164
Views
125
CrossRef citations to date
0
Altmetric
Research Article

Biotransformation of Halogenated Compounds

Pages 1-40 | Published online: 27 Sep 2008

References

  • Symonds R. B., Rose W. I., Reed M. H. Contribution of Cl- and F bearing gases to the atmosphere by volcanoes. Nature 1988; 334: 415
  • Bracken A. Naturally occurring chlorine-containing organic substances. Manuf. Chem. 1954; 25: 533
  • Fowden L. The occurrence and metabolism of carbon-halogen compounds. Proc. R. Soc. Ser. B. 1968; 171: 5
  • Petty M. A. An introduction to the origin and biochemistry of microbial halometabolites. Bact. Rev. 1961; 25: 111
  • Suida J. F., DeBemardis J. F. Naturally occurring halogenated organic compounds. Lloydia 1973; 36: 107
  • Helz G. R., Hsu R. Y. Volatile chloro- and bromocarbons in coastal waters. Limnol. Oceanogr. 1978; 23: 858
  • Lovelock J. E. Natural halocarbons in the air and in the sea. Nature 1975; 256: 193
  • King G. M. Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate. Nature 1986; 323: 257
  • King G. M. Dehalogenation in marine sediments containing natural sources of halophenols. Appl. Environ. Microbiol. 1988; 54: 3079
  • Bollag J. M. Microbial transformation of pesticides. Adv. Appl. Microbiol. 1974; 18: 75
  • Murray A. J., Riley J. P. Occurrence of some chlorinated aliphatic hydrocarbons in the environment. Nature 1973; 242: 37
  • Slater J. H., Bull A. T. Environmental microbiology: biodegradation. Phil. Trans. R. Soc. London 1982; 297: 575
  • Goldman P., Milne G. W. A., Keister D. B. Carbon-halogen bond cleavage. III. Studies on bacterial halidohydrolases. J. Biol. Chem. 1968; 243: 428
  • Goldman P. The enzymic cleavage of C-F bond in fluoroacetate. J. Biol. Chem. 1965; 240: 3434
  • Bollag J. M., Alexander M. Bacterial dehalogenation of chlorinated aliphatic acids. Soil Biol. Biochem. 1971; 3: 91
  • Hughes S. Microbial Growth on 3-Chloropropionic Acid. Ph.D. thesis, University of Wales, College of CardiffUK 1988
  • Armfield S. J. Microbial Dehalogenation of Halogenated Aliphatic Compounds. Ph.D. thesis, University of Kent at Canterbury, UK 1990
  • Jensen H. L. Decomposition of chlorosubstituted aliphatic acids by soil bacteria. Can. J. Microbiol. 1957; 3: 151
  • Jensen H. L. Decomposition of chlorine-substituted organic acids by fungi. Acta Agric. Scand. 1959; 9: 421
  • Jensen H. L. Decomposition of chloroacetates and chloropropionates by bacteria. Acta Agric. Scand. 1960; 10: 83
  • Jensen H. L. Carbon nutrition of some microorganisms decomposing halogen-substituted aliphatic acids. Acta Agric. Scand. 1963; 13: 404
  • Magee L. A., Colmer A. R. Decomposition of 2,2′dichloropropionic acid by soil bacteria. Can. J. Microbiol. 1959; 5: 255
  • Hirsch P., Alexander M. Microbial decomposition of halogenated propionic and acetic acids. Can. J. Microbiol. 1960; 6: 241
  • Davies J. I., Evans W. C. The elimination of halide ions from aliphatic halogen substituted organic acids by an enzyme preparation from Pseudomonas dehalogenans. Proc. Biochem. Soc. 1962; 82: 50P
  • Macgregor A. N. The decomposition of dichloropropionate by soil microorganisms. J. Gen. Microbiol. 1963; 30: 497
  • Kearney P. C., Kaufman D. D., Beall M. L. Enzymatic dehalogenation of 2,2′dichloropropion-ate. Biochem. Biophys. Res. Commun. 1964; 14: 29
  • Kelly M. Isolation of bacteria able to metabolize fluoroacetate of fluoroacetamide. Nature 1965; 208: 809
  • Tonomura K., Futai F., Tanabe O., Yamaoka T. Defluorination of monofluoroacetate by bacteria. I. Isolation of bacteria and their activity of defluorination. Agric. Biol. Chem. 1965; 29: 124
  • Burge W. D. Populations of Dalapon-decomposing bacteria in soil as influenced by additions of Dalapon or other carbon sources. Appl. Microbiol. 1969; 17: 454
  • Foy C. L. The chlorinated aliphatic acids. Herbicides, Chemistry, Degradation and Mode of Action, P. C. Kearney, D. D. Kaufman, 1975; Vol. 1: 399
  • Kearney P. C., Harris C. I., Kaufman D. D., Sheets T. J. Behaviour and fate of chlorinated aliphatic acids in soils. Adv. Pest Contr. Res. 1965; 6: 1
  • Kearney P. C. Metabolism of herbicides in soils. Adv. Chem. Ser. 1966; 60: 250
  • Goldman P., Milne G. W. A. Carbon-fluorine bond cleavage. J. Biol. Chem. 1966; 241: 5557
  • Kawasaki H., Tone N., Tonomura K. Plas-mid-determined dehalogenation of haloacetates in Moraxella sp. Agric. Biol. Chem. 1981; 45: 29
  • Kawasaki H., Miyoshi K., Tonomura K. Purification, crystallization and properties of haloacetate halidohydrolase from Pseudomonas sp. Agric. Biol. Chem. 1981; 45: 543
  • Little M., Williams P. A., A bacterial halidohydrolase: its purification, some properties and its modification by specific amino acid reagents. Eur. J. Biochem. 1971; 21: 99
  • Slater J. H., Lovatt D., Weightman A. J., Senior E., Bull A. T. The growth of Pseudomonas putida on chlorinated aliphatic acids and its dehalo-genase activity. J. Gen. Microbiol. 1979; 114: 125
  • Weightman A. J., Slater J. H., Bull A. T. The partial purification of two dehalogenases from Pseudomonas putida PP3. FEMS Micro. Lett. 1979; 6: 231
  • Weightman A. J., Weightman A. L., Slater J. H. Stereospecificity of 2-monochloropropionate dehalogenation by the two dehalogenases of Pseudomonas putida PP3: evidence for two different dehalogenation mechanisms. J. Gen. Microbiol. 1982; 128: 1755
  • Berry E. K. M., Allison N., Skinner A. J. Degradation of the selective herbicide 22DCPA, (Dalapon) by a soil bacterium. J. Gen. Microbiol. 1979; 110: 39
  • Allison N., Skinner A. J., Cooper R. A. The dehalogenases of a 2,2-dichloropropionate-de-grading bacterium. J. Gen. Microbiol. 1983; 129: 1283
  • Leigh J. A., Skinner A. J., Cooper R. A. Partial purification, stereospecificity and stoichiometry of three dehalogenases from a Rhizobium species. FEMS Microbiol. Lett. 1988; 49: 353
  • U.K. Patent Number 179603, ICI
  • Smith J. M., Harrison K., Colby J., Taylor S. C. Determination of D-2-halopropionate dehalo-genase activity from Pseudomonas putida strain AJ1/23 by ion chromatography. FEMS Microbiol. Letts. 1989; 57: 71
  • Smith J. M., Harrison K., Colby J. Purification and characterization of D-2-halopropionate dehalogenase from Pseudomonas putida strain AJ1/23. J. Gen. Microbiol. 1990; 136: 881
  • Motosugi K., Esaki N., Soda K. Purification and properties of 2 halo-acid dehalogenase from P. putida. Agric. Biol. Chem. 1982; 46: 327
  • Klages V., Krauss S., Lingens F. 2 haloacid dehalogenase from a 4 chlorobenzoate-degrading Pseudomonas species, CBS3. Hoppe-Seylers Z. Physiol. Chem. 1983; 364: 529
  • Tsang J. S. H., Sallis P. J., Bull A. T., Hardman D. J. A monobromoacetate dehalogenase from Pseudomonas cepacia MBA4. Arch. Microbiol. 1988; 150: 441
  • Motosugi K., Esaki N., Soda K. Bacterial assimilation of D- and L-2-chloropropionates and occurrence of a new dehalogenase. Arch. Microbiol. 1982; 131: 179
  • Omori T., Alexander M. Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl. Environ. Microbiol. 1978; 36: 867
  • Motosugi K., Soda K. Microbial degradation of synthetic organochlorine compounds. Experientia 1983; 39: 1214
  • Castro C. E., Bartnicki E. W. Biological cleavage of carbon-halogen bonds metabolism of 3-bromopropanol by Pseudomonas sp. Biochem. Biophys. Acta 1965; 100: 384
  • Hardman D. J., Slater J. H. Dehalogenases in soil bacteria. J. Gen. Microbiol. 1981; 123: 117
  • Weightman A. J., Slater J. H. Selection of Pseudomonas putida strains with elevated dehalogenase activities by continuous culture growth on chlorinated alkanoic acids. J. Gen. Microbiol. 1980; 121: 187
  • Clarke P. H., Lilly M. D. The regulation of enzyme synthesis during growth. Microbial Growth, P. M. Meadows, S. J. Pirt, 1969
  • Dean A. C. R. Influence of environment on the control of enzyme synthesis. J. Appl. Chem. Biotechnol. 1972; 22: 245
  • Hardman D. J., Slater J. H. The dehalogenase complement of a soil pseudomonad grown in closed and open cultures on haloalkanoic acids. J. Gen. Microbiol. 1981; 127: 399
  • Hall B. G., Yokohama S., Calhoun D. H. Role of cryptic genes in microbial evolution. Mol. Biol. Evol. 1983; 1: 109
  • Senior E., Bull A. T., Slater J. H. Enzyme evolution in a microbial community growing on the herbicide Dalapon. Nature 1976; 263
  • Slater J. H., Weightman A. J., Hall B. G. Dehalogenase genes of Pseudomonas putida PP3 on chromosomally located transposable elements. Mol. Biol. Evol. 1985; 2: 557
  • Kawasaki H., Yahara H., Tonomura K. Isolation and characterization of plasmid pUO1 mediating dehalogenation of haloacetate and mercury resistance in Moraxella sp. B. Agric. Biol. Chem. 1981; 45: 1477
  • Kawasaki H., Hayashi S., Yahara H., Minami F., Tonomura K. Plasmid pUO2 determining haloacetate dehalogenase and mercury resistance in Pseudomonas sp. J. Ferm. Technol. 1982; 60: 5
  • Kawasaki H., Tako M., Koiso A., Tonomura K. Genetic rearrangement of plasmids: in vivo recombination between a dehalogenation plasmid and multiple-resistance plasmid RP. 4 in Pseudomonas sp. Appl. Environ. Microbiol. 1985; 49: 1544
  • Hardman D. J., Gowland P. C., Slater J. H. Large plasmids from soil bacteria enriched on halogenated alkanoic acids. Appl. Environ. Microbiol. 1986; 51: 44
  • Bouwer E. J., Rittmann B. E., McCarty P. L. Anaerobic degradation of halogenated 1- and 2-carbon organic compounds. Environ. Sci. Technol. 1981; 15: 596
  • Bouwer E. J., McCarty P. L. Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl. Environ. Microbiol. 1983; 45: 1286
  • Vogel T. M., McCarty P. L. Biotransformation of tetrachloroethylene, dichloroethylene, vinylchloride and carbon dioxide under methanogenic conditions. Appl. Environ. Microbiol. 1985; 49: 1080
  • Belay, Daniels L. Production of ethane, ethylene and acetylene from halogenated hydrocarbons by methanogenic bacteria. Appl. Environ. Microbiol 1987; 53: 1604
  • Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoate acid. Appl. Environ. Microbiol. 1984; 48: 840
  • Fathepure B. Z., Nengu J. P., Boyd S. A. Anaerobic bacteria that dechlorinate perchloroethylene. Appl. Environ. Microbiol. 1987; 53: 2671
  • Mikesell M. D., Boyd S. A. Dechlorination of chloroform by Methanosarcina strains. Appl. Environ. Microbiol. 1990; 56: 1198
  • Fathepure B. Z., Boyd S. A. Dependence of tetrachloroethylene dechlorination on methanogenic substrate consumption by Methanosarcina sp. strain DCM. Appl. Environ, Microbiol. 1988; 54: 2976
  • Egli C., Tschan T., Scholtz R., Cook A. M., Leisinger T. Transformation of tetrachloromethane to dichloromethane and carbon dioxide by Acetobacterium woodii. Appl. Environ. Microbiol. 1988; 54: 2819
  • Kohler-Stabu D., Kohler H. P. E., Microbial degradation of β-chlorinated four-carbon aliphatic acids. J. Bacteriol. 1989; 171: 1428
  • Omori T., Alexander M. Bacterial and spontaneous dehalogenation of organic compounds. Appl. Environ. Microbiol. 1978; 35: 512
  • Fogel M. M., Taddeo A. R., Fogel S. Bio-degradation of chlorinated ethenes by a methane-utilizing mixed culture. Appl. Environ. Microbiol. 1986; 51: 720
  • Wilson J. T., Wilson B. H. Biotransformation of trichoroethylene in soil. Appl. Environ. Microbiol. 1985; 49: 242
  • Janssen D. B., Grobben G., Hoekstra E., Oldenhuis R., Witholt B. Degradation of trans-1,2-dichloroethene by mixed and pure cultures of methanotrophic bacteria. Appl. Environ. Microbiol. 1988; 29: 392
  • Scholtz R., Schmuckle A., Cooke A. M., Leisinger T. Degradation of eighteen 1-monohal-oalkanes by Arthrobacter sp. strain HA1. J. Gen. Microbiol. 1987; 133: 267
  • Tsang J. S. H., Yokota T., Omori T., Minoda Y. A preliminary study on the chloroalkane utilizing bacteria. Annual Report of ICME. Osaka University, OsakaJapan 1983; 101
  • Murphy G. L., Perry J. J. Assimilation of chlorinated alkanes by hydrocarbon-utilizing fungi. J. Bacteriol. 1984; 160: 1171
  • Yokota T., Fuse H., Omori T., Minoda Y. Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase. Agric. Biol. Chem. 1986; 50: 453
  • Janssen D. B., Scheper A., Witholt B. Bio-degradation of 2-chloroethanol and 1,2-dichloroeth-ane by pure bacterial cultures. Progress in Industrial Microbiology: 20 Innovations in Biotechnology, E. H. Houwink, R. R. van der Meer. Elsevier, Amsterdam 1984
  • Janssen D. B., Scheper A., Dijkhuizen L., Witholt B. Degradation of halogenated aliphatic compounds by Xanthobacter autotrophicus GJ10. Appl Environ. Microbiol 1985; 49: 673
  • Sallis P. J., Armfield S. J., Bull A. T., Hardman D. J. Isolation and characterization of a haloalkane dehalogenase from Rhodococcus erythropolis Y2. J. Gen. Microbiol, in press.
  • Scholtz R., Leisinger T., Suter F., Cook A. M. Characterization of 1-chlorohexane halidohydrolase, a dehalogenase of wide substrate range from an Arthrobacter sp. J. Bacteriol. 1987; 169: 5016
  • Omori T., Alexander M. Bacterial dehalogenation of halogenated alkanes and fatty acids. Appl. Environ. Microbiol. 1978; 35: 867
  • Dalton H. Oxidation of hydrocarbons by methane monooxygensases from a variety of microbes. Adv. Appl. Microbiol. 1980; 26: 71
  • Anthony C. Bacterial oxidation of methane and methanol. Adv. Microbiol Physiol. 1986; 27: 113
  • Colby J., Stirling D. I., Dalton H. The soluble methane monooxygenase of Methylococcus capsulatus (Bath), its ability to oxygenate n-alkanes. n-alkenes, ethers and alicyclic aromatic and heterocyclic compounds. Biochem. J. 1977; 165: 395
  • Higgins I. J., Hammond R. C., Sariaslani F. S., Best D., Davies M. M., Tryhorn S. E., Taylor F. Biotransformation of hydrocarbons and related compounds by whole organism suspension of methane-grown Methylosinus trichosporum OB3b. Biochem. Biophys. Res. Commun. 1979; 89: 671
  • Patel R. N., Hou C. T., Laskin A. J., Felix A. Microbial oxidation of hydrocarbons: properties of a soluble methane monooxygenase from a facultative methane-utilizing organism Methylo-bacterium sp. strain CRL-26. Appl. Environ. Microbiol. 1982; 44: 1130
  • Egli C., Scholtz R., Cook A. M., Leisinger T. Anaerobic dechlorination of tetrachloromethane and 1–2-dichloroethane to degradabie products by pure cultures of Desulfobacterium sp. and Methanobacterium sp. FEMS Microbiol. Lett. 1987; 43: 257
  • Scott D., Brannan J., Higgins I. J. The effect of growth conditions on intracytoplasmic membranes and methane monooxygenase activities in Methylosinus trichosporum OB3b. J. Gen. Microbiol 1981; 125: 63
  • Stanley S. H., Prior S. D., Leak D. J., Dalton H. Copper stress underlies the fundamental change in intracellular location of methane monooxygenase in methane oxidizing organisms: studies in batch and continuous culture. Biotechnol. Letts. 1983; 5: 487
  • Burrows K. J., Cornish A., Scott D., Higgins I. J. Substrate specificities of the soluble and particulate methane monooxygenases of Methy-losinustrichosporum OB3b. J. Gen. Microbiol. 1984; 130: 3327
  • Tsien H. C., Brusseau G. A., Hanson R. S., Wackett L. P. Biodegradation of trichloroethylene by Methylosinus trichosporum OB3B. Appl. Environ. Microbiol. 1989; 55: 3155
  • Imai T., Takigawa H., Nakagawa S., Shen G-J., Kodama T., Minoda Y. Microbial oxidation of hydrocarbons and related compounds by whole cell suspensions of methane-oxidizing bacterium H-2. Appl. Environ. Microbiol. 1986; 52: 2403
  • Stirling D. I., Daiton H. Oxidation of dimethyl ether, methyl formate and bromomethane by Methylococcus capsulatus (Bath). J. Gen. Microbiol. 1980; 116: 277
  • Uchiyama H., Nakajima T., Yaki O., Tabuchi T. Aerobic degradation of trichloroethylene by a new type II methane-utilizing bacterium strain M. Agric. Biol. Chem. 1989; 53: 3155
  • Bournes E. J., McCarty P. L. Ethylene dibromide under methanogenic conditions. Appl. Environ. Microbiol. 1985; 50: 527
  • Little C. D., Palumbo A. V., Herbes S. E., Lidstrom M. E., Tyndall R. L., Gilmer P. J. Trichloroethylene biodegradation by a methane-oxidizing bacterium. Appl. Environ. Microbiol. 1988; 54: 951
  • Jakoby W. B. Enzymatic Basis of Detoxification. Academic Press, Orlando 1980
  • Lam T., Vilker L. Biodehalogenation of bromo- trichloromethane and 1–2 dibromo-3-chlo-ropropane by Pseudomonas putida PpG-786. Biotech. Bioeng. 1986; 29: 151
  • Vanelli T., Logan M., Arciero D. M., Hooper A. B. Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea. Appl. Environ. Microbiol. 1990; 56: 1169
  • Nelson M. J. K., Montgomery S. O., Mahaffey W. R., Pritchard P. H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 1987; 53: 949
  • Nelson M. J. K., Montgomery S. O., O'Neill E. J., Pritchard P. H. Aerobic metabolism of trichloroethylene by a bacterial isolate. Appl. Environ. Microbiol. 1986; 52: 383
  • Nelson M. J. K., Montgomery S. O., Mahaffey W. R., Pritchard P. H. Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway. Appl. Environ. Microbiol. 1987; 53: 949
  • Nelson M. J. K., Montgomery S. O., Pritchard P. H. Trichloroethylene metabolism by microorganisms that degrade aromatic compounds. Appl. Environ. Microbiol. 1988; 54: 604
  • Wackett L. P., Gibson D. Y. Degradation of trichloroethylenes by toluene dioxygenease in whole-cell studies with Pseudomonas putida F. 1. Appl. Environ. Microbiol. 1988; 54: 1703
  • Folsom B. R., Chapman P. J., Pritchard P. H. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 1990; 56: 1279
  • Zystra G. J., Wackett L. P., Gibson D. T. Trichloroethylene degradation by Eschericia coli containing the cloned Pseudomonas putida F1 toluene dioxygenase genes. Appl. Environ. Microbiol. 1989; 55: 3162
  • Harker A. R., Kim Y. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophusJMP 134. Appl. Environ. Microbiol. 1990; 56: 1179
  • Walton B. T., Anderson T. A. Microbial degradation of trichloroethylene in the rhizosphere: Potential application to biological remediation of waste sites. Appl. Environ. Microbiol. 1990; 56: 1012
  • Brunner W., Staub D., Leisinger T. Bacterial degradation of dichloromethane. Appl. Environ. Microbiol. 1980; 40: 950
  • Stucki G. R., Galli R., Ebersold H-R., Leisinger T. Dehalogenation of dichloromethane by cell extracts of Hyphomicrobium DM2. Arch. Microbiol. 1981; 130: 366
  • Ahmed A. E., Anders M. W. Metabolism of dihalomethanes to formaldehyde and inorganic halide 11; studies on the mechanism of the reaction. Biochem. Pharmacol. 1978; 27: 2021
  • Kohler-Staub D., Leisinger T. Dichloromethane dehalogenase of Hyphomicrobium sp. strain DM2. J. Bacteriol. 1985; 162: 676
  • Kohler-Staub D., Hartmans S., Gali R., Suter F., Leisinger T. Evidence for identical dichloromethane dehalogenases in different methylotrophic bacteria. J. Gen. Microbiol. 1986; 132: 2837
  • Galli R., Leisinger T. Specialized bacterial strains for the removal of dichloromethane from industrial waste. Conservn. Recycl. 1985; 8: 91
  • Galli R., Leisinger T. Plasmid analysis cloning of the dichloromethane utilizing genes of Methylobacterium sp. DM4. J. Gen. Microbiol. 1988; 134: 943
  • Scholtz R., Wackett L. P., Egli C., Cook A. M., Leisinger T. Dichloromethane dehalogenase with improved catalytic activity isolated from a fast-growing dichloromethane-utilizing bacterium. J. Bacteriol 1988; 170: 5698
  • Keuning S., Janssen D. B., Witholt B. Purification and characterization of hydrolytic Haloalkane dehalogenase from Xanthobacter autotrophics GJ10. J. Bacteriol 1985; 163: 635
  • Janssen D. B., Keuning S., Witholt B. Involvement of a quinoprotein alcohol dehydrogenase and a NAD-dependent aldehyde dehydrogenase in 2-chloroethanol metabolism in Xanthobacter autotrophics GJ10. J. Gen. Microbiol 1987; 122: 85
  • Stucki G., Leisinger T. Bacterial degradation of 2-chloroethanol proceeds via 2-chloroacetic acid. FEMS Microbiol, Lett. 1983; 16: 123
  • Yokota T., Omori T., Kodama T. Purification and properties of haloalkane dehalogenase from Corynebacterium sp. M15–3. J. bacterial. 1987; 169: 4049
  • Janssen D. B., Jager D., Witholt B. Degradation of n-haloalkanes and α,β-dihaloalkanes by wild-type and mutants of Acinetobacter sp. strain GJ 70. Appl. Environ. Microbiol. 1987; 53: 561
  • Janssen D. B., Gerritse J., Brackman J., Kalk C., Jager D., Witholt B. Purification and characterization of a bacterial dehalogenase with activity toward halogenated alkanes, alcohols and ethers. Eug. J. Biochem. 1988; 171: 67
  • Scholtz R., Messi F., Leisinger T., Cook A M. Three dehalogenases and physiological restraints in the biodegradation of haloalkanes by Arthrobacter sp. strain HA1. Appl. Environ. Microbiol. 1988; 54: 3034
  • van den Wyngarrd A. J., Janssen D. B., Witholt B. Degradation of epichlorohydrin and halohydrins by bacterial cultures isolated from freshwater sediment. J. Gen. Microbiol. 1989; 135: 2199
  • Janssen D. B., Pries F., van der Ploeg J., Kazemier B., Terpstra P., Witholt B. Cloning of 1,2-dichloroethane degradation genes of Xanthobacter autotrophics GJ10 and expression and sequencing of the dhl A gene. J. Bacteriol. 1989; 171: 6791
  • La Roche S. D., Leisinger T. Sequence analysis and expression of the bacterial cichloromethane dehalogenase structural gene, a member of the glutathione S-transferase super gene family. J. Bacteriol. 1990; 172: 164
  • Goldman P., Milne G. W. A., Pignatavo M. T. Fluorine containing metabolites formed from 2-fluorobenzoic acid by Pseudomonas species. Arch. Biochem. Biophys. 1967; 118: 178
  • Klages U., Lingens F. Degradation of 4-chlorobenzoic acid by a Pseudomonas sp. Zbl. Bakt. Hyg. I. Abt. Orig. C. I. 1980; 215
  • Klages U., Markus A., Lingens F. Degradation of 4-chlorophenylacetic acid by a Pseudomonas species. J. Bacteriol. 1981; 146: 64
  • Markus A., Klages U., Krauss S., Lingens F. Oxidation and dehalogenation of 4-chlorophenylacetate by a two component enzyme system from Pseudomonas sp. strain CBS3. J. Bacteriol. 1984; 160: 618
  • Renganathan V. Possible involvement of toluene-2,3-dioxygenase in defluorination of 3-fluoro-substituted benzenes by toluene-degrading Pseudomonas sp. strain T-12. Appl. Environ. Microbiol. 1989; 55: 330
  • Furukawa K., Matsumura F., Tomomura K. Alcaligenes and Acinetobacter strains capable of degrading polychlorinated biphenyls. Agric. Biol. Chem. 1978; 42: 543
  • Furukawa K., Tomizuka N., Kamibayashi A. Effect of chlorine substitution on the bacterial metabolism of various polychlorinated biphenyls. Appl. Environ. Microbiol. 1979; 38: 301
  • Kimbara K., Hashimodto T., Fukuda M. D., Koana T., Takagi M., Oishi M., Yano K. Isolation and characterization of a mixed culture that degrades polychlorinated biphenyls. Agric. Biol. Chem. 1988; 52: 2885
  • Clark R. R., Chian E. S. K., Griffin R. A. Degradation of polychlorinated biphenyls by mixed microbial cultures. Appl. Environ. Microbiol. 1979; 34: 680
  • Bopp L. H. Degradation of highly chlorinated PCBs by Pseudomonas strain LB400. J. Ind. Microbiol. 1986; 1: 23
  • Bumpus J. A., Tien M., Wright C., Aust S. D. Oxidation of persistent environmental pollutants by a white rot fungus. Science 1985; 228: 1434
  • Horowitz A., Shelton D. R., Cornell C. P., Tiedje J. M. Anaerobic degradation of aromatic compounds in sediments and digest sludge. Dev. Ind. Microbiol. 1982; 23: 435
  • Suflita J. M., Horowitz A., Shelton D. R., Tiedje J. M. Dehalogenation: a novel pathway for the anaerobic biodegradation of haloaromatic compounds. Science 1982; 218: 1115
  • Teidje J. M., Boyd S. A., Fathepure B. Z. Anaerobic degradation of chlorinated aromatic hydrocarbons. Dev. Ind. Microbiol. 1986; 27: 117
  • Quenson J. F., III, Teidje J. M., Boyd S. A. Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments. Science 1988; 242: 752
  • Mikesell M. D., Boyd S. A. Complete reductive dechlorination and mineralization of pentachlorophenol by anaerobic microorganisms. Appl. Environ. Microbiol. 1986; 52: 861
  • Shelton D. R., Tiedje J. M. Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl. Environ. Microbiol. 1984; 48: 840
  • Dolfing J., Tiedje J. M. Hydrogen cycling in a three-tiered food web growing on the methanogenic conversion of 3-chlorobenzoate. FEMS. Microbiol. Ecol. 1986; 38: 293
  • Kohring G. W., Rogers J. E., Wiegel J. Anaerobic biodegradation of 2,4-dichlorophenol in freshwater lake sediments at different temperatures. Appl. Environ. Microbiol. 1989; 55: 348
  • Boyd S. A., Shelton D. R., Berry D., Tiedje J. M. Anaerobic biodegradation of phenolic compounds in digested sludge. Appl. Environ. Microbiol. 1983; 46: 50
  • Boyd S. A., Shelton D. R. Anaerobic biodegradation of chlorophenols in fresh and acclimated sludge. Appl. Environ. Microbiol. 1984; 47: 272
  • Stevens T. O., Linkefield T. G., Tiedje J. M. Physical characterization of strain DCB-1, a unique dehalogenating sulfidogenic bacterium. Appl. Environ. Microbiol. 1988; 54: 2938
  • Dolfing J. Reductive dechlorination of 3-chlorobenzoate is coupled to ATP production and growth in anaerobic bacterium strain DCB-1. Arch. Microbiol. 1990; 153: 264
  • Mohn W., Teidje J. M. Strain DCB-1 conserves energy for growth from reductive dechlorination coupled to formate oxidation. Arch. Microbiol 1990; 153: 267
  • Gibson S. A., Suflita J. M. Anaerobic bio-degradation of 2,4,5-trichlorophenoxyacetic acid in samples from a methanogenic aquifer: stimulation by short chain organic acids and alcohols. Appl. Environ. Microbiol. 1990; 56: 1825
  • Zaitsev G. M., Karasevich Y. N. Preparatory metabolism of 4-chlorobenzoic and 2,4-dichlorobenzoate acids in Corynebacterium sepedonicum. Mikrobiologiya 1985; 54: 354
  • van den Tweel W. J. J., ter Burg N., Kok J. B., de Bont J. A. M. Bioformation of 4-hydrox-ybenzoate from 4-chlorobenzoate by Alcaligenes dentificans NTB-1. Appl. Microbiol. Biotechnol. 1986; 25: 289
  • van den Tweel W. J. J., Kok J. B., de Bont J. A. M. Reductive dechlorination of 2,4-dichlorobenzoate to 4-chlorobenzoate and hydrolytic dehalogenation of 4-cloro, 4-bromo and 4-iodobenzoate by A. denitrificans NTB-1. Appl. Environ. Microbiol. 1987; 53: 810
  • Reineke W., Knackmuss H. J. Microbial degradation of haloaromatics. Annu. Rev. Microbiol. 1988; 42: 263
  • Johnston H. W., Briggs G. G., Alexander M. Metabolism of 3-chlorobenzoic acid by a pseudomonad. Soil Biol. Biochem. 1972; 4: 187
  • Ruisinger S., Klages U., Lingens F. Abban der4-chlorobenzoesaure durch eine Arthrobacter sp. Arch. Microbiol. 1976; 110: 253
  • Klages U., Lingens F. Degradation of 4-chlorobenzoic acid by a Nocardia species. FEMS Microbiol. Lett. 1979; 6: 201
  • Thiele J., Muller R., Lingens F. Initial characterization of 4-chlorobenzoate dehalogenase from Pseudomonas sp. CBS 3. FEMS Microbiol. Lett. 1987; 41: 115
  • Savard P., Peloquin L., Sylvestre M. Cloning of Pseudomonas sp. strain CBS3 genes specifying dehalogenase of 4-chlorobenzoate. J. Bacteriol. 1986; 168: 81
  • Marks T. W., Smith A R. W., Quirk A. V. Degradation of 4-chloro benzoic acid by Arthrobacter sp. Appl. Environ. Microbiol. 1984; 48: 1020
  • Muller R., Oltmanns R. H., Lingens F. Enzymatic dehalogenation of 4-chlorobenzoate by extracts from Arthrobacter sp. SUDSM 20407. Biol. Chem. 1988; 369: 567
  • Engesser K. H., Schulte P. Degradation of 2-bromo-, 2-chloro-, and 2-fluoro-benzoate by Pseudomonas putida CLB 250. FEMS. Micro. Letts. 1989; 60: 143
  • Sylvestre M., Mailhiot K., Ahmad D., Masse R. Isolation and preliminary characterization of a 2-chlorobenzoate degrading Pseudomonas. Can. J. Microbiol 1989; 35: 439
  • Higson F. K., Focht D. D. Degradation of 2-bromobenzoic acid by a strain of Pseudomonas aeruginosa. Appl. Environ. Mirobiol. 1990; 56: 1615
  • Cook A. M., Hutter R. Ring dechlorination of deethylsimazine by hydrolases from Rhodococcus corallinus. FEMS Microbiol. Lett. 1986; 34: 335
  • Steiert J. G., Crawford R. L. Microbial degradation of chlorinated phenols. Trends Biotechnol. 1985; 3: 300
  • Stanlake G. J., Finn R. K. Isolation and characterization of a pentachlorophenol degrading bacterium. Appl. Environ. Microbiol. 1982; 44: 1421
  • Pignatello J. J., Martinson M. M., Steiert J. G., Carlson R. E., Crawford R. J. Biodegradation and photolysis of pentachlorophenol in artificial freshwater streams. Appl. Environ. Microbiol. 1983; 46: 1024
  • Saber D. L., Crawford R. L. Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Appl. Environ. Microbiol. 1985; 50: 1512
  • Schmidt E., Hellwig M., Knackmuss H. J. Degradation of chlorophenols by a defined mixed microbial community. Appl. Environ. Microbiol. 1983; 46: 1038
  • Apajalahti J. H. A., Karrparioja P., Salkinoja-Salonen M. S. Rhodococcus chlorophenolicus nov., a chlorophenol-mineralizing Actinomycete. Int. J. Syst. Bacteriol. 1986; 36: 246
  • Apajalahti J. H. A., Salkinoja-Salonen M. S. Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol 1987; 169: 675
  • Haggblom M. H., Apajalahti J. H. A., Salkinoja-Salonen M. S. Hydroxylation and dechlorination of chlorinated guaiacols and syringols by Rhodococcus chlorophenolicus. Appl Environ. Microbiol. 1988; 54: 683
  • Haggblom M. H., Nohynek L. J., Salkinoja-Salonen M. S. Degradation and O-methylation of chlorinated phenolic compounds by Rhodococcus and Mycobacterium strains. Appl. Environ. Microbiol. 1988; 54: 3043
  • Haggblom M. H., Janke D., Salkinoja-Salonen M. S. Transformation of chlorinated phenolic compounds in the genus Rhodococcus. Microb. Ecol. 1989; 18: 147
  • Steiert J. G., Crawford R. L. Catabolism of pentachlorophenol by a Flavobacterium sp. Biochem. Biophys. Res. Commun. 1986; 141: 825
  • Dorn E., Hellwig M., Reineke W., Knackmuss H. J. Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol. 1974; 99: 61
  • Ghosal D., You I. S., Chatterjee D. K., Chakrabarty A. M. Microbial degradation of halogenated compounds. Science 1985; 228: 135
  • Rochkind M. L., Blackburn J. W., Sayler G. S. Microbial decomposition of chlorinated aromatic compounds. US.EPA/600/2/86/090, 1986
  • Weightman A. J., Don R. H., Lehrbach P. R., Timmis K. N. The identification and cloning of genes encoding haloaromatic: catabolic enzymes and the construction of hybrid pathways for substrate mineralization. Genetic Control of Environmental Pollutants, G. S. Ommen, A. Hollaender. Plenum Press, New York 1983; 47
  • Dahod S. K., Siuta-Manganol. Carbon tetrachloride-provided steroselective hydroysis of methyl-2-chloropropionate by lipase. Biotech. Bioeng. 1986; 30: 995
  • Motosugi K., Esaki N., Soda K. Determination of L- and D-2-halopropanaoic acids and 2-halobutanoic acids with bacterial dehalogenases. Anal. Lett. 1983; 16: 509
  • Bull A. T., Holt G., Hardman D. J. Environmental pollution policies in light of biotechnological assessment: organisation for Economic Cooperation, United Kingdom and European Economic Council perspectives. Environmental Biotechnology, G. S. Ommen. Plenum Press. 1988; 351
  • Pflug A. D., Burton M. B. Remediation of multimedia contamination from the wood preserving industry. Environmental Biotechnology, G. S. Ommen. Plenum Press. 1988; 193
  • St. John W. D., Sikes D. J. Complex industrial waster sites. Environmental Biotechnology, G. S. Ommen. Plenum Press. 1988; 237
  • Offutt C. K., Knapp J. O., Cord-Duthinh E., Bissex D. A., Oravetz A. W., Lacy G. D., Kenny P. J., Green E. L., Bhinge D. Analysis of contaminated soil treatment effectiveness. 9th National Conference: Superfund 88. The Hazardous Material Control Research Institute, US 1988
  • Pelon W., Mayo J. A. Growth of mixed microbial populations in ground water containing highly chlorinated organic wastes. Bull. Environ. Contam. Toxicol. 1987; 38: 661
  • Shimp R. J., Pfaender F. K. Influence of easily degradable naturally occurring carbon substrates on biodegradation of monosubstituted phenols by aquatic bacteria. Appl. Environ. Microbiol. 1985; 49: 394
  • Crawford R. L., Mohn W. W. Microbiological removal of pentachlorophenol from soil using a Flavobacterium. Enz. Microb. Technol. 1985; 7: 617
  • Sulfite J. M., Gibson S. A., Beeman R. E. Anaerobic biotransformations of pollutant chemicals in aquifers. J. Ind. Microbiol. 1988; 3: 179
  • Pflug A. D., Burton M. B. Remediation of multimedia contamination from the wood-preserving industry. Environmental Biotechnology, G. S. Ommen. Plenum Press. 1988; 193
  • Gorris L. G. M., van Deursen J. M. A., van der Drift C., Vogels G. D. Biofilm development in laboratory methanogenic fluidized bed reactors. Biotechnol. Bioeng. 1989; 33: 687
  • Bouwer E. J., McCarty P. L. Utilization rates of trace halogenated organic compounds in acetate-grown biofilms. Biotech Bioeng. 1985; 27: 1564
  • Ottengraf S. P. P., Meesters J. J. P., van de Oever A. H. C., Rozema H. R. Biological elimination of volatile xenobiotic compounds in biofilters. Bioproc. Eng. 1986; 1: 61
  • Sahasrabudhe S. R., Modi V. V. Microbial degradation of chlorinated aromatic compounds. Microbiol. Sci. 1987; 4: 300
  • Westmeier F., Rehm H. J. Biodegradation of 4-chlorophenol by entrapped Alcaligenes sp. A7–2. Appl. Microbiol. Biotech. 1985; 22: 301
  • Westmeier F., Rehm H. J. Degradation of 4-chlorophenol in municipal wastewater by absorptive immobilized Alcaligenes sp. A 7–2. Appl. Microbiol. Biotech. 1987; 26: 78
  • Galli R. Biodegradation of dichloromethane in waste water using a fluidized bed reactor. Appl. Microbiol. Biotechnol. 1987; 27: 206
  • Morsen A., Rehm H. J. Degradation of phenol by a mixed culture of Pseudomonas putida and Cryptococcus elinivii adsorbed on activated carbon. Appl. Microbiol. Biotech. 1987; 26: 283
  • Miskus R. P., Blair D. P., Casida J. E., Conversion of DDT to DDD by bovine rumen, lake water and reduced porphyrins. J. Agric. Food Chem. 1965; 13: 481
  • Zoro A., Hunter J. M., Eglinton G., Ware G. C. Degradation of p,p′DDT in reducing environments. Nature 1974; 247: 235
  • Wade R. S., Castro C. E. Oxidation of iron(II) porphyrins by alkyl halides. J. Am. Chem. Soc. 1973; 95: 226
  • Marks T. S., Allpress J. D., Maule A. Dehalogenation of Lindane by a variety of porphyrins and corrins. Appl. Environ. Microbiol. 1989; 55: 1258
  • Hardman D. J., Slater J. H., unpublished data
  • Armfield S. J., Sallias P. J., Bull A. T., Hardman D. J., unpublished data

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.