Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 32, 2015 - Issue 2
271
Views
15
CrossRef citations to date
0
Altmetric
Original Article

Effect of retinal ischemia on the non-image forming visual system

, , &
Pages 152-163 | Received 10 Jul 2014, Accepted 26 Aug 2014, Published online: 19 Sep 2014

References

  • Berson DM, Dunn FA, Takao M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science. 295:1070–3
  • Berson DM. (2003). Strange vision: Ganglion cells as circadian photoreceptors. Trends Neurosci. 26:314–20
  • Bonne C, Muller A, Villain M. (1998). Free radicals in retinal ischemia. Gen Pharmacol. 30:275–80
  • Bresnick GH, De Venecia G, Myers FL, et al. (1975). Retinal ischemia in diabetic retinopathy. Arch Ophthalmol. 93:1300–10
  • Chidlow G, Osborne NN. (2003). Rat retinal ganglion cell loss caused by kainate, NMDA and ischemia correlates with a reduction in mRNA and protein of Thy-1 and neurofilament light. Brain Res. 963:298–306
  • de Zavalía N, Plano SA, Fernandez DC, et al. (2011). Effect of experimental glaucoma on the non-image forming visual system. J Neurochem. 117:904–14
  • DeParis S, Caprara C, Grimm C. (2012). Intrinsically photosensitive retinal ganglion cells are resistant to N-methyl-D-aspartic acid excitotoxicity. Mol Vis. 18:2814–27
  • Dorfman D, Fernandez DC, Chianelli M, et al. (2013). Post-ischemic environmental enrichment protects the retina from ischemic damage in adult rats. Exp Neurol. 240:146–56
  • Drouyer E, Dkhissi-Benyahya O, Chiquet C, et al. (2008). Glaucoma alters the circadian timing system. PLoS One. 3:e3931
  • Esquiva G, Lax P, Cuenca N. (2013). Impairment of intrinsically photosensitive retinal ganglion cells associated with late stages of retinal degeneration. Invest Ophthalmol Vis Sci. 54:4605–18
  • Fernandez DC, Chianelli MS, Rosenstein RE. (2009). Involvement of glutamate in retinal protection against ischemia/reperfusion damage induced by post-conditioning. J Neurochem. 111:488–98
  • Fernandez DC, Sande PH, de Zavalía N, et al. (2013). Effect of experimental diabetic retinopathy on the non-image-forming visual system. Chronobiol Int. 30:583–97
  • Golombek DA, Rosenstein RE. (2010). Physiology of circadian entrainment. Physiol Rev. 90:1063–102
  • Gooley JJ, Lu J, Chou TC, et al. (2001). Melanopsin in cells of origin of the retinohypothalamic tract. Nat Neurosci. 4:1165
  • Gooley JJ, Lu J, Fischer D, Saper CB. (2003). A broad role for melanopsin in nonvisual photoreception. J Neurosci. 23:7093–106
  • Grozdanic SD, Matic M, Sakaguchi DS, Kardon RH. (2007). Evaluation of retinal status using chromatic pupil light reflex activity in healthy and diseased canine eyes. Invest Ophthalmol Vis Sci. 48:5178–83
  • Guido ME, Garbarino-Pico E, Contin MA, et al. (2010). Inner retinal circadian clocks and non-visual photoreceptors: Novel players in the circadian system. Progr Neurobiol. 92:484–504
  • Hankins MW, Peirson SN, Foster RG. (2008). Melanopsin: An exciting photopigment. Trends Neurosci. 31:27–36
  • Hannibal J, Hindersson P, Knudsen SM, et al. (2002). The photopigment melanopsin is exclusively present in pituitary adenylate cyclase-activating polypeptide-containing retinal ganglion cells of the retinohypothalamic tract. J Neurosci. 22:RC191
  • Hattar S, Kumar M, Park A, et al. (2006). Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol. 497:326–49
  • Hattar S, Liao HW, Takao M, et al. (2002). Melanopsin-containing retinal ganglion cells: Architecture, projections, and intrinsic photosensitivity. Science. 295:1065–70
  • Hattar S, Lucas RJ, Mrosovsky N, et al. (2003). Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature. 424:76–81
  • Jain V, Ravindran E, Dhingra NK. (2012). Differential expression of Brn3 transcription factors in intrinsically photosensitive retinal ganglion cells in mouse. J Comp Neurol. 520:742–55
  • Jakobs TC, Libby RT, Ben Y, et al. (2005). Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol. 171:313–25
  • Kalaboukhova L, Fridhammar V, Lindblom B. (2007). Relative afferent pupillary defect in glaucoma: A pupillometric study. Acta Ophthalmol Scand. 85:519–25
  • Kim BJ, Braun TA, Wordinger RJ, Clark AF. (2013). Progressive morphological changes and impaired retinal function associated with temporal regulation of gene expression after retinal ischemia/reperfusion injury in mice. Mol Neurodegener. 8:21
  • Kondo Y, Takada M, Honda Y, Mizuno N. (1993). Bilateral projections of single retinal ganglion cells to the lateral geniculate nuclei and superior colliculi in the albino rat. Brain Res. 608:204–15
  • Kuehn MH, Fingert JH, Kwon YH. (2005). Retinal ganglion cell death in glaucoma: Mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 18:383–95
  • La Morgia C, Ross-Cisneros FN, Sadun AA, et al. (2010). Melanopsin retinal ganglion cells are resistant to neurodegeneration in mitochondrial optic neuropathies. Brain. 133:2426–38
  • Lafuente MP1, Villegas-Pérez MP, Sellés-Navarro I, et al. (2002). Retinal ganglion cell death after acute retinal ischemia is an ongoing process whose severity and duration depends on the duration of the insult. Neuroscience. 109:157–68
  • Lanzani MF, de Zavalía N, Fontana H, et al. (2012). Alterations of locomotor activity rhythm and sleep parameters in patients with advanced glaucoma. Chronobiol Int. 29:911–9
  • Li RS, Chen BY, Tay DK, et al. (2006). Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci. 47:2951–8
  • Li SY, Yau SY, Chen BY, et al. (2008). Enhanced survival of melanopsin-expressing retinal ganglion cells after injury is associated with the PI3 K/Akt pathway. Cell Mol Neurobiol. 28:1095–107
  • Liu Y, Liu XJ, Sun D. (2009). Ion transporters and ischemic mitochondrial dysfunction. Cell Adh Migr. 3:94–8
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. (1951). Protein measurement with the Folin Phenol reagent. J Biol Chem. 193:265–75
  • Lucas RJ, Douglas RH, Foster RG. (2001). Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci. 4:621–6
  • Lucas RJ, Hattar S, Takao M, et al. (2003). Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science. 299:245–7
  • Nadal-Nicolás FM, Jiménez-López M, Sobrado-Calvo P, et al. (2009). Brn3a as a marker of retinal ganglion cells: Qualitative and quantitative time course studies in naive and optic nerve-injured retinas. Invest Ophthalmol Vis Sci. 50:3860–8
  • Osborne NN, Casson RJ, Wood JP, et al. (2004). Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Progr Retin Eye Res. 23:91–147
  • Osborne NN, Chidlow G, Nash MS, Wood JP. (1999). The potential of neuroprotection in glaucoma treatment. Curr Opin Ophthalmol. 10:82–92
  • Panda S, Provencio I, Tu DC, et al. (2003). Melanopsin is required for non-image-forming photic responses in blind mice. Science. 301:525–7
  • Paxinos G, Watson C. (1997). The rat brain in stereotaxic coordinates. Amsterdam: Elsevier
  • Pérez-Rico C, de la Villa P, Arribas-Gómez I, Blanco R. (2010). Evaluation of functional integrity of the retinohypothalamic tract in advanced glaucoma using multifocal electroretinography and light-induced melatonin suppression. Exp Eye Res. 91:578–83
  • Perganta G, Barnard AR, Katti C, et al. (2013). Non-image-forming light driven functions are preserved in a mouse model of autosomal dominant optic atrophy. PLoS One. 8:e56350
  • Portaluppi F, Smolensky MH, Touitou Y. (2010). Ethics and methods for biological rhythm research on animals and human beings. Chronobiol Int. 27:1911–29
  • Provencio I, Rollag MD, Castrucci AM. (2002). Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature. 415:493
  • Quaranta L, Katsanos A, Russo A, Riva I. (2013). 24-Hour intraocular pressure and ocular perfusion pressure in glaucoma. Surv Ophthalmol. 58:26–41
  • Robinson GA, Madison RD. (2004). Axotomized mouse retinal ganglion cells containing melanopsin show enhanced survival, but not enhanced axon regrowth into a peripheral nerve graft. Vision Res. 44:2667–74
  • Rosenbaum DM, Rosenbaum PS, Singh M, et al. (2001). Functional and morphologic comparison of two methods to produce transient retinal ischemia in the rat. J Neuroophthalmol. 21:62–8
  • Sakamoto K, Liu C, Kasamatsu M, et al. (2005). Dopamine regulates melanopsin mRNA expression in intrinsically photosensitive retinal ganglion cells. Eur J Neurosci. 22:3129–36
  • Semo M, Lupi D, Peirson SN, et al. (2003). Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice. Eur J Neurosci. 18:3007–17
  • Szydlowska K, Tymianski M. (2010). Calcium, ischemia and excitotoxicity. Cell Calcium. 47:122–9
  • Vugler AA, Semo M, Joseph A, Jeffery G. (2008). Survival and remodeling of melanopsin cells during retinal dystrophy. Vis Neurosci. 25:125–38
  • Wang HZ, Lu QJ, Wang NL, et al. (2008). Loss of melanopsin containing retinal ganglion cells in a rat glaucoma model. Chin Med J (Engl). 121:1015–9
  • Young MJ, Lund RD. (1998). The retinal ganglion cells that drive the pupilloconstrictor response in rats. Brain Res. 787:191–202

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.