W., Martin S. M., Yamasaki H. Production of acetaldehyde from ethanol by Candida utilis. Biotechnol. Lett. 1984; 6: 183
  • Prokop A., Votruba J., Sobotka M., Panos J. Yeast SCP from ethanol: measurements, modelling and parameter estimation in a batch system. Biotechnol. Bioeng. 1978; 20: 1523
  • Murray W. D., Duff S. J. B., Lanthier P. H., Armstrong D. W., Welsh F. W., Williams R. E. Development of biotechnological processes for the production of natural flavors and fragrances. Frontiers of Flavor, G. Charalambous. Elsevier, Amsterdam 1988; 1
  • Wecker M. S. A., Zall R. R. Production of acetaldehyde by Zymomonas mobilis. Appl. Environ. Microbiol. 1987; 53: 2815
  • Wecker M. S. A., Zall R. R. Fermentation strategies: acetaldehyde or ethanol?. Process Biochem. 1987; 22: 135
  • Kierstan M. The enzymatic conversion of ethanol to acetaldehyde as a model recovery system. Biotechnol. Bioeng. 1982; 24: 2275
  • Duff S. J. B., Murray W. D. Production and application of methylotrophic yeast Pichia pastoris. Biotechnol. Bioeng. 1988; 31: 44
  • Duff S. J. B., Murray W. D. Comparison of free and immobilized Pichia pastoris cells for conversion of ethanol to acetaldehyde. Biotechnol. Bioeng. 1988; 31: 790
  • Duff S. J. B., Murray W. D. Oxidation of benzyl alcohol by whole cells of Pichia pastoris and by alcohol oxidase in aqueous and nonaqueous reaction media. Biotechnol. Bioeng. 1989; 34: 153
  • Ellis S. B., Brust P. F., Koutz P. J., Waters A. F., Harpold M. M., Gingeras T. R. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol. 1985; 5: 1111
  • MacKintosh R. W., Fewson C. A. Microbial aromatic alcohol and aldehyde dehydrogenases. Prog. Clin. Biol. Res. 1987; 2232: 259
  • Engan S. Beer composition: volatile substances. Brewing Sciences, J. R. A. Pollack. Academic Press, London 1981; Vol. 2: 98
  • Nordstrom K., Carlsson B.-O. Yeast growth and formation of fusel alcohols. J. Inst. Brew. 1965; 71: 171
  • Jewell J. B., Coutinho J. B., Kropinski A. M. Bioconversion of propionic acid, valeric and 4-hydroxybutyric acids into the corresponding alcohols by Clostridium acetobutylicum NRRL 527. Curr. Microbiol. 1986; 13: 215
  • Groot W. J., Luyben K. Ch. A. M. In situ product recovery by adsorption in the butanol/isopropanol batch fermentation. Appl. Microbiol. Biotechnol. 1986; 25: 29
  • Ennis B. M., Gutierrez N. A., Maddox I. S. The acetone-ethanol-butanol fermentation: a current assessment. Process Biochem. 1986; 21: 131
  • Jones D. T., Woods D. R. Acetone butanol fermentation revisited. Microbiol. Rev. 1986; 50: 484
  • McNiel B., Kristiansen D. The acetone butanol fermentation. Adv. Appl. Microbiol. 1986; 31: 61
  • Rogers P. L. Genetics and biochemistry of Clostridium relevant to development of fermentation processes. Adv. Appl. Microbiol. 1986; 31: 1
  • Kaminski E., Stawicki S., Wasowicz E. Volatile flavor compounds produced by molds of Aspergillus, Penicillium, and Fungi imperfecti. Appl. Microbiol. 1974; 27: 1001
  • Karahadian C., Josephson D. B., Lindsey R. C. Volatile compounds from Penicilium sp. contributing musty-earthy notes to Brie and Camembert cheese flavors. J. Agric. Food Chem. 1985; 33: 339
  • Webb A. D., Muller C. J. Volatile aroma components of wine and other fermented beverages. Adv. Appl. Microbiol. 1972; 15: 75
  • Francke W., Brummer B. Volatile substances from Ascoidea hylecoeti. Planta Med. 1978; 34: 332
  • De Wulf O., Thonart Ph., Gaignage Ph., Marlier M., Paris A., Paquot M. Bioconversion of vanillin to vanillyl alcohol by Saccharomyces cerevisiae. Biotechnol. Bioeng. Symp. 1986; 17: 605
  • Canale A., Valente M. E., Ciotti A. Determination of volatile carboxylic acids (C1-C5) and lactic acid in aqueous acid extracts of silage by high performance liquid chromatography. J. Food Sci. Agric. 1984; 35: 1178
  • Machado M. M., Sant'Anna G. L. Study of the acidogenic phase of the anaerobic fermentation of stillage from ethanol distilleries. Biotechnol. Lett. 1987; 9: 517
  • Britz M. L., Wilkinson R. G. Leucine dissimilation to isovaleric and isocaproic acids by cell suspensions of amino acid fermenting anaerobes: the Strickland reaction revisited. Can. J. Microbiol. 1982; 28: 291
  • Mark H. F., Othmer D. F., Overberger C. G., Seaborg G. T. Acetic acid and derivatives. Encyclopedia of Chemical Technology, M. Grayson, D. Eckroth. John Wiley & Sons, Toronto 1978; Vol. 1: 124
  • Ebner H. Vinegar. Prescott and Dunn's Industrial Microbiology Fourth Edition, G. Reed. AVI Publishing, Westport, CT 1982; 802
  • Sharpell F., Stegmann C. Development of fermentation media for the production of butyric acid. Advances in Biotechnology, M. Moo-Young. Pergamon Press, Toronto 1981; Vol. 2: 71
  • , National Research Council of Canada, unpublished data
  • Cenedella R., U.S. Patent No. 4,628,116, 1986
  • Paulsen P. V., Kowalewska J., Hammond E. G., Glatz B. A. Role of microflora in production of free fatty acids and flavor in Swiss cheese. J. Dairy Sci. 1980; 63: 912
  • Biede S. L., Paulsen P. V., Hammond E. G., Glatz B. A. The flavor of Swiss cheese. Dev. Ind. Microbiol. 1979; 20: 203
  • Boyaval P., Corre C. Continuous fermentation of sweet whey permeate from propionic acid in a CSTR with UF recycle. Biotechnol. Lett. 1987; 9: 801
  • Hendricks B., Korus R. A., Heimsch R. C. Propionic acid production by bacterial fermentation. Biotechnol. Bioeng. Symp. 1985; 15: 241
  • Lee I. H., Fredrickson A. G., Tsuchiya H. M. Diauxic growth of Propionibacterium shermanii. Appl. Environ. Microbiol. 1974; 28: 831
  • Bodie E. A., Goodman N., Schwartz R. D. Production of propionic acid by mixed cultures of Propionibacterium shermanii and Lactobacillus casei in autoclave sterilized whey. J. Ind. Microbiol. 1987; 1: 349
  • Maga J. A. Flavor potentiators. Crit. Rev. Food Sci. Nutr. 1983; 18: 231
  • Heath H. B., Reineccius G. Flavor Chemistry and Technology. AVI Publishing, Westport, CT 1986; 318
  • Margalith P. Z. Flavor Microbiology. Charles C Thomas, Springfield, IL 1981; 256
  • Ruttloff H. Biotechnology and aroma production. Nahrung 1982; 26: 575
  • Kuninaka A., Kibi M., Sakaguchi K. History and development of flavor nucleotides. Food Technol. 1964; 18: 287
  • Kamekura M., Hamakawa T., Onishi H. Application of halophilic nuclease H of Micrococcus varians subsp. halophilus to commercial production of flavoring agent 5′GMP. Appl. Environ. Microbiol. 1982; 44: 994
  • Chen H.-J., Lin S.-J., Sung H.-Y. Enzymatic preparation of seasoning 5′nucleotides from baker's yeast. Proc. Natl. Sci. Counc. ROC 1984; 13: 124
  • Marutzky R., Peterssen-Borstel H., Flossdorf J., Kula M.-R. Large scale enzymatic synthesis of nucleotide-5′-monophosphates using a phosophotransferase from carrots. Biotechnol. Bioeng. 1974; 26: 1449
  • Fujio T., Kotani Y., Furuya A. Production of 5′guanylic acid by ester conversion to 5′xanthylic acid. J. Ferment. Technol. 1984; 62: 131
  • Kuninaka A. Flavor potentiators. Encyclopedia of Food Science, M. S. Peterson, A. H. Johnson. AVI Publishing, Westport, CT 1978; 279
  • Schwartz J., Margalith P. Production of flavor enhancing material by streptomycetes. Screening for 5′nucleotides. J. Appl. Biotechnol. 1971; 34: 347
  • Kim W.-Y., Kong U.-Y., Son C.-H., Bae J.-C., Yu J.-H. Studies of the fermentative production of guanosine-5′-monophosphate by microorganisms. II. Growth response of 5′XMP aminase producing Brevibacterium ammoniagensis BA 12–7. J. Korean Agric. Chem. Soc. 1981; 24: 105
  • Uchida K., Kuninaka A., Yoshino H., Kibi M. Fermentative production of hypoxanthine derivatives. Agric. Biol. Chem. 1961; 25: 804
  • Anon. RNA for flavor enhancers. Biobulletin 1987; 5: 2
  • Fujisawa T., Sato T., Itoh T. Asymmetric reduction with baker's yeast (in Japanese). Yuki Gosei Kagaku Kyokai Shi 1986; 44: 519
  • Sakai T., Nakamura T., Fukuda K., Amano E., Utaka M., Takeda A. Highly enantiospecific reduction of ethyl-2-acyloxy-3-oxobutanoate with immobilized baker's yeast. Bull. Chem. Soc. Jpn. 1986; 59: 3185
  • Ohata H., Ozaki K., Tsuchihasi G. Regio- and enantio-selective reduction of α, γ-diketones by fermenting baker's yeast. Agric. Biol. Chem. 1986; 50: 2499
  • Nakamura K., Higaki M., Ushio K., Oka S., Ohno A. Stereochemical control of microbial reduction. II. Reduction of β-keto esters by immobilized yeast. Tetrahedron Lett. 1985; 26: 4213
  • Sih C. J., Zhou B. N., Gopalan A. S., Shieh W.-R., Van-Middlesworth F. Strategies for controlling the stereochemical course of yeast reductions in selectivity. A goal for synthetic efficiency. Proc. Workshop Conf. Hoechst 14th, W. Bartmann, B. M. Trost. Verlag-Chemie, Berlin 1984; 251
  • Nakamura K., Inoue K., Ushio K., Oka S., Ohno A. Effect of allyl alcohol on reduction of β-keto esters by baker's yeast. Chem. Lett. 1987; 1987: 679
  • Tsuboi S., Furutani H., Takeda A. Asymmetric synthesis of (2R,3S)-2,3-epoxyoctanol, a key intermediate of 14,15-leukotriene A 4. Bull. Chem. Soc. Jpn. 1987; 60: 833
  • Han C.-Q., DiTullio D., Wang Y. F., Sih C. J. Chemoenzymatic synthesis of leukotriene B 4. J. Org. Chem. 1986; 51: 1253
  • Fuganti C., Grasselli P. On the steric course of baker's yeast mediated reduction of alkyl 4-azido-and 4-bromo-3-oxobutyrate. Synthesis of (R)- and (S)-carnitin. Tetrahedron Lett. 1985; 26: 101
  • Sato T. Synthesis of parasorbic acid, the component of Sorbus aukuparia L. Heterocycles 1986; 24: 2173
  • Fuganti C. Baker's yeast mediated preparation of carbohydrate-like chiral synthons. Enzymes as Catalysts in Organic Synthesis, M. P. Schneider. NATO ASI Series, Series C, Math. and Phys. Sciences. 1986; Vol. 173: 3
  • Fronza G., Fuganti C., Grasselli P., Pedrocchi-Fantoni G. Carbohydrate-like chiral synthons: synthesis of the N-trifluoroacetyl derivatives of 4-amino-2,4,6-trideoxy-L-lyxo, -L-arabino, and -L-ribo-hexose from the (2S,3R)-2,3-diol formed from cinnamaldehyde in fermenting baker's yeast. Carbohydr. Res. 1985; 136: 115
  • Fronza G., Fuganti C., Grasselli P., Servi S. Baker's yeast mediated synthesis of epimeric 2,3-dideoxy-2-C-methyl D-glucose derivatives. Tetrahedron Lett. 1986; 27: 4363
  • Fronza G., Fuganti C., Grasselli P., Servi S. Baker's yeast mediated preparation of carbohydrate-like synthons. Tetrahedron Lett. 1985; 26: 4961
  • Fuganti C., Grasselli P., Marinoni G. Further studies on the transformation of unsaturated aldehydes by fermenting baker's yeast: a facile synthesis of L-olivomycose. Tetrahedron Lett. 1979; 1979: 1161
  • Fronza G., Fuganti C., Grasselli P., Servi S. Baker's yeast mediated synthesis of 4-deoxy-D-lyxo-hexopyranose (4-deoxy-D-mannose). J. Org. Chem. 1987; 52: 2086
  • Agarwal S. C., Basu S. K., Vora V. C., Mason J. R., Pirt S. J. Studies on the production of L-acetyl phenyl carbinol, employing benzaldehyde. Biotechnol. Bioeng. 1987; 29: 783
  • Smith P. F., Hendlin D. Mechanism of phenyl-acetylcarbinol synthesis by yeast. J. Bacteriol. 1953; 65: 440
  • Chenevert R., Thiboutot S. Enantiospecific synthesis of optically pure (S)-(+)-3-hydroxy-l-butanone by baker's yeast reduction. Can. J. Chem. 1986; 64: 1599
  • Wipf B., Kupfer E., Bertazzi R., Leuenberger H. G. W. Production of (+)-(S)-ethyl-3-hydroxybutyrate and (-)-(R)-ethyl-3-hydroxybutyrate by microbial reduction of ethyl acetoacetate. Helv. Chim. Acta 1983; 66: 485
  • Roberts S. M. Use of microorganisms for the resolution of synthetically useful bicyclo-[3,2,0]hept-2-en-6-ones. Enzymes as Catalysts in Organic Synthesis, W. P. Schneider. NATO ASI Series C, Math. and Phys. Sciences. 1986; Vol. 178: 55
  • Brooks D. W. Application of microbial transformations in the total synthesis of natural products. Enzymes as Catalysts in Organic Synthesis, W. P. Schneider. NATO ASI Series, Series C, Math. and Phys. Sciences. 1986; Vol. 178: 141
  • Gramatica P., Mannitto P., Poli L. Chiral synthetic intermediates via symmetric hydrogenation of α-methyl-α,β-unsaturated aldehydes by baker's yeast. J. Org. Chem. 1985; 50: 4625
  • Bolte J., Gourcy J.-G., Veschambre H. Utilisation des methodes biologiques pour la prepatation de synthons chiraux. I. Reduction de β-dicetones acycliques par Saccharomyces cerevisiae (levure de boulanger). Tetrahedron Lett. 1986; 27: 565
  • Ohta H., Ozaki K., Tsuchihashi G. Asymmetric synthesis of (1S, 3S, 5R)-1,3-dimethyl-2,9-dioxa-bicyclo-[3,3,1]-nonane mediated by fermenting baker's yeast. Chem. Lett. 1987; 1987: 2225
  • Tsuboi S., Nishiyama E., Furutani H., Utaka M., Takeda A. Regio- and enantio-selective reduction of α-2-deoxocycloalkaneacetates with fermenting baker's yeast. A new synthesis of (R)-(-)-hexahydromandelic acid. J. Org. Chem. 1987; 52: 1359
  • Tsuboi S., Nishiyama E., Utaka M., Takeda A. A facile synthesis of (R)-(-)-hexahydromandelic acid with fermenting baker's yeast. Tetrahedron Lett. 1986; 27: 1915
  • Moriuchi F., Muroi H., Aibe H. Novel synthesis of (R)-(+)-γ-butyrolactone-γ-3-propionates by fermenting baker's yeast and enantiomeric purity determination using NMR techniques. Chem. Lett. 1987; 1987: 1141
  • Nakazaki M., Chikamatsu H., Naemura K., Asao M. Microbial stereodifferentiating reduction of carbonyl compounds: proposed quadrant rule. J. Org. Chem. 1980; 45: 4432
  • Utaka M., Watabu H., Takeda A. Asymmetric reduction of a prochiral carbonyl of aliphatic γ-and δ-keto acids by use of fermenting baker's yeast. J. Org. Chem. 1987; 52: 4363
  • Yani M., Sugai T., Mori K. Synthesis of (S)-2-hydroxy-β-ionone employing (S)-3-hydroxy-2.2-dimethylcyclohexanone as the chiral starting material. Agric. Biol. Chem. 1985; 49: 2373
  • Reed G. Enzymes in Food, 2nd ed. Academic Press, New York 1975
  • Adler-Nissen J. Newer uses of microbial enzymes in food processing. Trends Biotechnol. 1987; 5: 171
  • Scott D., Hammer F. E., Szalkucki T. J. Bioconversions: enzyme technology. Food Biotechnology, D. Knorr. Marcel Dekker, New York 1987; 413
  • Neidleman S. Enzymology and food processing. Biotechnology in Food Processing, S. K. Halander, T. P. Labuza. Noyes Publications, Park Ridge, NJ 1986; 37
  • Chen W.-P. Glucose isomerase (a review). Process Biochem. 1980; 15: 30
  • Chen W.-P. Glucose isomerase (a review). Process Biochem. 1980; 15: 36
  • Jensen V. J., Rugh S. Industrial scale production and application of immobilized glucose isomerase. Methods in Enzymology, Immobilized Enzymes and Cells. Part C, K. Mosbach. Academic Press, New York 1987; Vol. 136: 259
  • Oyama K. Enzymatic synthesis of aspartame in organic solvents. Biocatalysis in Organic Medium, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 209
  • Oyama K., Irino S., Hagi N. Production of aspartame by immobilized thermoase. Methods in Enzymology, Immobilized Enzymes and Cells. Part C, K. Mosbach. Academic Press, New York 1987; Vol. 136: 503
  • Ruttloff H. Biotechnology and aroma production. Nahrung 1982; 26: 575
  • Dziezak J. A. Enzyme modification of dairy products. Food Technol. 1986; 40: 108
  • Schreier P. Some aspects of biocatalysis in natural product chemistry. Topics in Flavor Research, R. G. Berger, S. Nitz, P. Scheier. Eichhorn, West Germany 1985; 354
  • Butler L. G. Enzymes in non-aqueous solvents. Enzyme Microb. Technol. 1977; 1: 253
  • Klibanov A. M., Samokhin G. P., Martinek K., Berezin I. V. A new approach to preparative enzyme synthesis. Biotechnol. Bioeng. 1977; 14: 1351
  • Klibanov A. M. Enzymes that work in organic solvents. Chemtech 1986; 16: 354
  • Lilly M. D. Two-liquid-phase biocatalytic reactions. J. Chem. Technol. Biotechnol. 1982; 32: 162
  • Lilly M. D., Woodley J. M. Biocatalytic reactions involving water-insoluble organic compounds. Biocatalysis in Organic Synthesis, J. Tramper, H. C. van der Plas, P. Linko. Elsevier, Amsterdam 1985; 179
  • Lilly M. D., Brazier A. J., Hocknull M. D., Williams A. C., Woodley J. M. Biological conversions involving water-insoluble organic compounds. Biocatalysis in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 3
  • Antonini E., Carrea G., Cremonesi P. Enzyme catalysed reactions in water-organic solvent two-phased systems. Enzyme Microb. Technol. 1981; 3: 291
  • Duarte J. C. Bioconversions in organic solvents. Perspectives in Biotechnology, J. M. C. Duarte, L. J. Archer, A. T. Bull, G. Holt. NATO ASI Series A: Life Sciences, Plenum Press, New York 1987; Vol. 128: 23
  • Gatfield I. L. The enzymatic synthesis of esters in non-aqueous systems. Ann. N.Y. Acad. Sci. 1984; 436: 569
  • Gatfield I. L. The enzymatic synthesis of esters in non-aqueous systems. Lebensm. Wiss. Technol. 1986; 19: 87
  • Martinek K., Semenov A. N., Berezin I. V. Enzymatic synthesis in biphasic aqueous-organic systems. I. Chemical equilibrium shifts. Biochim. Biophys. Acta 1981; 658: 76
  • Semenov A. N., Khmelnitski Yu. L., Berezin I. V., Martinek K. Water-organic solvent two-phased systems as media for biocatalytic reactions: the potential for shifting chemical equilibria towards higher yield end products. Biocatalysis 1982; 1: 3
  • Gillies B., Yamazaki H., Armstrong D. W. Natural flavor esters: production by Candida cylindracea lipase absorbed to silica gel. Biocatalysis in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 227
  • Schmidt R. D. Stabilized soluble enzymes. Adv. Biochem. Eng. 1979; 12: 41
  • Takahashi K., Nishimura H., Yoshimoto T., Okada M., Ajima A., Matsushima A., Tamaura Y., Saito Y., Inada Y. Polyethylene glycol-modified enzymes trap water on their surface and exert enzymatic activity in organic solvents. Biotechnol. Lett. 1984; 6: 765
  • Takahashi K., Nishimura H., Yoshimoto T., Saito Y., Inada Y. A chemical modification to make horseradish peroxidase soluble and active in benzene. Biochem. Biophys. Res. Commun. 1984; 125: 261
  • Takahashi K., Ajima A., Yoshimoto T., Inada Y. Polyethylene glycol-modified catalase exhibits unexpectedly high activity in benzene. Biochem. Biophys. Res. Commun. 1984; 125: 761
  • Linko Y.-Y., Linko P. Immobilized catalysts in organic synthesis and chemical production. Biocatalysts in Organic Synthesis, J. Tramper, H. C. van der Plas, P. Linko. Elsevier, Amsterdam 1985; 159
  • Dave G., Blanck H., Gustafsson K. Biological effects of solvent extraction chemicals on aquatic organisms. J. Chem. Technol. Biotechnol. 1979; 29: 249
  • Datta R. Acidogenic fermentation of corn stover. Biotechnol. Bioeng. 1981; 23: 61
  • Playne M. J., Smith B. R. Toxicity of organic extraction reagents to anaerobic bacteria. Biotechnol. Bioeng. 1983; 25: 1251
  • Bar R. Phase toxicity in a water-solvent two-liquid phase microbial system. Biocatalysis in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 147
  • Carrea G. Biocatalysis in water-organic solvent two-phase systems. Trends Biotechnol. 1984; 2: 102
  • Hillhorst R., Spruijt R., Laane C., Veeger C. Rules for the regulation of enzyme activity in reverse micelles as illustrated by the conversion of apolar solvents by 20β-hydroxysteroid dehydrogenase. Eur. J. Biochem. 1984; 144: 459
  • Laane C. Medium engineering for bioorganic synthesis. Biocatalysis 1987; 1: 17
  • Brink L. E. S., Tramper J. Optimization of organic solvent in multiphase biocatalysis. Biotechnol. Bioeng. 1985; 27: 1258
  • Laane C., Boeren S., Vos K. On optimizing organic solvents in multi-liquid-phase biocatalysis. Trends Biotechnol. 1985; 3: 251
  • Laane C., Boeren S., Hillhorst R., Veeger C. Optimization of biocatalysts in organic medium. Biocatalyses in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 65
  • Laane C., Boeren S., Vos K., Veeger C. Rules for optimization of biocatalysis in organic solvents. Biotechnol. Bioeng. 1987; 30: 81
  • Laane C., Hillhorst R., Veeger C. Design of reverse micellular media for the enzymatic synthesis of apolar compounds. Methods in Enzymology, Vol. 136, Immobilized Enzymes and Cells. Part C, K. Mosbach. Academic Press, New York 1987; 216
  • Reslow M., Adlercreutz P., Mattiasson B. Organic solvents for bioorganic synthesis. II. Influence of log P and water solubility in solvents on enzymatic activity. Biocatalysis in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 349
  • Reslow W., Aldercreutz P., Mattiasson B. Organic solvents for bioorganic synthesis. I. Optimization of parameters for a chymotrypsin catalysed process. Appl. Microbiol. Biotechnol. 1987; 26: 1
  • Snijder-Lambers A. M., Doddema H. J., Grane H. J., Van Lelyveld P. H. Log P as a hydrophobicity index for biocatalysis; cofactor regeneration during enzymatic steroid oxidation in organic solvents. Biocatalysis in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 87
  • Welsh F. W. 1988, unpublished data
  • Halling P. J. Effects of water on equilibria catalysed by hydrolytic enzymes in biphasic reaction systems. Enzyme Microb. Technol. 1984; 6: 513
  • Halling P. J. Water activity in biphasic reaction systems. Biocatalysis in Organic Media, C. Laane, J. Tramper, M. D. Lilly. Elsevier, Amsterdam 1987; 125
  • Goderis H. L., Ampe G., Feyten M. P., Fouwe B. L., Guffens W. M., VanCauwenbergh S. M., Tobback P. P. Lipase catalysed ester exchange reactions in organic media with controlled humidity. Biotechnol. Bioeng. 1987; 30: 258
  • Touraine F., Drapon R. Influence of water activity on glyceride and glycerol ester synthesis by lipase from Rhizopus arrhizus. Can. Inst. Food Sci. Technol. J. 1988; 21: 255
  • Reslow M., Aldercreutz P., Mattiasson B. On the importance of the support material for organic synthesis. Influence of water partition between solvent, enzyme, and support material in water-poor reaction medium. Eur. J. Biochem. 1988; 172: 573
  • Hahn-Hagerdal B. Water activity: a possible external regulator in biotechnical processes. Enzyme Microb. Technol. 1986; 8: 322
  • West S. Enzymes set to catalyse fine chemicals market. Performance Chem. May, 1987
  • Tanaka A., Fukui S. Bioconversion of lipophilic compounds by immobilized biocatalysts in the presence of organic solvents. Enzymes and Immobilized Cells in Biotechnology, I. A. Laskin. Benjamin/Cummings Publishing, Menlo Park, CA 1985; 149
  • Klibanov A. M. Enzymatic reactions in organic media. Protein Engineering. Application in Science, Medicine and Industry, M. Inouye, R. Sarma. Academic Press, New York 1986; 341
  • Sariaslani F. S., Rosazza J. P. N. Biocatalysts in natural product chemistry. Enzyme Microb. Technol. 1984; 6: 242
  • Slotbloom A. J., Verheij H. M., Dettaas G. H. Simplified pathways for the preparation of some well defined phosphoglycerides. Chem. Phys. Lipids 1973; 11: 295
  • Jensen R. G., Pitas R. E. Synthesis of some acylglycerides and phosphoglycerides. Adv. Lipid Res. 1976; 11: 213
  • Jensen R. J., Gerrior S. A., Hagerty M. M., McMahon K. E. Preparation of acylglycerols and phospholipids with the aid of lipolytic enzymes. J. Am. Oil Chem. Soc. 1978; 55: 422
  • Kanisawa T. Production of ethyl ester mixture from butter fat by Candida cylindracea lipase. Nippon Shokuhin Kogyo Gakkai-Shi 1983; 30: 572
  • Kodera Y., Takahashi K., Nishimura H., Matsushima A., Saito Y., Inada Y. Ester synthesis from α-substituted carboxylic acid catalysed by polyethylene glycol-modified lipase from Candida cylindracea in benzene. Biotechnol. Lett. 1986; 8: 881
  • Posorske L. H., Austin H., Gonzalez J., Miller C. Characteristics of immobilized lipase for the commercial synthesis of esters. Presented at 1987 Annu. Meet. 1987. American Institute of Chemical Engineers, New York, Session 167
  • Miller C., Austin H., Posorske L., Gonzalez J. Characteristics of an immobilized lipase for the commercial synthesis of esters. JAOCS 1988; 65: 927
  • Eigtved P., Hansen T. T., Miller C. A. Ester synthesis by immobilized lipase. Presented at World Conf. Biotechnol. Fat and Oils Ind., HamburgWest Germany 1987
  • Eigtved P., Hansen T. T., Sachaguchi H. Characteristics of immobilized lipase in ester synthesis and effects of water and temperature in various reactions. Presented at AOCS/JOCS Meet., Honolulu, Hawaii, 1986
  • Gilles B., Yamazaki H., Armstrong D. W. Production of flavor esters by immobilized lipase. Biotechnol. Lett. 1987; 9: 709
  • Welsh F. W., Williams R. E. Production of ethyl butyrate and butyl butyrate in non-aqueous systems. 1988, unpublished data
  • Welsh F. W., Williams R. E. Lipase mediated production of flavor and fragrance esters from fusel oil alcohols. J. Food Sci., in press
  • Yoshimoto T., Takahashi K., Nishimura H., Ajima A., Tamuara Y., Inada Y. Modified lipase having high stability and various enzyme activities in benzene, and its reuse by recovering from benzene. Biotechnol. Lett. 1984; 6: 337
  • Tahoun M. K., Ali H. A. Specificity and glyceride synthesis by microbial lipases of Rhizopus delemar. Enzyme Microb. Technol. 1986; 8: 429
  • Bacaloglu R., Musca G., Pop G., Peter F. Organic synthesis using enzymes as catalysts. II. A kinetic study of glycerol esterification with oleic acid catalysed by pancreatic lipase. Rev. Roum. Biochim. 1985; 22: 177
  • Osanai S. Synthesis of cholesterol ester with lipase in organic solvent and the possibility of repeated use of the recovered enzyme. J. Jpn. Oil Chem. Soc. 1986; 35: 65
  • Therisod M., Klibanov A. M. Facile enzymatic preparation of monoacylated sugars in pyridine. J. Am. Chem. Soc. 1986; 108: 5638
  • Therisod M., Klibanov A. M. Regioselective acylation of secondary hydroxyl groups in sugars catalysed by lipases in organic solvents. J. Am. Chem. Soc. 1987; 109: 3977
  • Seino H., Uchibori T., Nishitani T., Inamasu S. Enzymatic synthesis of carbohydrate esters of fatty acid. I. Esterification of sucrose, glucose, fructose and sorbitol. J. Am. Oil Chem. Soc. 1984; 61: 1761
  • Schindler J., Schmid R. D. Fragrance and aroma chemicals — microbial synthesis and enzymatic transformations — a review. Process Biochem. 1982; 26: 2
  • Iwai M., Okumura S., Tsujisaka Y. Synthesis of terpene alcohol esters by lipase. Agric. Biol. Chem. 1980; 44: 2731
  • Kawamoto T., Sonomoto K., Tanaka A. Esterification in organic solvents: selection of hydrolases and effects of reaction conditions. Biocatalysis 1987; 1: 137
  • Marlot C., Langrand G., Triantoplylides C., Baratti J. Ester synthesis in organic solvent catalysed by lipases immobilized on hydrophilic supports. Biotechnol. Lett. 1985; 7: 647
  • Deleuze H., Langrand G., Millet H., Baratti J., Buono G., Triantaphylides C. Lipase catalysed reactions in organic media: competition and applications. Biochim. Biophys. Acta 1987; 911: 112
  • Kasche V. Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzyme Microb. Technol. 1986; 8: 4
  • MacRae A. R., Hammond R. C. Present and future applications of lipases. Biotechnol. Genet. Eng. Rev. 1985; 3: 193
  • Zaks A., Klibanov A. M. Enzyme catalysed processes in organic solvents. Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 3192
  • Anon. Preliminary product information sheet on Novo product SP 382. Novo Limited, Danbury, CT April, 1988
  • Zaks A., Klibanov A. M. Enzymatic catalysis in organic media at 100°C. Science 1984; 224: 1249
  • Cambou B., Klibanov A. M. Lipase catalysed production of optically active acids via asymmetric hydrolysis of esters. Effect of acid moiety. Appl. Biochem. Biotechnol. 1984; 9: 255
  • Gu Q.-M., Reddy D. R., Sih C. J. Bifunctional chiral synthons via biochemical methods. VIII. Optically active 3-aroylthio-2-methyl propionic acids. Tetrahedron Lett. 1986; 27: 5203
  • Gu Q.-M., Chen C.-S., Sih C. J. A facile enzymatic resolution process for the preparation of (+)-S-2-(6-methoxy-2-naphthyl) propionic acid (naproxen). Tetrahedron Lett. 1986; 27: 1763
  • Faber K., Honig H., Seufer-Wasserthal P. A novel and efficient synthesis of (+)- and (-)-trans-2-aminocyclohexanol by enzymatic hydrolysis. Tetrahedron Lett. 1988; 26: 1903
  • Bjorkling F., Boutelje J., Gatenbeck S., Hult K., Norin T. Enzyme catalysed hydrolysis of the diesters of cis- and trans-cyclohexanedicarboxylic acids. Bioorganic preparation of enantiomerically pure cyclohexane dicarboxylic acids, monoesters and lactones. Appl. Microbiol. Biotechnol. 1985; 21: 16
  • Oritani T., Yamashita K. Microbial resolution of 2- and 3-alkylcyclohexanols. Agric. Biol. Chem. 1973; 37: 1695
  • Fulling G., Sih C. J. Enzymatic second order asymmetric hydrolysis of keterolac esters: in situ racemerization. J. Am. Chem. Soc. 1987; 109: 2845
  • Laumen K., Schneider M. Enantioselective hydrolysis of cis-1,2-diacetoxycycloalcanedimethanols: enzymatic preparation of chiral building blocks from prochiral meso-substrates. Tetrahedron Lett. 1985; 26: 2073
  • Kasel W., Hultin P. G., Jones J. B. Preparations of chiral hydroxyester synthons via stereoselective porcine pancreatic lipase catalysed hydrolyses of meso-diesters. J. Chem. Soc. Chem. Commun. 1985; 1985: 1563
  • Breitgoff D., Laumen K., Schneider M. P. Enzymatic differentiation of the enantiotropic hydroxymethyl groups of glycerol: synthesis of chiral building blocks. J. Chem. Soc. Chem. Commun. 1986; 1986: 1523
  • Blanco L., Guibe-Jampel E., Rousseau G. Enzymatic resolution of racemic lactones. Tetrahedron Lett. 1988; 29: 1915
  • Kutsuki H., Sawa I., Hasegawa J., Watanabe K. Asymmetric hydrolysis of (DL)-1-aclyoxy-2-halo-1-phenylethanes with lipases. Agric. Biol. Chem. 1986; 50: 2369
  • Eichenberger G., Penn G., Faber K., Griengl H. Large scale preparation of (+)- and (-)-endo-norborneol by enzymatic hydrolysis. Tetrahedron Lett. 1986; 27: 2843
  • Yamaguchi Y., Oritani T., Tajima N., Komatsu A., Moroe T. Optical resolution of menthols and related compounds. I. Screening of DL-mentyl ester hydrolysing microorganisms and species specificity of microbial esterases. Nippon Nogei Kagaku Kaishi 1976; 50: 475
  • Langrand G., Baratti J., Buono G., Triantaphylides C. Lipase catalysed reactions and strategy for alcohol resolution. Tetrahedron Lett. 1987; 27: 29
  • Oritani T., Yamashita K. Microbial resolution of racemic carvomenthols. Agric. Biol. Chem. 1973; 37: 1691
  • Chen C.-S., Wu S.-H., Girdaukas G., Sih G. J. Quantitative analysis of biochemical kinetic resolution of enantiomers. II. Enzyme catalysed esterifications in water-organic solvent biphasic systems. J. Am. Chem. Soc. 1987; 109: 2812
  • Cambou B., Klibanov A. M. Comparison of different strategies for the lipase catalysed preparative resolution of racemic acids and alcohols: asymmetric hydrolysis, esterification and transesterification. Biotechnol. Bioeng. 1984; 26: 1449
  • Cambou B., Klibanov A. M. Preparative production of optically active esters and alcohols using ester-catalysed stereospecific transesterification in organic media. J. Am. Chem. Soc. 1984; 106: 2687
  • Kirchner G., Scollar M. P., Klibanov A. M. Resolution of racemic mixtures via lipase catalysis in organic solvent. J. Am. Chem. Soc. 1985; 107: 7072
  • Ramos Tomba G. M., Schar H.-P., Fernandez I, Bosquets F., Ghisalba O. Synthesis of both enantiomeric forms of 2-substituted 1,3-propanediol monoacetates starting from a common prochiral precursor, using transformations in aqueous and in organic media. Tetrahedron Lett. 1986; 27: 5707
  • Koshiro S., Sonomoto R., Tanaka A., Fukui S. Stereoselective esterification of DL-menthol by polyurethane entrapped lipase in organic solvent. J. Biotechnol. 1985; 2: 47
  • Lazar V. G., Kenkel H. C. K. Ester synthesen mit lipasen. Fette Seifen Anstrichm. 1985; 87: 394
  • Cesti P., Zaks A., Klibanov A. M. Preparative regioselective acylation of glycols by enzymatic transesterification. Appl. Biochem. Biotechnol. 1985; 11: 401
  • Yamanaka S., Tanaka T. Regiospecific interesterification of triglyceride with celite adsorbed lipase. Methods in Enzymology, Vol. 136, Immobilized Enzymes and Cells. Part C, K. Mosbach. Academic Press, New York 1987; 405
  • Makita A., Nihira T., Yamada Y. Lipase-catalysed synthesis of macrocyclic lactones in organic solvent. Tetrahedron Lett. 1987; 28: 805
  • Gutman A. L., Zuobi K., Boltansky A. Enzymatic lactonization of γ-hydroxyesters in organic solvents. Synthesis of optically pure γ-methylbutyrolactones and γ-phenylbutyrolactones. Tetrahedron Lett. 1987; 28: 3861
  • Gutman A. L., Oren D., Boltanski A., Bravdo T. Enzymatic oligimerization versus lactonization of ω-hydroxyesters. Tetrahedron Lett. 1987; 28: 5367
  • Zhi-Wei G., Sih C. J. Enzymatic synthesis of macrocyclic lactones. J. Am. Chem. Soc. 1988; 110: 1999
  • Kilara A. Enzyme modified protein ingredients. Process Biochem. 1985; 20: 149
  • Loffler A. Proteolytic enzymes: sources and applications. Food Technol. 1986; 40: 63
  • Adler-Nissen J. Enzymatic Hydrolysis of Food Proteins. Elsevier, London 1985
  • Belitz H.-D., Chen W., Jugel H., Treveano R., Wieser H., Gasteigers J., Marsili M. Sweet and bitter compounds: structure and taste relationship. ACS Symp. Ser. 1979; 115: 93
  • Meinke W. W., U.S. Patent 4,361,586, 1982
  • Cipallo L., Wagner T. J., European Patent 0,148,600, B1, 1987
  • Fullbrook P., Pawlett D., Parker D. Protein plus. Food Processing (London) 1987; 56: 11
  • Acraman A. R. Processing brewer's yeast. Process Biochem. 1966; 1: 313
  • Dziezak J. D. Yeast and yeast derivatives: definitions, characteristics and processing. Food Technol. 1987; 41: 104
  • Peppler H. J. Yeast extracts. Econ. Microbiol. 1982; 7: 293
  • Boyer P. D. The Enzymes, 3rd ed. Academic Press, New York 1975; Vol. 11, Part A, Dehydrogenases I. Electron Transfer I
  • Boyer P. D. The Enzymes, 3rd ed. Academic Press, New York 1975; Vol. 12, Part B, Electron Transfer II. Oxygenases, Oxidases I.
  • Boyer P. D. The Enzymes, 3rd ed. Academic Press, New York 1976; Vol. 13, Part C, Dehydrogenases II. Oxidases II. Hydrogen Peroxide Cleavage
  • Rose A. H. Microbial Enzymes and Bioconversions. Academic Press, New York 1980
  • Oxygenases, O. Hayaishi. Academic Press, New York 1962
  • Oxygenases and Oxygen Metabolism: A Symposium in Honor of O. Hayaishi, M. Nozaki. Academic Press, New York 1982
  • Duine J. A., Frank, Jzn J., Jongejan J. A. PPQ and quinoprotein enzymes in microbial oxidations. FEMS Microb. Rev. 1986; 32: 165
  • van Kleef M. A. G., Duine J. A. Bacterial NAQD(P)-independent quinate dehydrogenase is a quinoprotein. Arch. Microbiol. 1988; 150: 32
  • Immobilized Enzymes and Cells, Vol. 136, Methods in Enzymology, Part C, K. Mosbach. Academic Press, Orlando, FL 1987
  • Simon H., Gunther H., Bader J., Neumann S. Chiral products from non-pyridine nucleotide-dependent reductases and methods for NAD(P)H regeneration. Enzymes in Organic Synthesis, R. Porter, S. Clark. Ciba Foundation Symposium 111, Pitman, London 1985; 97
  • Burstein C., Ounissi H., Legoy M. D., Gellf G., Thomas D. Recycling of NAD+ using coimmobilized alcohol dehydrogenase and E. coli. Appl. Biochem. Biotechnol. 1981; 6: 329
  • Nakamura K., Yoneda T., Miya T., Ushio K., Oka S., Ohno A. Asymmetric reduction of ketones by glycerol dehydrogenase from Geotricum. Tetrahedron Lett. 1988; 29: 2453
  • Riva S., Bovara R., Zetta L., Pasta P., Ottolimna G., Carrea G. Enzymatic α/β inversion of C3 hydroxyl of bile acids and study of the effects of organic solvents on reaction rates. J. Org. Chem. 1988; 53: 88
  • Thanos I., Simon H. Stereospecific reductions with hydrogen gas, modified metal catalysts, methyl viologen and enzymes or microorganisms. Angew. Chem. Int. Ed. Eng. 1986; 25: 462
  • Chao S., Wrighton M. S. High surface area catalysis for H2 reduction of an enzyme: reduction of NAD+ to NADH. J. Am. Chem. Soc. 1987; 109: 5886
  • Chao S., Simon R. A., Mallouk T. E., Wrighton M. S. Multicomponent redox catalysts for reduction of large biological molecules using molecular hydrogen as the reductant. J. Am. Chem. Soc. 1988; 110: 2270
  • Whitesides G. M., Wong C.-H. Enzymes as catalysts in synthetic organic chemistry. Angew. Chem. Int. Ed. Engl. 1985; 24: 617
  • Simon H., Bader J., Gunther H., Neumann S., Thanos J. Chiral compounds synthesized by biocatalytic reductions. Angew. Chem. Int. Ed. Engl. 1985; 24: 539
  • Jones J. B., Beck J. F. Asymmetric syntheses and resolution using enzymes in applications of biochemical systems in organic chemistry. I. Techniques in Chemistry Series, J. B. Jones, C. J. Sih, D. Perlman. John Wiley & Sons, New York 1976; Vol. 10: 107
  • Wang S. S., King C.-K. The use of coenzymes in biochemical reactors. Adv. Biochem. Eng. 1979; 12: 119
  • Wichmann R., Wandrey C., Buckmann A., Kula M. R. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol. Bioeng. 1981; 32: 2789
  • Kula M.-R., Wandrey C. Continuous enzymatic transformation in an enzyme-membrane reactor with simultaneous NADH regeneration. Methods in Enzymology, Vol. 136, Immobilized Enzymes and Cells. Part C, K. Mosbach. Academic Press, New York 1987; 9
  • Kulbe K. D., Chmiel H. Coenzyme-dependent carbohydrate conversions with industrial potential. Ann. N.Y. Acad. Sci. 1988; 542: 444
  • Deffner A., Simon H. Studies on the regeneration of seven cosubstrates for enzymic reactions. Ann. N.Y. Acad. Sci. 1987; 501: 171
  • Jones J. B. Enzymes in synthetic organic chemistry. Enzymic and Non-Enzymic Catalysis, P. Dunnill, A. Wiseman, N. Blakebrough. E. Horwood (Halsted Press), New York 1980
  • Jones J. B. Enzymes as chiral catalysts. Asymmetric Synthesis, J. D. Morrison. Academic Press, New York 1985; Vol. 5: 309
  • Jones J. B. Enzymes in organic synthesis. Tetrahedron 1986; 42: 3351
  • Jones J. B., Sih C. J., Perlman D. Applications of biochemical systems in organic chemistry. Techniques of Chemistry Series, Wiley-Interscience, New York 1976; Vol. 10
  • Laskin A. I. Enzymes and Immobilized Cells in Biotechnology. Benjamin/Cummings Publications, Menlo Park, CA 1985
  • Enzymes as Catalysts in Organic Synthesis, M. P. Schneider. D. Reidel, DordrechtThe Netherlands 1986, NATO Advanced Workshop, Reisenberg, Germany, 1985
  • Brunner H. Enantioselective synthesis with optically active transition-metal catalysts. Synthesis 1988; 1988: 645
  • Evans D. A. Stereoselective organic reactions: catalysts for carbonyl addition processes. Science 1988; 240: 420
  • Branden C. I., Jornvall H., Eklund H., Furugen B. Alcohol dehydrogenases. The Enzymes, 3rd ed., P. D. Boyer. Academic Press, New York 1975; Vol. 11: 103, Part A
  • Jornvall H. Alcohol dehydrogenases, aldehyde dehydrogenases and related enzymes. Alcohol 1985; 2: 61
  • Klinman J. P. Probes of mechanism and transition-state structure in the alcohol dehydrogenase reaction. Crit. Rev. Biochem. 1981; 10: 39
  • Biellmann J.-F. Chemistry and structure of alcohol dehydrogenase: some general considerations on binding mode variability. Acc. Chem. Res. 1986; 19: 321
  • Jones J. B., Jakovac I. J. A new cubic-space section model for predicting the specificity of horse liver alcohol dehydrogenase-catalyzed oxidoreductions. Can. J. Chem. 1982; 60: 19
  • Lepoivre J. A. Stereospecific enzymatic reductions of carbonyl functions with horse liver alcohol dehydrogenases. Janssen Chim. Acta 1984; 2: 20
  • Lemiere G. L. Alchol dehydrogenase catalysed oxidoreduction reactions in organic chemistry. Enzymes as Catalysts in Organic Synthesis, M. P. Schneider. NATO ASI Series C, D. Reidel, DordrechtThe Netherlands 1986; 19
  • Jones J. B. Some synthetic applications of alcohol dehydrogenases and esterases in organic synthesis, an interdisciplinary challenge. Proc. 5th IUPAC Symp. Organic Synthesis, J. Streith, H. Prinzbach, G. Schill. Blackwell Scientific, Oxford 1985; 179
  • Jones J. B. Horse liver alcohol dehydrogenase: an illustrative example of the potential of enzymes in organic synthesis. Enzyme Eng. 1982; 6: 107
  • Jones J. B. An illustrative example of a synthetically useful enzyme: horse liver alcohol dehydrogenase. Enzymes in Organic Synthesis, R. Porter, S. Clark. Ciba Foundation Symposium 111, Pitman, London 1985; 3
  • Wiseman A. Alcohol dehydrogenases: immobilization in analysis and synthesis. Topics in Enzyme and Fermentation Biotechnology, A. Wiseman. Ellis Horwood, Chichester 1981; Vol. 5: 337
  • Lam L. P. K., Gair I. A., Jones J. B. Enzymes in organic synthesis. XLI. Stereoselective horse liver alcohol dehydrogenase catalysed reductions of heterocyclic bicyclic ketones. J. Org. Chem. 1988; 53: 1611
  • Jones J. B., Jakovac I. J. Preparation of chiral, non-racemic γ-lactones by enzyme-catalysed oxidation of meso diols: (+)-(1R,6S)-8-oxobicyclo[4.3.0] nonan-7-one. Organic Synthesis 1985; 63: 10
  • Pietruszko R. Non-ethanol substrates of alcohol dehydrogenase. Biochemistry and Pharmacology of Ethanol, E. Majchrowicz, E. P. Noble. Plenum Press, New York 1979; 87
  • Raymond W. R., U.S. Patent 4,481,292, 1984
  • Legoy M. D., Kim H. S., Thomas D. Use of alcohol dehydrogenase for flavor aldehyde production. Process Biochem. 1985; 20: 145
  • Bowen W. R., Lambert N., Pugh S. Y. R., Taylor F. The yeast alcohol dehydrogenase catalysed conversion of cinnamaldehyde to cinnamyl alcohol. J. Chem. Technol. Biotechnol. 1986; 36: 267
  • Keinan E., Seth K. K., Lamed R. Synthetic applications of alcohol-dehydrogenase from Thermoanaerobium brockii. Ann. N.Y. Acad. Sci. 1987; 501: 130
  • Lee K. M., Biellmann J.-F. Activity and stability of alcohol dehydrogenase from Thermoanaerobium brockii in water-in-oil microemulsion. New J. Chem. 1987; 11: 775
  • Hopkins T. R., Muller F. Biochemistry of alcohol oxidase. Microbial Growth on C1 Compounds, Proc. 5th Int. Symp., H. W. van Verseveld, J. A. Duine. Kluwer Academic Publishers, DordrechtThe Netherlands 1987; 150
  • Patel R. N., Hou C. T., Laskin A. I., Derelanko P. Microbial oxidation of methanol: properties of crystalline alcohol oxidase from Pichia sp., in Flavins and Flavoproteins, Massey, V. and Williams, C. H., Eds. Dev. Biochem. 1982; 21: 196
  • Couderc R., Baratti J. Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric. Biol. Chem. 1980; 44: 2279
  • Ellis S. B., Brust P. F., Koutz P. J., Waters A. F., Harpold M. M., Gingeras T. R. Isolation of alcohol oxidase and two other methanol regulatable genes from the yeast Pichia pastoris. Mol. Cell. Biol. 1985; 5: 1111
  • Hazeu W., de Bruyn J. C., Bos P. Methanol assimilation by yeasts. Arch. Microbiol. 1972; 87: 185
  • Egli T., Fiechter A. Theoretical analysis of media used in growth of yeasts on methanol. J. Gen. Microbiol. 1981; 123: 365
  • Cardemil E. The stereospecificity of alcohol oxidases from Tanacetum vulgare and Candida boidinii. Biochim. Biophys. Res. Commun. 1975; 67: 1093
  • Sakai K., Hamada N., Watanabe Y. Separation of secondary alcohol oxidase and oxidized poly(vinyl alcohol) hydrolase by hydrophobic and dye-ligand chromatographies. Agric. Biol. Chem. 1983; 47: 153
  • Morita M., Hamada N., Sakai K., Watanabe Y. Purification and properties of secondary alcohol oxidase from a strain of Pseudomonas. Agric. Biol. Chem. 1979; 43: 1225
  • Suzuki T. Oxidation of secondary alcohols by polyvinyl alcohol-degrading enzyme produced by Pseudomonas. Agric. Biol. Chem. 1978; 42: 1187
  • Morita M., Watanabe Y. A secondary alcohol oxidase: a component of a polyvinyl alcohol degrading enzyme preparation. Agric. Biol. Chem. 1977; 41: 1535
  • Walsh C. T., Chen Y.-C. J. Enzymatic Baeyer-Villiger oxidations by flavin-dependent monoxygenases. Angew. Chem. Int. Ed. Engl. 1988; 27: 333
  • Shankaranarayana M. L., Raghavan B., Abraham K. O., Natarajan C. P. Volatile sulfur compounds in food flavors. Crit. Rev. Food Technol. 1974; 5: 395
  • Schutte L. Precursors of sulfur-containing flavor compounds. Crit. Rev. Food Technol. 1974; 5: 457
  • Challenger F. The biological importance of organic compounds of sulfur. Endeavor 1953; 12: 173
  • Maga J. A., Sizer C. E. Pyrazines in foods — a review. J. Agric. Food Chem. 1973; 21: 22
  • Maga J. A., Sizer C. E. Pyrazines in foods. Crit. Rev. Food Technol. 1973; 4: 39
  • Maga J. A. Pyrazines in food: an update. Crit. Rev. Food Technol. 1982; 13: 1
  • Maga J. A. Pyrazines in flavor. Dev. Food Sci. 1982; 3A: 283
  • Maga J. A., Sizer C. E. Pyrazines in foods. Fenaroli's Handbook of Flavor Ingredients, 2nd ed., T. E. Furia, N. Bellanca. CRC Press, Cleveland, OH 1975; Vol. 1: 47
  • Carballido A., Villanua L., Teresa Valdehita M., Angeles Robisco M. Determinacion cuantiativa de pirazinas en alimentos. Anal. Bromatol. 1974; 26: 391
  • Flament I. Some recent aspects of the chemistry of naturally occurring pyrazines. The Quality of Foods and Beverages: Chemistry and Technology, G. Charalambous, G. Inglett. Academic Press, New York 1981; 35
  • Gallois A. Les pyrazines presentes dans les aliments: etat actual de nos connaissances. Sci. Aliments 1984; 4: 145
  • Anon. 1985, Scientific literature review of substituted pyrazines in flavor usage. Vol. 1. Introduction and summary, tables of data, bibliography, Gov. Report Announce. Index 85(6), 48, 1, (CA 102, 202262C.)
  • Teranishi R., Buttery R. G., Guadagni D. G. Odor quality and chemical structure in fruit and vegetable flavors. Ann. N.Y. Acad. Sci. 1974; 237: 209
  • Morgan M. E., Libbey L. M., Scanlan R. A. Identity of the musty-potato aroma compound in milk cultures. J. Dairy Sci. 1972; 55: 666
  • Gramshaw J. W., Williams D. R. Physicochemical studies on flavor-active compounds. Flavor ′81, Weurman 3rd Symp., P. Schreier. Walter de Gruyter, Berlin 1981; 165
  • Jayalakshmy A., Mathew A. G. Pyrazines — the golden key to roasted flavor. Pafai J. 1983; 5: 21
  • Matsukura T. Recent progress in new aroma chemicals as flavor components. I. On pyrazines-flavors components, (in Japanese). Korya 1975; 110: 9
  • Kosuge T., Sugiyama K. Tetramethylpyrazine formation by the amino carbonyl reaction in roasted foods (between α-ketocarbinol and amino acid). Tennen Yuki Kagobutso Toronkai Koen Yoshishu 21st, (in Japanese) 1978; 1978: 191, (CA-90–37666F)
  • de Rijke D., van Dort J. M., Boelens H. Shigematsu variation of the maillard reaction. Flavor ′81 3rd Weurman Symp., P. Schreier. Walter de Gruyter, Berlin 1981; 417
  • Buchanan R. L., Houston W. M. Production of blue fluorescent pyrazines by Aspergillus parasiticus. J. Agric. Food Chem. 1982; 47: 779
  • Castell C. H., Greenough M. F., Jenkin N. L. The action of Pseudomonas on fish muscle. II. Musty and potato-like odors. J. Fish. Res. Board Can. 1957; 14: 775
  • Devys M., Bousquet J. F., Kollmann A., Barbier M. Isolation of a new pyrazine, septorine, from the culture medium of the phytopathogenic fungus Septoria nodorum Berk. C. R. Acad. Sci. Paris 1978; 286: 457
  • Kosuge T., Zenda H., Tsuji K., Yamamoto T., Narita H. Studies of the flavor components of foodstuffs. I. Distribution of tetramethylpyrazine in fermented foodstuffs. Agric. Biol. Chem. 1971; 35: 693
  • Riardon R., Ledermann S. Volatile components of fermented soya hydrolysate. Z. Lebensm. Unters. Forsch. 1980; 170: 208
  • Miller A., Scanlan R. A., Lee J. S., Librey L. M., Morgan M. E. Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas perolens. Appl. Microbiol. 1973; 25: 257
  • Morgan M. E. The chemistry of some microbially induced flavor defects in milk and dairy foods. Biotechnol. Bioeng. 1976; 18: 953
  • McIver R. C., Reineccius G. A. Synthesis of 2-methoxy-3-alkylpyrazines by Pseudomonas perolens. Biogeneration of Aromas, T. H. Parliment, R. Croteau. ACS Symposium Series, American Chemical Society, Washington, D.C. 1986; 266
  • Spanswick M. P. The cause of mustiness in eggs. Am. J. Public Health 1930; 20: 73
  • Zak D. L., Ostovar K., Keeney P. G. Implication of Bacillus subtilis in the synthesis of tetramethylpyrazine during fermentation of cocoa beans. J. Food Sci. 1972; 37: 967
  • Kosuge T., Kamiya H. Discovery of a pyrazine in a natural product: tetramethylpyrazine from cultures of a strain of Bacillus subtilis. Nature 1962; 193: 776
  • Demain A. L., Jackson M., Trenner N. R. Thiamine-dependent accumulation of tetramethylpyrazine accompanying a mutation in the isoleucine-valine pathway. J. Bacteriol. 1967; 94: 323
  • Murray K. E., Shipton J., Whitfield F. B. 2-Methoxypyrazines and the flavor of green peas. Chem. Ind. 1970; 1970: 897
  • Murray K. E., Whitfield F. B. The occurrence of 3-alkyl-2-methoxypyrazines in raw vegetables. J. Sci. Food Agric. 1975; 26: 973
  • Green M. L., Elloit W. H. The enzymic formation of amino-acetone from threonine and its further metabolism. Biochem. J. 1964; 92: 537
  • Buchi G., Demole E., Thomas A. F. Syntheses of 2,5-dimethyl-4-hydroxy-2,3-dihydrofuran-3-one (Furaneol®), a flavor principle of pineapple and strawberry. J. Org. Chem. 1973; 38: 123
  • Peer H. G., Van den Ouweland G. A. M. Synthesis of 4-hydroxy-5-methyl-2,3-dihydro-3-furanone from D-ribose-5-phosphate. Recl. Trav. Chim. Pays-Bas 1968; 87: 1017
  • Peer H. G., Van den Ouweland G. A. M., De Groot C. N. Reaction of aldopentoses and secondary amino salts, a convenient method of preparing 4-hydroxy-5-methyl-2,3-dihydro-3-furanone. Recl. Trav. Chim. Pays-Bas 1968; 87: 1011
  • Wong C.-H., Mazenod F. P., Whitesides G. M. Chemical and enzymatic syntheses of 6-deox-yhexoses. Conversion to 2,5-dimethyl-4-hydroxy-2,3-dihydrofuran-3-one (Furaneol) and analogues. J. Org. Chem. 1983; 48: 3493
  • Kalemba D., Gora J. Important sensory microcomponents of essential oils. II. Maltol (in Polish). Pollena: Tluszcze Srodki Piorace Kosmet. 1985; 29: 191
  • Shono T., Matsumura Y., Hamaguchi H., Naitoh S. Synthesis of 2-methyl-3-hydroxy-4Hpyran-4-one and 4-hydroxy-5-methyl-2H-furan-3-one from carbohydrates. J. Org. Chem. 1983; 48: 5126
  • Chawla R. K., McGonigal W. E. A new synthesis of maltol. J. Org. Chem. 1974; 39: 3281
  • Harada R., Iwasaki M. Syntheses of maltol and ethylmaltol. Agric. Biol. Chem. 1983; 47: 2921
  • Lichtenhaler F. W., Heidel P. Intermediates in the formation of γ-pyrones from hexose derivatives: a simple synthesis of kojic acid and hydroxymaltol. Angew. Chem. Int. Ed. 1969; 8: 978
  • Weeds P. D., Brennan T. M., Brannegan D. P., Kuhla D. E., Elliott M. L., Watson H. A., Wlodecki B., Breitenbach R. Conversion of secondary furfuryl alcohols and isomaltol into maltol and related γ-pyrones. J. Org. Chem. 1980; 45: 1109
  • Brennan T. M., Weeks P. D., Brannegan D. P., Kuhla D. E., Elliott M. L., Watson H. A., Wlodecki B. A novel synthesis of maltol and related γ-pyrones. Tetrahedron Lett. 1978; 1978: 331

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.