Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 27, 2010 - Issue 1
226
Views
19
CrossRef citations to date
0
Altmetric
Research Papers

LACK OF CALBINDIN-D28K ALTERS RESPONSE OF THE MURINE CIRCADIAN CLOCK TO LIGHT

, , &
Pages 68-82 | Received 23 Mar 2009, Accepted 21 Jul 2009, Published online: 05 Mar 2010

REFERENCES

  • Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M. (1997). Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc. Natl. Acad. Sci. USA 94:1488–1493.
  • Akiyama M, Kouzu Y, Takahashi S, Wakamatsu H, Moriya T, Maetani M, Watanabe S, Tei H, Sakaki Y, Shibata S. (1999). Inhibition of light- or glutamate-induced mPer1 expression represses the phase shifts into the mouse circadian locomotor and suprachiasmatic firing rhythms. J. Neurosci. 19:1115–1121.
  • Albrecht U, Sun ZS, Eichele G, Lee CC. (1997). A differential response of two putative mammalian circadian regulators, mper1 and mper2, to light. Cell 91:1055–1064.
  • Albrecht U, Zheng B, Larkin D, Sun ZS, Lee CC. (2001). MPer1 and mper2 are essential for normal resetting of the circadian clock. J. Biol. Rhythms 16:100–104.
  • Aschoff J. (1965). Response curves in circadian periodicity. In Aschoff J (ed.). Circadian clocks. Amsterdam: North-Holland, pp. 95–111.
  • Berggard T, Miron S, Onnerfjord P, Thulin E, Akerfeldt KS, Enghild JJ, Akke M, Linse S. (2002a). Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. J. Biol. Chem. 277:16662–16672.
  • Berggard T, Szczepankiewicz O, Thulin E, Linse S. (2002b). Myo-inositol monophosphatase is an activated target of calbindin D28k. J. Biol. Chem. 277:41954–41959.
  • Bryant DN, LeSauter J, Silver R, Romero MT. (2000). Retinal innervation of calbindin-D28K cells in the hamster suprachiasmatic nucleus: Ultrastructural characterization. J. Biol. Rhythms 15:103–111.
  • Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. (2000). Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3:1241–1247.
  • Dardente H, Cermakian N. (2007). Molecular circadian rhythms in central and peripheral clocks in mammals. Chronobiol. Int. 24:195–213.
  • Ding JM, Chen D, Weber ET, Faiman LE, Rea MA, Gillette MU. (1994). Resetting the biological clock: Mediation of nocturnal circadian shifts by glutamate and NO. Science 266:1713–1717.
  • Ding JM, Faiman LE, Hurst WJ, Kuriashkina LR, Gillette MU. (1997). Resetting the biological clock: Mediation of nocturnal CREB phosphorylation via light, glutamate, and nitric oxide. J. Neurosci. 17:667–675.
  • Ding JM, Buchanan GF, Tischkau SA, Chen D, Kuriashkina L, Faiman LE, Alster JM, McPherson PS, Campbell KP, Gillette MU. (1998). A neuronal ryanodine receptor mediates light-induced phase delays of the circadian clock. Nature 394:381–384.
  • Farre-Castany MA, Schwaller B, Gregory P, Barski J, Mariethoz C, Eriksson JL, Tetko IV, Wolfer D, Celio MR, Schmutz, I, Albrecht U, Villa AE. (2007). Differences in locomotor behavior revealed in mice deficient for the calcium-binding proteins parvalbumin, calbindin D-28k or both. Behav. Brain Res. 178:250–261.
  • Gau D, Lemberger T, von Gall C, Kretz O, Le Minh N, Gass P, Schmid W, Schibler U, Korf HW, Schutz G. (2002). Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock. Neuron 34:245–253.
  • Hamada T, Liou SY, Fukushima T, Maruyama T, Watanabe S, Mikoshiba K, Ishida N. (1999). The role of inositol trisphosphate-induced Ca2+ release from IP3-receptor in the rat suprachiasmatic nucleus on circadian entrainment mechanism. Neurosci. Lett. 263:125–128.
  • Hamada T, LeSauter J, Lokshin M, Romero MT, Yan L, Venuti JM, Silver R. (2003). Calbindin influences response to photic input in suprachiasmatic nucleus. J. Neurosci. 23:8820–8826.
  • Hirota T, Fukada Y. (2004). Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci. 21:359–368.
  • Jud C, Schmutz I, Hampp G, Oster H, Albrecht U. (2005). A guideline for analyzing circadian wheel-running behavior in rodents under different lighting conditions. Biol. Proced. Online 7:101–116.
  • Kornhauser JM, Nelson DE, Mayo KE, Takahashi JS. (1990). Photic and circadian regulation of c-fos gene expression in the hamster suprachiasmatic nucleus. Neuron 5:127–134.
  • Kriegsfeld LJ, Mei DF, Yan L, Witkovsky P, Lesauter J, Hamada T, Silver R. (2008). Targeted mutation of the calbindin D28K gene disrupts circadian rhythmicity and entrainment. Eur. J. Neurosci. 27:2907–2921.
  • LeSauter J, Stevens P, Jansen H, Lehman MN, Silver R. (1999). Calbindin expression in the hamster SCN is influenced by circadian genotype and by photic conditions. Neuroreport 10:3159–3163.
  • Moore RY. (1996). Entrainment pathways and the functional organization of the circadian system. Prog. Brain Res. 111:103–119.
  • Myers MP, Wager-Smith K, Rothenfluh-Hilfiker A, Young MW. (1996). Light-induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 271:1736–1740.
  • Nagerl UV, Novo D, Mody, I, Vergara JL. (2000). Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+). Biophys. J. 79:3009–3018.
  • Oster H, Werner C, Magnone MC, Mayser H, Feil R, Seeliger MW, Hofmann F, Albrecht U. (2003). cGMP-dependent protein kinase II modulates mPer1 and mPer2 gene induction and influences phase shifts of the circadian clock. Curr. Biol. 13:725–733.
  • Portaluppi F, Touitou Y, Smolensky MH. (2008). Ethical and methodological standards for laboratory and medical biological research. Chronobiol. Int. 25:999–1016.
  • Roenneberg T, Merrow M. (2003). The network of time: Understanding the molecular circadian system. Curr. Biol. 13: R198–R207.
  • Rusak B, Robertson HA, Wisden W, Hunt SP. (1990). Light pulses that shift rhythms induce gene expression in the suprachiasmatic nucleus. Science 248:1237–1240.
  • Schmidt H, Stiefel KM, Racay P, Schwaller B, Eilers J. (2003). Mutational analysis of dendritic Ca2+ kinetics in rodent Purkinje cells: Role of parvalbumin and calbindin D28k. J. Physiol. 551:13–32.
  • Schmidt H, Schwaller B, Eilers J. (2005). Calbindin D28k targets myo-inositol monophosphatase in spines and dendrites of cerebellar Purkinje neurons. Proc. Natl. Acad. Sci. USA 102:5850–5855.
  • Schurov IL, McNulty S, Best JD, Sloper PJ, Hastings MH. (1999). Glutamatergic induction of CREB phosphorylation and Fos expression in primary cultures of the suprachiasmatic hypothalamus in vitro is mediated by co-ordinate activity of NMDA and non-NMDA receptors. J. Neuroendocrinol. 11:43–51.
  • Schwaller B. (2009). The continuing disappearance of “pure” Ca2+ buffers. Cell. Mol. Life Sci. 66:275–300.
  • Schwaller B, Meyer M, Schiffmann S. (2002). ‘New’ functions for ‘old’ proteins: The role of the calcium-binding proteins calbindin D-28k, calretinin and parvalbumin, in cerebellar physiology. Studies with knockout mice. Cerebellum 1:241–258.
  • Shearman LP, Zylka MJ, Weaver DR, Kolakowski LFJr, Reppert SM. (1997). Two period homologs: Circadian expression and photic regulation in the suprachiasmatic nuclei. Neuron 19:1261–1269.
  • Shigeyoshi Y, Taguchi K, Yamamoto S, Takekida S, Yan L, Tei H, Moriya T, Shibata S, Loros JJ, Dunlap JC, Okamura H. (1997). Light-induced resetting of a mammalian circadian clock is associated with rapid induction of the mPer1 transcript. Cell 91:1043–1053.
  • Tischkau SA, Mitchell JW, Tyan SH, Buchanan GF, Gillette MU. (2003). Ca2+/cAMP response element-binding protein (CREB)-dependent activation of Per1 is required for light-induced signaling in the suprachiasmatic nucleus circadian clock. J. Biol. Chem. 278:718–723.
  • Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR. (2000). Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur. J. Neurosci. 12:945–954.
  • Wakamatsu H, Takahashi S, Moriya T, Inouye ST, Okamura H, Akiyama M, Shibata S. (2001). Additive effect of mPer1 and mPer2 antisense oligonucleotides on light-induced phase shift. Neuroreport 12:127–131.
  • Yan L, Silver R. (2002). Differential induction and localization of mPer1 and mPer2 during advancing and delaying phase shifts. Eur. J. Neurosci. 16:1531–1540.
  • Yan L, Bobula JM, Svenningsson P, Greengard P, Silver R. (2006). DARPP-32 involvement in the photic pathway of the circadian system. J. Neurosci. 26:9434–9438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.