67
Views
38
CrossRef citations to date
0
Altmetric
Research Article

Food Bioconversions and Metabolite Production Using Immobilized Cell Technology

&
Pages 193-224 | Published online: 27 Sep 2008

References

  • Abraham T. E., Jamuna R., Bansilal C. V., Ramakrishna S. V. Continuous synthesis of glucoamylasc by immobilized fungal mycelium of Aspergillus niger. Starch Staerke 1991; 43: 113
  • Abraham T. E., Surrender G. D. Horizontal rotary bioreactor: effect of rotation and bed characteristics on ethanol fermentation with immobilized yeast cells. J. Ferment. Bioeng. 1993; 75: 322
  • Adami A., Cavazzoni V., Trezzi M., Craveri R. Cellobiose hydrolysis by Trichosporon pulhduns cells immobilized in calcium alginate. Biotechnol. Bioeng. 1988; 32: 391
  • Ahmad S., Johri B. N. Immobilization of Rhodococcus equi DSM 89–133 onto porous celite beads for cholesterol side-chain cleavage. Appl. Microbiol. Biotechnol 1992; 37: 468
  • Aleksieva P., Petricheva E., Konstantinov E., Robeva C., Mutafov S. Acid proteinases production by Humicola lutea cells immobilized in polyhydroxyethylmethacrylate gel. Acta Biotechnol. 1991; 11: 255
  • Alteriis E., Parascandola P., Scardi V. Ethanolic fermentation by yeast cells immobilized in polyaldehyde-hardcned gelatin beads. J. Ferment. Bioeng. 1992; 73: 73
  • Alteriis E., Parascandola P., Scardi V. Oxidized starch as a hardening agent in the gelatin-immobilization of living yeast cells. Starch. 1990; 42: 57
  • Andrews G. F., Fonta J. P. A fluidized-bed continuous bioreactor for lactic acid production. Appl. Biochem. Biotechnol. 1989; 20: 375
  • Anon. Encyclopedia of food ingredients. Food in Canada 1993; 15
  • Arnaud J. P., Lacroix C., Choplin L. Effect of agitation rale on cell release rate and metabolism during continuous fermentation with entrapped grow-ing Lactobacillus casei subsp. casei. Biotechnol. Tech. 1992; 6: 265
  • Audet P., Lacroix C., Paquin C. Continuous fermentation of a supplemented whey permeate medium with immobilized Streptococcus salivarius subsp. thermophilic. Int. Dairy J. 1992; 2: 1
  • Bajpai P., Margaritis M. Optimization studies for production of high fructose syrup from Jerusalem artichoke using calcium alginate immobilized cells of Kluyveroinyc.es marxianus. Process Biochem. 1986; 21: 16
  • Bang W. G., Behrendt U., Lang S., Wagner F. Continuous production of L-tryptophan from indole and L-serinc by immobilized Escherichia coli cells. Biotechnol. Bioeng. 1983; 25: 1013
  • Bazaraa W. A., Hamdy M. K. Fructose production by immobilized Arthrobacter cells. J. hid. Microbiol 1989; 4: 267
  • Begin A., Beaulieu Y., Goulet J., Castaigne F. Whey fermentation by Propionibactcrium shermanii immobilized in different gels. Milchwiss. 1992; 47: 411
  • Bisping B., Baumann U., Rehm H. J. Production of glycerol by immobilized Pichia farinosa. Appl. Microbiol. Biotechnol 1990; 32: 380
  • Bisping B., Hecker D., Rehm H. J. Glycerol production by semicontinuous fed-batch fermentation with immobilized cells of Saccharomyces cerevisiae. Appl Microbiol. Biotechnol 1989; 32: 119
  • Bisping B., Renin H. J. Glycerol production by immobilized cells of Saccharomyces cerevisiae. Eur. J. Appl. Microbiol. Biotechnol. 1982; 14: 136
  • Bisping B., Rehm H. J. Glycerol production by cells of Saccharomyces cerevisiae immobilized in sintered glass. Appl. Microbiol. Biotechnol. 1986; 23: 174
  • Bon E., Webb C. Passive immobilization of Aspergillus awamori spores for subsequent glycoa-mylase production. Enzyme Microbiol. Technoi 1989; 11: 495
  • Boyaval P., Goulet J. Optimal conditions for production of lactic acid from cheese whey permeate by Ca-alginate-entrapped Lactobacillus helveticus. Enzyme Microbiol. Technoi 1988; 10: 725
  • Brito L. C., Vieira A. M., Leitao J. G., Sa-Correia I., Novais J. M., Cabral J. M. S. Effect of the aqueous soluble components of the immobilization matrix on ethanol and microbial exopolysaccharides production. Physiology of Immobilized Cells, J. A. M. de Bont, J. Visser, B. Mattiasson, J. Tramper. Elsevier Science Publishers, Amsterdam 1990; 399
  • Bunning T. J., Lawton C. W., Klei H. E., Sundstrom D. W. Physical property improvement of a pellicular biocatalyst. Bioprocess Eng. 1991; 7: 71
  • Buzas Z., Dallmann K., Szajani B. Influence of pH on the growth and ethanol production of free and immobilized Saccharomyces cerevisiae cells. Biotechnol. Bioeng. 1989; 34: 882
  • Cahill G., Walsh P. K., Ryan T. P. Studies on the production of β-glucanase by free and immobilized recombinant yeast cells. Physiology of Immobilized Cells, J. A. M. de Bont, J. Visser, B. Mattiasson, J. Tramper. Elsevier Science Publishers, Amsterdam 1990; 405
  • Castillo E., Casas L. T. Reutilization of free and immobilized Kluyveromyces fragilis yeast cells with a controlled permeabilization treatment. Physiology of Immobilized Cells, J. A. M. de Bont, J. Visser, B. Mattiasson, J. Tramper. Elsevier Science Publishers, Amsterdam 1990; 213
  • Castillo J. J. Preliminary evaluation of the ethanol production from enzymatically hydrolyzed sugarcane bagasse. World J. Microbiol. Biotechnol. 1992; 8: 425
  • Cavin J. F., Saint C., Diviès C. Continuous production of Emmental cheese flavours and propionic acid starters by immobilized cells of a propionic acid bacterium. Biotechnol. Lett. 1985; 7: 821
  • Champagne C. P., Baillargeon-Cté C., Goulet J. Fermentation du lactosérum par cellules immobilisées de Lactobacillus helveticus. Can. Inst. Food Sci. Technoi J. 1988; 21: 403
  • Champagne C. P., Baillargeon-Cté C., Goulet J. Whey fermentation by immobilized cells of Propionibacterium shermanii. J. Appl. Bacteriol 1989; 66: 175
  • Champluvier B., Francart B., Rouxhet P. G. Co-immobilization by adhesion of β-galactosidase in nonviable cells of Kluyveromyces lactis with Klebsiella oxytoca; conversion of lactose into 2,3-butanediol. Biotechnol. Bioeng. 1989; 34: 845
  • Champluvier B., Kamp B., Rouxhet P. G. Immobilization of β-galactosidase retained in yeast: adhesion of the cells on a support. Appl. Microbiol. Biotechnol. 1988; 27: 464
  • Champluvier B., Marchal F., Rouxhet P. G. Immobilization of lactase in yeast cells retained in a glass wool matrix. Enzyme Microbiol. Technoi 1989; 11: 422
  • Chen C., Dale M. C., Okos M. R. The long-term effects of ethanol on immobilized cell reactor performance using K. fragilis. Biotechnol. Bioeng. 1990; 36: 975
  • Chen J. P., McGill S. D. Enzymatic hydrolysis of triglycerides by Rhizopus delemar immobilized on biomass support particles. Food Biotechnol 1992; 6: 1
  • Chibata I. Methods of cell immobilization. Manual of Industrial Microbiology and Biotechnology, A. L. Demain, N. A. Solomon. American Society for Microbiology, Washington, DC 1986; 217
  • Chibata I., Tosa T., Takamatsu S. Continuous L-alanine production using two different immobilized microbial cell preparations on an industrial scale. Methods in Enzymology, K. Mosbach. Academic Press, Orlando 1987; 136: 472
  • Chibata I., Tosa T., Sato T. Immobilized aspartase-containing microbial cells: preparation and enzymatic properties. Appl. Microbiol 1974; 27: 878
  • Chun U. H., Rogers P. L. The simultaneous production of sorbitol from fructose and gluconic acid from glucose using an oxydoreductase of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 1988; 29: 19
  • Chung B. H., Chang H. N. Aerobic fungal cell immobilization in a dual hollow-fiber bioreactor: continuous production of a citric acid. Biotechnol. Bioeng. 1988; 32: 205
  • Constantinides A., Bhatia D., Vieth W. R. Immobilization of Brevibacterium flavum cells on collagen for the production of glutamic acid in a recycle reactor. Biotechnol. Bioeng. 1981; 23: 899
  • Dallmann K., Buzas Z., Szajani B. Continuous fermentation of apple juice by immobilized yeast cells. Biotechnol Lett. 1987; 9: 577
  • Das D., Gaighani N. R., Murari K., Gupta P. S. Ethanol production by whole cell immobilization using lignocellulosic materials as solid matrix. J. Ferment. Bioeng. 1993; 75: 132
  • Decleire M., Van Huynh N., Motte J. C., De Cat W. Hydrolysis of whey by whole cells of Kluyveromyces bulgaricus immobilized in calcium alginate gels and in hen white. Appl Microbiol. Biotechnol 1985; 22: 438
  • Dempsey M. J. Ethanol production by Zymomonas mobilis in a fluidized bed fermenter. Physiology of Immobilized Cells, J. A. M. de Bont, J. Visser, B. Mattiasson, J. Tramper. Elsevier Science Publishers, Amsterdam 1990; 137
  • Dervakos G. A., Webb C. On the merits of viable-cell immobilization. Biotech. Adv. 1991; 9: 559
  • Doelle H. W., Kirk L., Crittenden R., Toh H., Doelle M. B. Zymomonas mobilis — science and industrial application. Crit. Rev. Biotechnol. 1993; 13: 57
  • D'Souza S. F., Godbole S. S. Removal of glucose from egg prior to spray drying by fermentation with immobilized yeast cells. Biotechnol. Lett. 1989; 11: 211
  • D'Souza S. F., Kamath N. Cloth bioreactor containing yeast cells immobilized on cotton cloth using polyethyleneimine. Appl. Microbiol. Biotechnol 1988; 29: 136
  • D'Souza S. F., Melo J. S. A method for the preparation of coimmobilizates by adhesion using polyethylenimine. Enzyme Microbiol. Technol. 1991; 13: 508
  • Eikmeier H., Rehm H. J. Production of citric acid with immobilized Aspergillus niger. Appl. Microbiol. Biotechnol. 1984; 20: 365
  • El Aassar S. A., El Badry H. M., Abdel Fattah A. F. The biosynthesis of proteases with fibrinolytic activity in immobilized cultures of Penicillium chrysogenum H9. Appl. Microbiol. Biotechnol. 1990; 33: 26
  • Esquivel M. G., Fonseca M. M. R., Novais J. M., Cabral J. M. S., Pais M. S. S. Continuous coagulation of milk using immobilized cells of Cynara cardunculus. NATO ASI Series 1988; 18: 379
  • Federici F., Petruccioli M., Miller M. W. Enhancement and stabilization of the production of glucoamylase by immobilized cells of Aureobasidium pullulans in a fluidized-bed reactor. Appl. Microbiol. Biotechnol 1990; 33: 407
  • Fortin C., Vuillemard J. C. Elucidation of the mechanism involved in the regulation of protease production by immobilized Myxococcus xanthus cells. Biotechnol. Lett. 1990; 12: 913
  • Fujimura M., Kato J., Tosa T., Chibata I. Continuous production of L-arginine using immobilized growing Serratia marcescens cells: effectiveness of supply of oxygen gas. Appl. Microbiol. Biotechnol 1984; 19: 79
  • Fukushima Y., Motai H. Continuous conversion of glutamine to glutamate by immobilized glutaminase-producing yeast. J. Ferment. Bioeng. 1990; 69: 189
  • Furuya T., Koge K., Ohihara Y. Long-term culture and caffeine production of immobilized coffee (Coffea arabica) L cells in polyurethane foam. Plant Cell Report 1990; 9: 125
  • Fusee M. C. Industrial production of L-aspartic acid using polyurethane-immobilized cells containing aspartase. Methods in Enzymology, K. Mosbach. Academic Press, Orlando 1987; 136: 463
  • Galazzo J. L., Bailey J. E. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme Microbiol Technol 1990; 12: 162
  • Galazzo J. L., Bailey J. E. Growing Saccharomyces cerevisiae in calcium-alginate beads induces cell alterations which accelerate glucose conversion to ethanol. Biotechnol. Bioeng. 1990; 36: 417
  • Garg K., Sharma C. B. Continuous production of citric acid by immobilized cells of Aspergillus niger. J. Gen. Appl. Microbiol 1992; 38: 605
  • Ghommidh C., Navarro J. M., Messing R. A. A study of acetic acid production by immobilized Acetobacter cells: product inhibition effects. Biotechnol Bioeng. 1982; 24: 1991
  • Ghommidh C., Navarro J. M. A study of acetic acid production by immobilized Acetobacter cells: oxygen transfer. Biotechnol Bioeng. 1982; 24: 605
  • Ghosh S., Alur M. D., Nerkar D. P. Hydrolysis of fish protein by Bacillus megaterium cells immobilized in radiation induced polymerized wood. J. Food Sci. Technol 1992; 29: 88
  • Ghosh S., D'Souza S. F. Crushing strength as a tool for reactor height determination for invertase-containing yeast cells immobilized in polyacrylamide. Enzyme Microbiol Technol 1989; 11: 376
  • Gil G. H., Jones W. J., Tornabene T. G. Continuous ethanol production in a two-stage, immobilized/suspended-cell bioreactor. Enzyme Microbiol. Technol 1991; 13: 390
  • Gilson C. D., Thomas A. A novel fluidized bed bioreactor for fermentation of glucose to ethanol using alginate immobilized yeast. Biotechnol. Tech. 1993; 7: 397
  • Glassner D. A., Grulke E. A., Oriel P. J. Characterization of an immobilized biocatalyst system for production of thermostable amylase. Biotechnol Prog. 1989; 5: 31
  • Gòdia F., Casas C., Solà C. A survey of continuous ethanol fermentation systems using immobilized cells. Proc. Biochem. 1987; 22: 43
  • Gunesekaran P., Kamini N. R. High ethanol productivity from lactose by immobilized cells of Kluyveromycesfragilis and Zymomonas mobilis. World J. Microbiol Biotechnol 1991; 7: 551
  • Guoqiang D., Kaul R., Mattiasson B. Evaluation of alginate-immobilized Lactobacillus casei for lactate production. Appl. Microbiol Biotechnol 1991; 36: 309
  • Gupta S. K., Chand S. Bioconversion of sugars to ethanol in an immobilized cell packed bed bioreactor — dynamic response to perturbations in process parameters. Chem. Eng. J. 1990; 43: B1
  • Hahn-Hägerdal B. Comparison between immobilized Kluyveromyces fragilis and Saccharomyces cerevisiae coimmobilized with β-galactosidase with respect to continuous ethanol production from concentrated whey permeate. Biotechnol. Bioeng. 1985; 27: 914
  • Hamada T., Ishiyama T., Motai H. Continuous fermentation of soy sauce by immobilized cells of Zygosaccharomyces rouxii in an airlift reactor. Appl. Microbiol. Biotechnol. 1989; 31: 346
  • Hamada T., Sugishita M., Motai H. Continuous production of 4-ethylguaiacol by immobilized cells of salt-tolerant Candida versatilis in an airlift reactor. J. Ferment. Bioeng. 1990; 69: 166
  • Hamada T., Sugishita M., Motai H. Contribution of immobilized and free cells of salt-tolerant Zygosaccharomyces rouxii and Candida versatilis to the production of ethanol and 4-ethylguaiacol. Appl. Microbiol. Biotechnol 1990; 33: 624
  • Hamilton B. K., Hsiao H. Y., Swann W. E., Anderson D. M., Delente J. J. Manufacture of L-amino acids with bioreactors. Trends Biotechnol 1985; 3: 64
  • Hang Y. D., Hamamci H., Woodams E. E. Production of L(+)-lactic acid by Rhizopus orizae immobilized in calcium alginate gels. Biotechnol. Lett. 1989; 11: 119
  • Hannoun B. J. M., Stephanopoulos G. Intrinsic growth and fermentation rates of alginate-entrapped Saccharomyces cerevisiae. Biotechnol. Prog. 1990; 6: 341
  • Hasal P., Vojtisek V., Cejkova A., Kleczek P., Kofronova O. An immobilized whole yeast cell biocatalyst for enzymatic sucrose hydrolysis. Enzyme Microbiol Technol 1992; 14: 221
  • Hasegawa S., Vandercook C. E., Choi G. Y., Hermann Z., Ou P. Limonoid debittering of citrus juice sera by immobilized cells of Corynebac-terium fascians. J. Food Sci. 1985; 50: 330
  • Hecker D., Bisping B., Rehm H. J. Continuous glycerol production by the sulfite process with immobilized cells of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1990; 32: 627
  • Henkel H. J., Johl H. J., Trosch W., Chmiel H. Continuous production of glutamic acid in a three phase fluidized bed with immobilized Corynebacte-rium glutamicum. Food Biotechnol 1990; 4: 149
  • Hilge-Rotmann B., Rehm H. J. Comparison of fermentation properties and specific enzyme activities of free and calcium-alginate-entrapped Saccharomyces cerevisiae. Appl. Microbiol Biotechnol 1990; 33: 54
  • Hilge-Rotmann B., Rehm H. J. Relationship between fermentation capability and fatty acid composition of free and immobilized Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol 1991; 34: 502
  • Holten C. M., Muller A., Rehbinder D. Lactic Acid. Verlag Chemie, Weinheim 1971
  • Honeker S., Bisping B., Yang Z., Rehm H. J. Influence of sucrose concentration and phosphate limitation on citric acid production by immobilized cells of Aspergillus niger. Appl. Microbiol. Biotechnol 1989; 31: 17
  • Horbach U., Hartmeier W. Immobilized in-vertase on the basis of matrix-embedded yeast fragments. Gordian 1989; 89: 134
  • Horitsu H., Adachi S., Takahashi Y., Kawai K., Kawano Y. Production of citric acid by Aspergillus niger immobilized in polyacrylamide gels. Appl. Microbiol. Biotechnol 1985; 22: 8
  • Horitsu H., Maseda Y., Kawai K. A new process for soy sauce fermentation by immobilized yeasts. Agric. Biol. Chem. 1990; 54: 295
  • Horitsu H., Wang M. G., Kawai K. A modified process for soy sauce fermentation by immobilized yeasts. Agric. Biol. Chem. 1991; 55: 269
  • Iida T., Izumida H., Akagi Y., Sakamoto M. Continuous ethanol fermentation in molasses medium using Zymomonas mobilis immobilized in photo-crosslinkable resin gels. J. Ferment. Bioeng. 1993; 75: 32
  • Iida T., Sakamoto M., Izumida H., Akagi Y. Characteristics of Zymomonas mobilis immobilized in photo-crosslinkable resin in ethanol fermentation. J. Ferment. Bioeng. 1993; 75: 28
  • Ishiwata K. I., Fukuhara N., Shimada M., Makiguchi N., Soda K. Enzymatic production of L-tryptophan from DL-serine and indole by a coupled reaction of tryptophan synthase and amino acid racemase. Biotechnol Appl Biochem. 1990; 12: 141
  • Israilides C. J., Weir A. N. C., Bull A. T. Effect of antibiotics on lysine production in free and immobilized cells of Bacillus subtilis. Appl Microbiol. Biotechnol 1989; 32: 134
  • Iwasaki K. I., Nakajima M., Sasahara H. Rapid continuous lactic acid fermentation by immobilized lactic acid bacteria for soy sauce production. Proc. Biochem. 1993; 28: 39
  • Iwasaki K. I., Nakajima M., Sasahara H., Watanabe A. Rapid ethanol fermentation for soy sauce production by immobilized yeast cells. Agric. Biol. Chem. 1991; 55: 2201
  • Iwasaki K. I., Nakajima M., Sasahara H. Rapid ethanol fermentation for soy sauce production using a microfiltration membrane reactor. J. Ferment. Bioeng. 1991; 72: 373
  • Jain D., Ghose T. K. Cellobiose hydrolysis using Pichia etchellsii cells immobilized in calcium alginate. Biotechnol Bioeng. 1984; 26: 340
  • Jain D. K., Tyagi R. D., Kluepfel D., Agbebavi T. J. Production of propionic acid from whey ultrafiltrate by immobilized cells of Propionibacterium shermanii in batch process. Proc. Biochem. 1991; 26: 217
  • Jamuna R., Ramakrishna S. V. Continuous synthesis of thermostable alpha-amylase by Bacillus cells immobilized in calcium alginate. Enzyme Microbiol. Technol. 1992; 14: 36
  • Jamuna R., Ramakrishna S. V. Ethanol fermentation by immobilized cells in a trickle bed reactor. Bioprocess Eng. 1992; 8: 61
  • Jeong Y. S., Vieth W. R., Matsuura T. Fermentation of lactose to ethanol with recombinant yeast in an immobilized yeast membrane bioreactor. Biotechnol. Bioeng. 1991; 37: 587
  • Johnson T. S., Ravishankar G. A., Venkataraman L. V. Elicitation of capsaicin production in freely suspended cells and immobilized cultures of Capsicum frutescens mill. Food Biotechnol 1991; 5: 197
  • Johnson T. S., Ravishankar G. A., Venkataraman L. V. In vitro capsaicin production by immobilized cells and placental tissues of Capsicum annuum L. grown in liquid medium. Plant Sci. 1990; 70: 223
  • Kana K., Kanellaki M., Psarianos C., Koutinas A. Ethanol production by Saccharomyces cerevisiae immobilized on mineral Kissiris. J. Ferment. Bioeng. 1989; 68: 144
  • Kanasawud P., Teeyapan S., Lumyong S., Hoist O., Mattiasson B. Thermus 2S from Thai hot springs: isolation and immobilization. World J. Microbiol. Biotechnol 1992; 8: 137
  • Kautola H., Linko Y. Y. Fumaric acid production from xylose by immobilized Rhizopus arrhizus cells. Appl. Microbiol. Biotechnol 1989; 31: 448
  • Kautola H., Rymowicz W., Linko Y. Y., Linko P. Production of citric acid with immobilized Yarrowia lipolitica. Appl. Microbiol. Biotechnol. 1991; 35: 447
  • Kawabata N., Nishimura S., Yoshimura T. New method of immobilization of microbial cells by capture on the surface of insoluble pyridinium-type resin. Biotechnol. Bioeng. 1990; 35: 1000
  • Kennedy J. F., Humphreys J. D., Barker S. A., Greenshield R. N. Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar-hydrous titanium (IV) oxydeimmobilized Acetobacter species. Enzyme Microbiol. Technol. 1980; 2: 209
  • Kierstan M., Corcoran E., Kierstan M. P. J. The use of immobilized cells of Kluyveromyces fragilis for the production of upgraded whey protein concentrates. Biotechnol. Lett. 1984; 6: 813
  • Kim D. M., Kim H. S. Continuous production of gluconic acid and sorbitol from Jerusalem artichoke and glucose using an oxydoreductase of Zymomonas mobilis and inulinase. Biotechnol. Bioeng. 1992; 39: 336
  • Kim H. S., Ryu D. D. Y. Continuous glutamate production using an immobilized whole-cell system. Biotechnol. Bioeng. 1982; 24: 2167
  • Klingeberg M., Vorlop K. D., Antranikian G. Immobilization of anaerobic thermophilic bacteria for the production of cell-free thermostable α-amylases and pullulanases. Appl. Microbiol. Biotechnol 1990; 33: 494
  • Kolot F. B. Immobilized cells for solvent production. Proc. Biochem. 1984; 7
  • Koren D. W. Production of Fructose and Ethanol by Selective Fermentation of Glucose-Fructose Mixtures. Ph.D. thesis, University of Ottawa, Canada 1992
  • Koutinas A. A., Kanellaki M. Continuous potable alcohol production by immobilized Zymomonas mobilis on γ-alumina pellets. J. Food Sci 1990; 55: 525
  • Koutinas A. A., Kanellaki M., Typas M. A., Drainnas C. Raisin: a suitable raw material for ethanol production using Zymomonas mobilis. Biotechnol. Lett. 1986; 8: 517
  • Krischke W., Schröder M., Trösch W. Continuous production of L-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl. Microbiol. Biotechnol 1991; 34: 573
  • Kurosawa H., Ishikawa H., Tanaka H. L-Lactic acid production from starch by co-immobilized mixed culture system of Aspergillus awamori and Streptococcus lactis. Biotechnol Bioeng. 1988; 31: 183
  • Kwak M. Y., Rhee J. S. Controlled mycelial growth for kojic acid production using Ca-alginate-immobilized fungal cells. Appl. Microbiol. Biotechnol 1992; 36: 578
  • Kwak M. Y., Rhee J. S. Cultivation characteristics of immobilized Aspergillus orizae for Kojic acid production. Biotechnol. Bioeng. 1992; 39: 903
  • LeBlanc D. T., Akers H. A. Maltol and ethyl maltol: from the larch tree to successful food additives. Food Technol 1989; 43: 78
  • Lee S. W., Yajima M., Tanaka H. Use of food additives to prevent contamination during fermentation using a co-immobilized mixed culture system. J. Ferment. Bioeng. 1993; 75: 389
  • Lee Y. H., Lee C. W., Chang H. N. Citric acid production by Aspergillus niger immobilized on poly-urethane foam. Appl. Microbiol. Biotechnol. 1989; 30: 141
  • Li Y. F., Huang Y., Lee L. F., Sui P., Wen Q. Q. Production of glutamic acid by immobilized cells. Ann. N.Y. Acad. Sci. 1990; 613: 883
  • Li Y., He L., Huang Y., Sui P. Production of invert sugar by immobilized yeast cells. Ind. Microbiol 1989; 16
  • Lindsey K., Yeoman M. M. The synthetic potential of immobilized cells of Capsicum frutescens. Mill. Cv. annuum. Planta 1984; 162: 495
  • Linko P. Immobilized lactic acid bacteria. Enzymes and Immobilized Cells in Biotechnology. The Benjamin/Cummings Publishing Co., Menlo Park, CA 1985; 25
  • Linko Y. Y., Li G. X., Linko P. Production of cellulolytic enzymes by immobilized Penicillium funiculosum. Ann. N.Y. Acad. Sci. 1987; 417: 381
  • Lu W. M., Chen W. C. Production of L-glutamate using entrapped living cells of Brevi-bacterium ammoniagenes with calcium alginate gels. Proc. Natl. Sci. Counc. ROC(A) 1988; 12: 400
  • Maiorella B., Blanch H. W., Wilke C. R. Economic evaluation of alternative ethanol fermentation processes. Biotechnol. Bioeng. 1984; 26: 1003
  • Manjon A., Iborra J. L., Martinez-Madrid C. pH control of limonin debittering with entrapped Rhodococcus fascians cells. Appl. Microbiol. Biotechnol 1991; 35: 176
  • Marechal P. D. L., Calderon-Seguin R., Vande-Casteele J. P., Azerad R. Synthesis of L-tryptophan by immobilized Escherichia coli cells. Eur. J. Appl. Microbiol. Biotechnol. 1979; 7: 33
  • Margaritis A., Merchant F. J. A. Advances in ethanol production using immobilized cell systems. Crit. Rev. Biotechnol 1984; 1: 339
  • Martinez-Madrid C., Manjon A., Iborra J. L. Degradation of limonin by entrapped Rhodococcus fascians cells. Biotechnol. Lett. 1989; 11: 653
  • Melin E., Shieh W. K. Continuous ethanol production from glucose using Saccharomyces cerevisiae immobilized on fluidized microcarriers. Chem. Eng. J. 1992; 50: 17
  • Milanese-Rubilar A. A., Maugeri F. Modelling alcohol production and cell viability in cascade reactor with immobilized cells. Rev. Microbiol 1990; 21: 79
  • Milsom P. E. Organic acids by fermentation, especially citric acid. Food Biotechnology I, King, Cheetham. Elsevier Applied Sciences Publishers, Ltd., ReadingUK 1987; 273
  • Mori A. Production of vinegar by immobilized cells. Proc. Biochem. 1985; 6: 67
  • Mulligan C. N., Safi B. F., Groleau D. Continuous production of ammonium lactate by Streptococcus cremoris in a three-stage reactor. Biotechnol. Bioeng. 1991; 38: 1173
  • Nagashima M., Azuma M., Nogushi S., Inuzuka K., Samejima H. Large-scale preparation of calcium alginate-immobilized yeast cells and its application to industrial ethanol production. Methods in Enzymology, K. Mosbach. Academic Press, Orlando 1987; 136: 394
  • Nakajima H., Sonomoto K., Sato F., Yamada Y., Tanaka A. Immobilized plant cell reactor for continuous production of blue pigments. Agric. Biol. Chem. 1989; 53: 3077
  • Nakajima H., Sonomoto K., Sato F., Ichimura K., Yamada Y., Tanaka A. Influence of carbon source on pigment production by immobilized cultured cells of Lavandula vera. J. Ferment. Bioeng. 1989; 68: 330
  • Nakamichi K., Nabe K., Nishida Y., Tosa T. Production of L-phenylalanine from phenylpyruvate by Paracoccus denitrifwans containing aminotransferase activity. Appl. Microbiol. Biotechnol 1989; 30: 243
  • Nakashima T., Fukuda H., Kyotani S., Morikawa H. Culture conditions for intracellular lipase production by Rhizopus chinensis and its immobilization within biomass support particles. J. Ferment. Technol 1988; 66: 441
  • Nakashima T., Fukuda H., Nojima Y., Nagai S. Intracellular lipase production by Rhizopus chinensis using biomass support particles in a circulating bed fermentor. J. Ferment. Bioeng. 1989; 68: 19
  • Nanba A., Kimura K., Nagai S. Vinegar production by Acetobacter rancens cells fixed on a hollow fiber module. J. Ferment. Technol 1985; 63: 175
  • Neufeld R. J., Peleg Y., Rokem J. S., Pines O., Goldberg I. L-Malic acid formation by immobilized Saccharomyces cerevisiae amplified for fumarase. Enzyme Microbiol. Technol 1991; 13: 991
  • Nguyen V. T., Shieh W. K. Continuous ethanol fermentation using immobilized yeast in a fluidized bed reactor. J. Chem. Tech. Biotechnol 1992; 55: 339
  • Nishida Y., Nakamishi K., Nabe K., Tosa T. Continuous production of L-phenylalanine from acetamidocinnamic acid using co-immobilized cells of Corynebacterium sp. and Paracoccus denitrificans. Enzyme Microbiol. Technol 1987; 9: 479
  • Nishio N., Sugawa K., Hayase N., Nagai S. Conversion of D-xylose into xylitol by immobilized cells of Candida pelliculosa and Methanobacterium sp. HU. J. Ferment. Bioeng. 1989; 67: 356
  • Nojima S., Yamada T. Large-scale production of photo-cross-linkable resin-immobilized yeast and its application to industrial ethanol production. Methods in Enzymology, K. Mosbach. Academic Press, Orlando 1987; 136: 380
  • Norton S. Etude de la Production d'Acide Lactique par Fermentation Continue du Perméat de Lactosérum à l'aide d'une Souche de Lactobacillus helveticus immobilisée. Ph.D. thesis, Université, Laval, Sainte FoyCanada 1992
  • Norton S., Lacroix C., Vuillemard J. C. Effect of pH on the morphology of Lactobacillus helveticus in free-cell batch and immobilized-cell continuous fermentation. Food Biotechnol 1993; 7: 235
  • Norton S., Lacroix C., Vuillemard J. C. Kinetic study of continuous whey permeate fermentation by immobilized Lactobacillus helveticus for lactic acid fermentation. Enzyme Microbiol. Technol, in press
  • Ochi H., Takahashi M., Kaneto T., Suzuki H., Tanaka H. Diacetyl production by co-immobilized citrate-positive Lactococcus lactis subsp. lactis 3022 and homogenized bovine liver in alginate fibers with double gel layers. Biotechnol. Lett. 1991; 13: 505
  • Ogbona J. C., Matsumura M., Kataoka H. Effective oxygenation of immobilized cells through reduction in bead diameter: a review. Proc. Biochem. 1991; 26: 109
  • Ogbona J. C., Matsumura M., Kataoka H. Production of glutamine by micro-gel bead-immobilized Corynebacterium glutamicum 9703-T cells in a stirred tank reactor. Bioprocess Eng. 1991; 7: 11
  • Okita W. B., Kirwan D. J. Protease production by immobilized Bacillus lichenifonnis. Ann. N. Y. Acad. ScL 1987; 506: 256
  • Okuhara A. Vinegar production with Acetobacier grown on a fibrous support. J. Ferment. Technoi 1985; 63: 57
  • Osaki K., Okamoto Y., Akao T., Nagata S., Takamatsu H. Fermentation of soy sauce with immobilized whole cells. J. Food Sci. 1985; 50: 1289
  • Osuga J., Mori A., Kato J. Acetic acid production by immobilized Acetobacter aceti cells entrapped in a -carrageenan gel. J. Ferment. Technol. 1984; 62: 139
  • Parascandola P., Alteriis E., Scardi V. Invertase and acid phosphatase in free and gel-immobilized cells of Saccharomyces cerevisiae grown under different cultural conditions. Enzyme Microbiol. Technoi 1993; 15: 42
  • Prescot S. C., Dunn D. G. The acetic acid bacteria and some of their biochemical activities. Industrial Microbiology. McGraw-Hill, New York 1959; 428
  • Pusheva M. A., Rainina E. I., Borodulina N. P., Ryabokon A. M., Makhlis T. A., Kotsyurbenko O. R. Acetate formation from hydrogen and carbon dioxide by a thermophilic homoacetic bacterium Acetogenium kivui. Mikrobiologiya 1991; 60: 616
  • Qureshi N., Tamhane D. V. Production of mead by immobilized whole cells of Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 1985; 21: 280
  • Ramakrishna S. V., Jamuna R., Emery A. N. Continuous production of α-amylase by immobilized Bacillus cells in a fluidized-bed reactor. Appl. Biochem. Biotechnol. 1992; 37: 275
  • Rao B. Y. K., Godbole S. S., D'Souza S. F. Preparation of lactose free milk by fermentation using immobilized Saccharomycesfragilis. Biotechnol. Lett. 1988; 10: 427
  • Rehm H. J. Microbial production of glycerol and other polyols. Biotechnology, H. J. Rehm, G. Reed. VCH Velrlagsgesellschaft, Weinheim 1988; 6b: 51
  • Rehr B., Wilhlem C., Sahm H. Production of sorbitol and gluconic acid by permeabilized cells of Zymomonas mobilis. Appl. Microbiol. Biotechnol. 1991; 35: 144
  • Richter K., Rühlemann I., Becker U., Berger R. A comparison between the fermentative activities of free and Ca-alginate-entrapped cells of Saccharomyces cerevisiae. Acta Biotechnol. 1989; 9: 123
  • Richter K., Rühlemann I., Berger R. High-performance fermentation with lactic acid bacteria entrapped in pectate gel immobilizates with enhanced lactate formation activity. Acta Biotechnol. 1991; 11: 229
  • Ro H. S., Kim H. S. Continuous production of gluconic acid and sorbitol from sucrose using inver-tase and an oxydoreductase of Zymomonas mobilis. Enzyme Microb. Technoi 1991; 13: 920
  • Rogers P. L., Chun U. H. Novel enzymatic process for sorbitol and gluconate production. Aust. J. Biotechnol. 1987; 1: 51
  • Rossi J., Clementi F., Haznedari S. Diacetyl and acetoin production by immobilized Streptococcus diacetylactis. Milchwiss. 1984; 39: 336
  • Rossi J., Clementi F. L-Malic acid production by polyacrylamide gel entrapped Pichia membranaefaciens. Biotechnol Lett. 1985; 7: 329
  • Roukas T. Production of citric acid from beet molasses by immobilized cells of Aspergillus niger. J. Food ScL 1991; 56: 878
  • Roukas T., Kotzekidou P. Production of lactic acid from deproteinized whey by coimmobilized Lactobacillus casei and Lactococcus lactis cells. Enzyme Microb. Technoi 1991; 13: 33
  • Roukas T., Lazarides H., Kotzekidou P. Ethanol production from deproteinized whey by Saccharomyces cerevisiae cells entrapped in different immobilization matrices. Milschwiss. 1991; 46: 438
  • Roy D., Goulet J., LeDuy A. Continuous production of lactic acid from whey permeate by free and calcium alginate entrapped Lactobacillus helveticus. J. Dairy Sci. 1987; 70: 506
  • Rymowicz W., Kautola H., Wojtatowicz M., Linko Y. Y., Linko P. Studies on citric acid production with immobilized Yarrowia lipolitica in repeated batch and continuous air-lift bioreactors. Appl Microbiol. Biotechnol 1993; 39: 1
  • Sachse H., Kude J., Kerns G., Berger R. Production of cellulase in a rotating disc fermenter using immobilized Trichoderma reesei cells. Acta Biotechnol 1990; 10: 523
  • Sakellaris G. Proteinase production from immobilized lactobacilli. Les Bactéries Lactiques: Actes du Colloque LACTIC 91, G. Novel, J. F. Querler. Centre de Publications de l'Universtié de Caen. 1992; 323
  • Sakurai H., Lee H. W., Sato S., Mukataka S., Takahashi J. Gluconic acid production at high concentrations by Aspergillus niger immobilized on a nonwoven fabric. J. Ferment. Bioeng. 1989; 67: 404
  • Sarkar J. M., Mayaudon J. Alanine synthesis by immobilized Corynebacterium dismutans cells. Biotechnol Lett. 1983; 5: 201
  • Sato T., Mori T., Tosa T., Chibata I., Furui M., Yamashita K., Sumi A. Engineering analysis of continuous production of L-aspartic acid by immobilized Escherichia coli cells in fixed bed reactor. Biotechnol. Bioeng. 1975; 17: 1797
  • Sato T., Nishida Y., Tosa T., Chibata I. Immobilization of Escherichia coli cells containing aspartase activity with K-carrageenan. Biochim. Biophys. Acta 1979; 570: 179
  • Schmitt P., Couvreur C., Cavin J. F., Prevost H., Divies C. Citrate utilization by free and immobilized Streptococcus lactis subsp. diacetylactis in continuous culture. Appl. Microbiol. Biotechnol 1988; 29: 430
  • Seip J. E., Di Cosimo R. Optimization of accessible catalase activity in polyacrylamide gel-immobilized Saccharomyces cerevisiae. Biotechnol. Bioeng. 1992; 40: 638
  • Shabtai Y., Chaimovitz S., Freeman A., Katchalski-Katzir E., Linder C., Namas M., Perry M., Kedem O. Continuous ethanol production by immobilized yeast reactor coupled with membrane pervaporation unit. Biotechnol. Bioeng. 1991; 38: 869
  • Shama G. Developments in bioreactors for fuel ethanol production. Proc. Biochem. 1988; 23: 138
  • Shindo S., Kamimura M. Immobilization of yeast with hollow PVA gel beads. J. Ferment. Bioeng. 1990; 70: 232
  • Shindo S., Sahara H., Koshino S. Relationship of production of succinic acid and methyl citric acid pathway during alcohol fermentation with immobilized yeast. Biotechnol. Lett. 1993; 15: 51
  • Shinonaga M. A., Kawamura Y., Yamane T. Immobilization of yeast cells with cross-linked chitosan beads. J. Ferment. Bioeng. 1992; 74: 90
  • Shiraishi F., Kawakami K., Tamura A., Tsuruda S., Kusunoki K. Characterization of production of free gluconic acid by Gluconobacter suboxydans adsorbed on ceramic honeycomb monolith. Biotechnol. Bioeng. 1989; 33: 1413
  • Shiraishi F., Kawakami K., Tamura A., Tsuruda S., Kusunoki K. Continuous production of free gluconic acid by Gluconobacter suboxydans IFO 3290 immobilized by adsorption on ceramic honeycomb monolith: effect of reactor configuration on further oxydation of gluconic acid to keto-gluconic acid. Appl. Microbiol. Biotechnol. 1989; 31: 445
  • Singh A., Goerl R., Johri B. N. Production of cellulolytic enzymes by immobilized Sporotrichum thermophile. Enzyme Microbiol. Technoi 1990; 12: 464
  • Sirirote P., Yamane T., Shimizu S. L-Serine production from methanol and glycine with an immobilized methyltroph. J. Ferment. Technoi 1988; 66: 291
  • Slowinski W., Charm S. E. Glutamic acid production with gel-entrapped Corynebacterium glutamicum. Biotechnol. Bioeng. 1973; 15: 973
  • Soetaert W., Domen J., Vandamme E. J. Production of mannitol by Leuconostoc mesenteroides immobilized on reticulated polyurethane foam. Physiology of Immobilized Cells, J. A. M. de Bont, J. Visser, B. Mattiasson, J. Tramper. Elsevier Science Publishers, Amsterdam 1990; 307
  • Sonomoto K., Nakajima H., Sato F., Ichimura K., Yamada Y., Tanaka A. Continuous production of blue pigments by immobilized plant cells and characterization of the pigments. Ann. N. Y. Acad. Sci. 1990; 613: 542
  • Sroka W., Rzedowski W. The effect of yeast cell immobilization on the proportion of selected byproducts of ethanol fermentation. Biotechnol. Lett. 1991; 13: 879
  • Stenroos P., Linko Y. Y., Linko P. Production of L-lactic acid with immobilized Lactobacillus delbrueckii. Biotechnol. Lett. 1982; 4: 159
  • Sueki M., Kobayashi N., Suzuki A. Continuous acetic production by the bioreactor system loading a new ceramic carrier for microbial attachment. Biotechnol. Lett. 1991; 13: 185
  • Sun Y., Furusaki S. Continuous production of acetic acid using immobilized Acetobacter aceti in a three-phase fluidized bed reactor. J. Ferment. Bioeng. 1990; 2: 102
  • Sun Y., Furusaki S. Effects of product inhibition on continuous acetic acid production by immobilized Acetobacter aceti: theoretical calculations. J. Ferment. Bioeng. 1990; 70: 196
  • Taipa M. A., Cabral J. M. S., Santos H. Comparison of glucose fermentation by suspended and entrapped yeast cells: an in vivo nuclear magnetic resonance study. Biotechnol. Bioeng. 1993; 41: 647
  • Takahashi M., Ochi H., Kanko T., Suzuki H., Tanaka H. Diacetyl production by immobilized citrate-positive Lactococcus lactis subsp. lactis 3022 in the fibrous Ca-alginate gel. Biotechnol. Lett. 1990; 12: 569
  • Takamatsu S., Umemura I., Yamamoto K., Sato T., Tosa T., Chibata I. Production of L-alanine from ammonium fumarate using two immobilized microorganisms. Eur. J. Appl. Microbiol. Biotechnol. 1982; 15: 147
  • Takata I., Yamamoto K., Tosa T., Chibata I. Immobilization of Brevibacterium flavum with carrageenan and its application for continuous production of L-malic acid. Enzyme Microbiol. Technoi 1980; 2: 30
  • Tanaka H., Kurosawa H., Murakami H. Ethanol production from starch by a coimmobilized mixed culture system of Aspergillus awamori and Zymomonas mobilis. Biotechnol. Bioeng. 1986; 28: 1761
  • Tipayang P., Kozaki M. Lactic acid production by a new Lactobacillus sp. nov. immobilized in calcium alginate. J. Ferment. Technoi 1982; 60: 595
  • Tosa T., Sato T., Mori T., Chibata I. Basic studies for the continuous production of L-aspartic acid by immobilized Escherichia coli cells. Appl. Microbiol. 1974; 27: 886
  • Tosa T., Sato T., Mori T., Yamamoto K., Takata I., Nishida Y., Chibata I. Immobilization of enzymes and microbial cells using carrageenan as matrix. Biotechnol. Bioeng. 1979; 21: 1697
  • Tramper J., Luyben K. C. A., van den Tweel W. J. J. Kinetic aspects of glucose oxidation by Gluconobacter oxydans cells immobilized in calcium alginate. Eur. J. Appl. Microbiol. Biotechnol. 1983; 17: 13
  • Tsay S. S., To K. Y. Citric acid production using immobilized conidia of Aspergillus niger TMB 2022. Biotechnol. Bioeng. 1987; 29: 297
  • Tuli A., Khanna P. K., Marwaha S. S., Kennedy J. F. Lactic acid production from whey permeate by immobilized Lactobacillus casei. Enzyme Microbiol. Technoi 1985; 7: 164
  • Turker M., Mavituna F. Production of cellulase by freely suspended and immobilized cells of Trichoderma reesei. Enzyme Microbiol. Technoi 1987; 9: 739
  • Tyagi R. D., Gupta S. K., Chand S. Process engineering studies on continuous ethanol production by immobilized S. cerevisiae. Proc. Biochem. 1992; 27: 23
  • Tyree R. W., Clausen E. C., Gaddy J. L. The production of propionic acid from sugars by fermentation through lactic acid as an intermediate. J. Chetn. Technoi. Biotechnol. 1991; 50: 157
  • Vaija J., Linko P. Continuous citric acid production by immobilized Aspergillus niger: reactor performance and fermentation kinetics. J. Mol. Catal. 1986; 38: 237
  • Vassilev N. B., Vassileva M. C. Influence of reactor mode on citric acid productivity of Aspergillus niger immobilized in polyurethane foam. Physiology of Immobilized Cells, J. A. M. de Bont, J. Visser, B. Mattiasson, J. Tramper. Elsevier Science Publishers, Amsterdam 1990; 331
  • Vassilev N. B., Vassileva M. C., Spassova D. I. Production of gluconic acid by Aspergillus niger immobilized on polyurethane foam. Appl. Microbiol. Biotechnol. 1993; 39: 285
  • Velizarov S. G., Rainina E. I., Sinitsin A. P., Varfolomeyev S. D. Production of L-lysine by free and PVA-cryogel immobilized Corynebacterium glutamicum cells. Biotechnol. Lett. 1992; 14: 291
  • Vickroy T. B. Lactic acid. Comprehensive Biotechnology, M. Moo Young. Pergamon Press, Oxford 1985; 761
  • Vives C., Casas C., Godia F., Sola C. Determination of the intrinsic fermentation kinetics of Saccharomyces cerevisiae cells immobilized in Ca-alginate beads and observations on their growth. Appl. Microbiol. Biotechnol 1993; 38: 467
  • Vuillemard J. C., Goulet J., Amiot J., Vijayalakshmi M. A., Terre S. Continuous production of small peptides from milk proteins by extracellular proteases of free and immobilized Serratia marcescens cells. Enzyme Microbiol. Technoi 1988; 10: 2
  • Vuillemard J. C., Terre S., Benoit S., Amiot J. Protease production by immobilized growing cells of Serratia marcescens and Myxococcus xanthus in calcium alginate gel beads. Appl. Microbiol. Biotechnol. 1988; 27: 423
  • Wada M., Uchita T., Kato J., Chibata I. Continuous production of isoleucine using immobilized growing Serratia marcescens cells. Biotechnol. Bioeng. 1980; 22: 1175
  • Walls E. L., Gainer J. L. Increased protein productivity from immobilized recombinant yeast. Biotechnol. Bioeng. 1991; 37: 1029
  • Yamamoto K., Tosa T., Yamashita K., Chibata I. Continuous production of L-malic acid by immobilized Brevibacterium ammoniagenes cells. Eur. J. Appl. Microbiol 1976; 3: 169
  • Yamamoto K., Tosa T., Chibata I. Continuous production of L-alanine using Pseudomonas dacunhae immobilized with carrageenan. Biotechnol. Bioeng. 1980; 22: 2045
  • Yang L. W., Wang X. Y., Wei S. Immobilization of Candida rugosa cells having high fumarase activity with polyvinyl alcohol. Ann. N.Y. Acad. Sci. 1992; 672: 563
  • Zakran A. S., Zayed G. Production of extracellular protease by immobilized and free cells of Flavobacterium sp. R23. Milchwiss. 1992; 48: 18
  • Zayed G., Hunter J. Ethanol production from salt whey using free and agarose immobilized yeasts. Milschwiss. 1991; 46: 3
  • Zayed G., Zahran A. S. Lactic acid production from salt whey using free and agar immobilized cells. Lett. Appl. Microbiol. 1991; 12: 241
  • Zhang X., Bury S., DiBiasio D., Miller J. Effects of immobilization on growth, substrate consumption, P-galactosidase induction, and byproduct formation in Escherichia coli. J. Ind. Microbiol 1989; 4: 239

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.