386
Views
71
CrossRef citations to date
0
Altmetric
Original Article

Peroxisome proliferator-activated receptor-γ: a versatile metabolic regulator

&
Pages 342-351 | Published online: 08 Jul 2009

References

  • Spiegelman B M, Flier J S. Adipogenesis and obesity: rounding out the big picture. Cell 1996; 87: 377–89
  • Schoonjans K, Marin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 1997; 8: 159–65
  • Desvergne B, Wahli W. PPAR: a key nuclear factor in nutrient / gene interactions. Inducible Gene Expression, P Bauerle. Birkhauser, Boston 1994; Vol 1: 142–76
  • Zhu Y, Qi C, Korenberg J R, Chen X N, Noya D, Rao M S, et al. Structural organization of mouse peroxisome proliferator activated receptor γ (mPPARγ) gene: alternative promoter use and different splicing yield two mPPARγ isoforms. Proc Natl Acad Sci U S A 1995; 92: 7921–5
  • Fajas L, Auboeuf D, Raspe E, Schoonjans K, Lefebvre A M, Saladin R, et al. Organization, promoter analysis and expression of the human PPARγ gene. J Biol Chetn 1997; 272: 18779–89
  • Fajas L, Fruchart J C, Auwerx J. PPARγ3 mRNA: a distinct PPARγ mRNA subtype transcribed from an independent promoter. FEBS Lett 1998; 438: 55–60
  • Schoonjans K, Staels B, Auwerx J. Role of the peroxisome proliferator activated receptor (PPAR) in mediating effects of fibrates and fatty acids on gene expression. J Lipid Res 1996; 37: 907–25
  • Auboeuf D, Rieusset J, Fajas L, Vallier P, Frering V, Riou J P, et al. Tissue distribution and quantification of the expression of PPARs and LXRα in humans: no alterations in adipose tissue of obese and NIDDM patients. Diabetes 1997; 48: 1319–27
  • Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, et al. Expression of the peroxisome proliferator-activated receptor γ (PPARγ) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95: 7614–9
  • Lefebvre A M, Laville M, Vega N, Riou J P, van Gaal L, Auwerx J, et al. Depot-specific differences in adipose tissue gene expression in lean and obese subjects. Diabetes 1998; 47: 98–103
  • Rieusset J, Andreelli D, Auboeuf D, Roques M, Vallier P, Riou J P, et al. Insulin acutely regulates the expression of the peroxisome proliferator-activated receptor γ in human adipocytes. Diabetes 1999; 48: 699–705
  • Vidal-Pulg A J, Considine R V, Jimenez-Linan M, Werman A, Pories W J, Caro J F, et al. Peroxisome proliferator-activated receptor gene expression in human tissues: effects of obesity, weight loss, and regulation by insulin and glucocorticoids. J Clin Invest 1997; 99: 2416–22
  • Xing H, Northrop J P, Grove J R, Kilpatrick K E, Su J L, Ringold G M. TNFα-mediated inhibition and reversal of adipocyte differentiation is accompanied by suppressed expression of PPARγ without effects on Pref-1 expression. Endocrinology 1997; 138: 2776–83
  • Hill M, Young M, McCurdy C, Gimble J. Decreased expression of murine PPARγ in adipose tissue during endotoxinemia. Endocrinology 1997; 138: 3073–6
  • Fajas L, Fruchart J C, Auwerx J. Transcriptional control of adipogenesis. Curr Opin Cell Biol 1998; 10: 165–73
  • Yeh W C, Cao Z, Classon M, McKnight S. Cascade regulation of terminal adipocyte differentiation by three members of the C/EBP family of leucine zipper proteins. Genes Dev 1995; 9: 168–81
  • Wu Z, Xie Y, Bucher N LR, Farmer S R. Conditional ectopic expression of C/EBPβ in NIH-3T3 cells induces PPARγ and stimulates adipogenesis. Genes Dev 1995; 9: 2350–63
  • Wu Z, Bucher N LR, Farmer S R. Induction of peroxisome proliferator-activated receptor γ during the conversion of 3T3 fibroblasts into adipocytes is mediated by C/EBPβ, C/EBPδ, and glucocorticoids. Mol Cell Biol 1996; 16: 4128–36
  • Wu Z, Rosen E D, Brun R, Hauser S, Adelmant G, Troy A E, et al. Cross-regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Mol Cell 1999; 3: 143–50
  • Saladin R, Fajas L, Dana S, Halvorsen Y D, Auwerx J, Briggs M. Differential regulation of peroxisome proliferator activated receptor γ1 (PPARγ1) and PPARγ2 mRNA expression in early stages of adipogenesis. Cell Growth Differ 1999; 10: 43–8
  • DiRenzo J, Soderstrom M, Kurokawa R, Ogliastro M H, Ricote M, Ingray S, et al. Peroxisome proliferator-activated receptors and retinoic acid receptors differentially control the interactions of retinoid X receptor heterodimers with ligands, coactivators and corexpressors. Mol Cell Biol 1997; 17: 2166–76
  • Xue J C, Schwarz E J, Chawla A, Lazar M A. Distinct stages in adipogenesis revealed by retinoid inhibition of differentiation after induction of PPARγ. Mol Cell Biol 1996; 16: 1567–75
  • Tontonoz P, Kim J B, Graves R A, Spiegelman B M. ADD1: a novel helix-loop-helix transcription factor associated with adipocyte determination and differentiation. Mol Cell Biol 1993; 13: 4753–9
  • Kim J B, Spiegelman B M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev 1996; 10: 1096–107
  • Shimano H, Horton J D, Hammer R E, Shimomura I, Brown M S, Goldstein J L. Overproduction of cholesterol and fatty acids causes massive liver enlargement in transgenic mice expressing truncated SREBP-1a. J Clin Invest 1996; 98: 1575–84
  • Lopez J M, Bennett M K, Sanchez H B, Rosenfeld J M, Osborne T F. Sterol regulation of acetyl coenzyme A carboxylase: a mechanism for coordinate control of cellular lipid. Proc Natl Acad Sci U S A 1996; 93: 1049–53
  • Bennet M K, Lopez J M, Sanchez H B, Osborne T F. Sterol regulation of fatty acid synthase promoter: coordinate feedback regulation of two major lipid pathways. J Biol Chetn 1995; 270: 25578–83
  • Kim J B, Wright H M, Wright M, Spiegelman B M. ADD1/SREBP1 activates PPARγ through the production of endogeneous ligand. Proc Natl Acad Sci U S A 1998; 95: 4333–7
  • Fajas L, Schoonjans K, Gelman L, Kim J B, Najib J, Martin G, et al. Regulation of PPARγ expression by ADD1/SREBP-1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 1999; 19: 5495–503
  • Tontonoz P, Hu E, Spiegelman B M. Stimulation of adipo-genesis in fibroblasts by PPAR/γ2, a lipid-activated transcription factor. Cell 1994; 79: 1147–56
  • Hu E, Tontonoz P, Spiegelman B M. Transdifferentiation of myoblasts by the adipogenic transcription factors PPARγ and C/EBPα. Proc Natl Acad Sci U S A 1995; 92: 9856–60
  • Tontonoz P, Hu E, Graves R A, Budavari A I, Spiegelman B M. mPPARγ2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 1994; 8: 1224–34
  • Tontonoz P, Hu E, Devine J, Beale E G, Spiegelman B M. PPARγ2 regulates adipose expression of the phosphoenol-pyruvate carboxykinase gene. Mol Cell Biol 1995; 15: 351–7
  • Schoonjans K, Staels B, Grimaldi P, Auwerx J. Acyl-CoA synthetase mRNA expression is controlled by fibric-acid derivatives, feeding and liver proliferation. Eur J Biochem 1993; 216: 615–22
  • Schoonjans K, Watanabe M, Suzaki H, Mahfoudi A, Krey G, Wahli W, et al. Induction of the acylcoenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter. J Biol Chem 1995; 270: 19269–76
  • Tontonoz P, Nagy L, Alvarez J G, Thomazy V A, Evans R M. PPARγ promotes monocyte/macrophage differentiation and uptake of oxidized LDL. Cell 1998; 93: 241–52
  • Martin G, Schoonjans K, Lefebvre A, Staels B, Auwerx J. Coordinate regulation of the expression of the fatty acid transport protein (FATP) and acyl CoA synthetase genes by PPARα and PPARγ activators. J Biol Chem 1997; 272: 28210–7
  • Schoonjans K, Peinado-Onsurbe J, Lefebvre A M, Heyman R A, Briggs M, Deeb S, et al. PPARα and PPARγ activators direct a tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. EMBO J 1996; 15: 5336–48
  • Hui T Y, Frohnert B I, Smith A J, Schaffer J E, Bernlohr D A. Characterization of the murine fatty acid transport protein gene and its insulin response sequence. J Biol Chem 1998; 273: 27420–9
  • Schoonjans K, Martin G, Staels B, Auwerx J. Peroxisome proliferator-activated receptors, orphans with ligands and functions. Curr Opin Lipidol 1997; 8: 159–66
  • Auwerx J, Staels B. Leptin. Lancet 1998; 351: 737–42
  • De Vos P, Lefebvre A M, Miller S G, Guerro-Millo M, Wong K, Saladin R, et al. Thiazolidinediones repress ob gene expression via activation of PPARγ. J Clin Invest 1996; 98: 1004–9
  • Zhang B, Graziano M P, Doebber T W, Leibwitz M D, White-Carrington S, Szalkowski D M, et al. Down-regulation of the expression of the obese gene by antidiabetic thiazoli-dinedione in Zucker diabetic fatty rats and db/db mice. J Biol Chem 1996; 271: 9455–9
  • Kallen C B, Lazar M A. Antidiabetic thiazolidinediones inhibit leptin (ob) gene expression in 3T3-L1 adipocytes. Proc Natl Acad Sci U S A 1996; 93: 5793–6
  • Miller S G, De Vos P, Guerre-Millo M, Wong K, Hermann T, Staels B, et al. The adipocyte specific transcription factor, C/EBPα modulates human ob gene expression. Proc Natl Acad Sci U S A 1996; 93: 5507–11
  • He Y, Chen H, Quon M J, Reitman M. The mouse obese gene. Genomic organization, promoter activity, and activation by CCAAT/enhancer-binding protein alpha. J Biol Chem 1995; 270: 28887–91
  • Hollenberg A N, Susulic V S, Madura J P, Zhang B, Moller D E, Tontonoz P, et al. Functional antagonism between CCAAT/Enhancer binding protein-α and peroxisome proliferator-activated receptor-γ on the leptin promoter. J Biol Chem 1997; 272: 5283–90
  • Torti F M, Dieckman B, Beutler B, Cerami A, Ringold G M. A macrophage factor inhibits adipocyte gene expression: an in vitro model for cachexia. Science 1985; 229: 867–9
  • Beutler B, Cerami A. Cachectin (tumor necrosis factor): a macrophage hormone governing cellular metabolism and inflammatory response. Endocrine Rev 1988; 9: 57–66
  • Williams P M, Chang D J, Danesch U, Ringold G M, Heller R A. CCAAT/enhancer binding protein expression is rapidly extinguished in TA1 adipocyte cells treated with tumor necrosis factor. Mol Endocrinol 1992; 6: 1135–41
  • Ron D, Brasier A R, McGehee R EJ, Habener J F. Tumor necrosis factor-induced reversal of adipocytic phenotype of 3T3-L1 cells is preceded by a loss of nuclear CCAAT/enhancer binding protein (C/EBP). J Clin Invest 1992; 89: 223–33
  • Peraldi P, Xu M, Spiegelman B M. Thiazolidinediones block tumor necrosis factor-α-induced inhibition of insulin signalling. J Clin Invest 1997; 100: 1863–9
  • Hotamisligil G S, Shargill N S, Spiegelman B M. Adipose tissue expression of tumor necrosis factor-α: direct role in obesity-linked insulin resistance. Science 1993; 259: 87–91
  • Hotamisligil G S, Arner P, Caro J F, Atkinson R L, Spiegelman B M. Increased adipose tissue expression of tumor necrosis factor-α in human obesity and insulin resistance. J Clin Invest 1995; 95: 2409–15
  • Hotamisligil G S, Peraldi P, Budavari A, Ellis R, White M F, Spiegelman B M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α and obesity induced insulin resistance. Science 1996; 271: 665–8
  • Hotamisligil G S, Murray D L, Choy L N, Spiegelman B M. Tumor necrosis factor α inhibits signaling From the insulin receptor. Proc Natl Acad Sci U S A 1994; 91: 4854–8
  • Shao D, Lazar M A. Peroxisome proliferator activated receptor γ, CCAAT/enhancer binding protein a and cell cycle status regulate the commitment to adipocyte differentiation. J Biol Chem 1997; 272: 21473–8
  • Hofmann C, Lorenz K, Braithwaite S S, Coka J R, Palazuk B J, Hotamisligil G S, et al. Altered gene expression for tumor necrosis factor-α and its receptor during drug and dietary modulation of insulin resistance. Endocrinology 1994; 134: 264–70
  • Okuno A, Tamemoto H, Tobe K, Veki K, Mori Y, Iwamoto K, et al. Troglitazone increases the number of small adipocytes without the change of white adipose tissue mass in obese Zucker rats. J Clin Invest 1998; 101: 1354–61
  • Cohen B, Novick D, Rubinstein M. Modulation of insulin activities by leptin. Science 1996; 274: 1185–8
  • Muller G, Ertl J, Gerl M, Preibisch G. Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem 1997; 272: 10585–93
  • Liu Y L, Emilsson V, Cawthorne M A. Leptin inhibits glycogen synthesis in isolated soleus muscle of obese (ob/ob) mice. FEBS Lett 1997; 411: 351–5
  • Martin G, Schoonjans K, Staels B, Auwerx J. PPARγ activators improve glucose homeostasis by stimulating fatty acid uptake in the adipocytes. Atherosclerosis 1998; 137: 75–80
  • Oakes N D, Camilleri S, Furler S M, Chisholm D J, Kraegen E W. The insulin sensitizer, BRL 49653, reduces systemic fatty acid supply and utilization and tissue availability in the rat. Metabolism 1997; 46: 935–42
  • Randle P J, Garland P B, Hales C N, Newsholme E A. The glucose-fatty acid cycle: its role in insulin sensitivity and metabolic disturbances of diabetes mellitus. Lancet 1961; I: 785–9
  • Moller D E, Flier J S. Insulin resistance: mechanisms, syndromes, and implications. N Engl J Med 1991; 325: 938–48
  • Shimomura I, Hammer R E, Richardson J A, Ikemoto S, Bashmakov Y, Goldstein J L, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: a model for congenital generalized lipodystrophy. Genes Dev 1998; 12: 3182–94
  • Moitra J, Mason M M, Olive M, Krylov D, Gavrilova O, Marcus-Samuels B, et al. Life without fat: a transgenic mouse. Genes Dev 1998; 12: 3168–81
  • Burant C F, Sreenan S, Hirano K-I, Tai T A, Lohmiller J, Lukens J, et al. Troglitazone action is independent of adipose tissue. J Clin Invest 1997; 100: 2900–8
  • Gelman L, Fruchart J-C, Auwerx J. An update on the mechanisms of action of the peroxisome proliferator-activated receptors (PPARs) and their roles in inflammation and cancer. Cell Mol Life Sci 1999; 55: 932–43
  • Wu Z, Xie Y, Morrison R F, Bucher N LR, Farmer S R. PPARγ induces the insulin dependent glucose transporter GLUT4 in absence of C/EBPα during the conversion of 3T3 fibroblast into adipocytes. J Clin Invest 1998; 101: 22–32
  • Ribon V, Johnson J H, Camp H S, Saltiel A R. Thiazolidinediones and insulin resistance: peroxisome proliferator-activated receptor γ activation stimulates expression of the CAP gene. Proc Natl Acad Sci U S A 1998; 95: 14751–6
  • Bouchard C, Perusse L. Genetics of obesity. Annu Rev Nutr 1993; 13: 337–54
  • Whitaker R C, Wright J A, Pepe M S, Seidel K D, Dietz W H. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med 1997; 337: 869–73
  • Vigouroux C, Fajas L, Khallouf E, Meier M, Gyapay G, Lascols O, et al. Human peroxisome proliferator-activated receptor-gamma2: genetic mapping, identification of a variant in the coding sequence, and exclusion as the gene responsible for lipoatrophic diabetes. Diabetes 1998; 47: 490–2
  • Ristow M, Muller-Wieland D, Pfeiffer A, Krone W, Kahn C R. Obesity associated with a mutation in a genetic regulator of adipocyte differentiation. N Engl J Med 1998; 339: 953–9
  • Yen C J, Beamer B A, Negri C, Silver K, Brown K A, Yarnall D P, et al. Molecular scanning of the human peroxisome proliferator activated receptor gamma gene in diabetic Caucasians: identification of a Pro12A1a PPARgamma 2 missense mutation. Biochem Biophys Res Commun 1997; 241: 270–4
  • Deeb S, Fajas L, Nemoto M, Laakso M, Fujimoto W, Auwerx J. A Pro 12 Ala substitution in the human peroxisome proliferator-activated receptor gamma2 is associated with decreased receptor activity, improved insulin sensitivity, and lowered body mass index. Nat Genet 1998; 20: 284–7
  • Beamer B A, Yen C J, Andersen R E, Muller D, Elahi D, Cheskin L J, et al. Association of the Prol2Ala variant in peroxisome proliferator-activated receptor gamma2 gene with obesity in two Caucasian populations. Diabetes 1998; 47: 1806–8
  • Mori Y, Kim-Motoyama H, Katakura T, Yasuda K, Kadowaki H, Beamer B A, et al. Effect of the Pro12A1a variant of the human peroxisome proliferator activated receptor γ2 gene on adiposity, fat distribution, and insulin sensitivity in Japanese men. Biochem Biophys Res Commun 1998; 251: 195–8
  • Ek J, Urhammer S A, Sorensen T LA, Andersen T, Auwerx J, Pedersen O. Homozygosity of the Prol2Ala variant of the peroxisome proliferator activated receptor γ2 (PPARγ2): divergent modulating effects on body mass index in obese and lean men of Caucasian origin. Diabetologia 1999; 42: 892–5
  • Werman A, Hollenberg A, Solanes G, Bjorbaek C, Vidal-Pulg A, Flier J S. Ligand-independent activation domain in the N terminus of peroxisome proliferator-activated receptor γ (PPARγ). Differential activity of PPAR γ1 and -2 isoforms and influence of insulin. J Biol Chem 1997; 272: 20230–5
  • Gelman L, Zhou G, Fajas L, Raspe E, Fruchart J C, Auwerx J. p300 interacts with the N- and C-terminal part of PPARγ2 in a ligand-independent and -dependent manner, respectively. J Biol Chem 1999; 274: 7681–8
  • Shao D, Rangwala S M, Bailey S T, Krakow S L, Reginato M J, Lazar M A. Interdomain communication regulating ligand binding by PPAR gamma. Nature 1998; 396: 377–80
  • Serhan C N, Haeggstrom J Z, Leslie C C. Lipid mediator networks in cell signaling: update and impact of cytokines. FASEB J 1996; 10: 1147–58
  • Jiang C, Ting A T, Seed B. PPARγ agonists inhibit production of monocyte inflammatory cytokines. Nature 1998; 391: 82–6
  • Ricote M, Li A C, Willson T M, Kelly C J, Glass C K. The peroxisome proliferator-activated receptor γ is a negative regulator of macrophage activation. Nature 1998; 391: 79–82
  • Lehmann J M, Lenhard J M, Oliver B B, Ringold G M, Kliewer S A. Peroxisome proliferator-activated receptors α and γ are activated by indomethacin and other non-steroidal antiinflammatory drugs. J Biol Chem 1997; 272: 3406–10
  • Greene M E, Blumberg B, McBride O W, Yi H F, Kronquist K, Kwan K, et al. Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping. Gene Expression 1995; 4: 281–99
  • Nagy L, Tontonez P, Alvarez J G, Chen H, Evans R M. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 1998; 93: 229–40
  • Marx N, Sukhova G, Murphy C, Libby P, Plutzky J. Macrophages in human atheroma contain PPARgamma: differentiation-dependent PPARgamma expression and reduction of MMP-9 activity through PPARgamma activation in mononuclear phagocytes in vitro. Am J Pathol 1998; 153: 17–23
  • Marx N, Schoenbeck U, Lazar M A, Libby P, Plutzky J. Peroxisome proliferator-activated receptor gamma activators inhibit gene expression and migration in human vascular smooth muscle cells. Circ Res 1998; 83: 1097–103
  • Spiegelman B M. PPARgamma in monocytes: less pain, any gain?. Cell 1998; 93: 153–5
  • Altiek S, Xu M, Spiegelman B. PPARγ induces cell cycle withdrawal: inhibition of E2F/DP DNA-binding activity via down-regulation of PP2A. Genes Dev 1997; 11: 1987–98
  • Hansen J B, Petersen R K, Larsen B M, Bartkova J, Alsner J, Kristiansen K. Activation of peroxisome proliferator activated receptor γ bypasses the function of the retinoblastoma protein in adipocyte differentiation. J Biol Chem 1999; 274: 2386–93
  • Tontonoz P, Singer S, Forman B M, Sarraf P, Fletcher J A, Fletcher D C, et al. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. Proc Natl Acad Sci U S A 1997; 94: 237–11
  • Elstner E, Muller C, Koshizuka K, Williamson E A, Park D, Asou H, et al. Ligands for peroxisome proliferator-activated receptor γ and retinoic acid receptor inhibit growth and induce apoptosis of human breast cancer cells in vitro and in BNX mice. Proc Natl Acad Sci U S A 1998; 95: 8806–11
  • Mueller E, Sarraf P, Tontonoz P, Evans R M, Martin K J, Zhang M, et al. Terminal differentiation of human breast cancer through PPARγ. Mol Cell 1998; 1: 465–70
  • Brockman J A, Gupta R A, DuBois R N. Activation of PPARγ leads to inhibition of anchorage-independent growth of human colorectal cancer cells. Gastroenterology 1998; 115: 1049–55
  • Kubota T, Koshizaka K, Williamson E A, Asou H, Said J W, Holden S, et al. Ligand for peroxisome proliferator activated receptor γ (troglitazone) has potent anti-tumor effects against human prostate cancer both in vitro and in vivo. Cancer Res 1998; 58: 3344–52
  • Lefebvre A M, Chen I, Desreumaux P, Najib J, Fruchart J C, Geboes K, et al. Activation of the peroxisome proliferator-activated receptor γ promotes the development of colon tumors in C57BL/6J-APCMin /+ mice. Nat Med 1998; 4: 1053–7
  • Saez E, Tontonoz P, Nelson M C, Alvarez J G, Ming U T, Baird S M, et al. Activators of the nuclear receptor PPARγ enhance colon polyp formation. Nat Med 1998; 4: 1058–61
  • Kinzler K W, Vogelstein B. Lessons from heriditary colorectal cancer. Cell 1996; 87: 159–70
  • Mansen A, Guardiola-Diaz H, Rafter J, Branting C, Gustafsson J A. Expression of the peroxisome proliferator-activated receptor (PPAR) in the mouse colonic mucosa. Biochem Biophys Res Commun 1996; 222: 844–51
  • Giovanucci E, Willet W C. Dietary factors and risk of colon cancer. Ann Med 1994; 26: 443–52
  • Wasan H S, Novelli M, Bee J, Bodmer W F. Dietary fat influences on polyp phenotype in multiple intestinal neoplasia mice. Proc Natl Acad Sci U S A 1997; 94: 3308–13
  • Sarraf P, Mueller E, Jones D, King F J, DeAngelo D J, Partridge J B, et al. Differentiation and reversal of malignant changes in colon cancer through PPARγ. Nat Med 1998; 4: 1046–52

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.