317
Views
14
CrossRef citations to date
0
Altmetric
Reviews

Practical Applications of Anterior Segment Optical Coherence Tomography Imaging Following Corneal Surgery

&
Pages 125-132 | Received 24 Jun 2012, Accepted 25 Jun 2012, Published online: 19 Nov 2012

REFERENCES

  • Huang D, Swanson EA, Lin CP, et al. Optical coherence tomography. Science 1991;254(5035):1178–81.
  • Izatt JA, Hee MR, Swanson EA, et al. Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. Arch Ophthalmol 1994;112(12):1584–9.
  • Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography - a review. Clin Experiment Ophthalmol 2009;37(1):81–9.
  • Simpson T, Fonn D. Optical coherence tomography of the anterior segment. Ocul Surf 2008;6(3):117–27.
  • Hirano K, Ito Y, Suzuki T, et al. Optical coherence tomography for the noninvasive evaluation of the cornea. Cornea 2001;20(3):281–9.
  • Doors M, Berendschot TT, de Brabander J, et al. Value of optical coherence tomography for anterior segment surgery. J Cataract Refract Surg 2010;36(7):1213–29.
  • Zysk AM, Nguyen FT, Oldenburg AL, et al. Optical coherence tomography: A review of clinical development from bench to bedside. J Biomed Opt 2007;12(5):051403.
  • Hrynchak P, Simpson T. Optical coherence tomography: An introduction to the technique and its use. Optom Vis Sci 2000;77(7):347–56.
  • Schmitt JM. Optical Coherence Tomography (OCT): A review. IEEE Journal of Selected Topics in Quantum Electronics 1999;5(4):1205–15.
  • Leitgeb R, Hitzenberger C, Fercher A. Performance of fourier domain vs. time domain optical coherence tomography. Opt Express 2003;11(8):889–94.
  • de Boer JF, Cense B, Park BH, et al. Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt Lett 2003;28(21):2067–9.
  • Choma M, Sarunic M, Yang C, Izatt J. Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt Express 2003;11(18):2183–9.
  • Heur M, Tang M, Yiu S, et al. Investigation of femtosecond laser-enabled keratoplasty wound geometry using optical coherence tomography. Cornea 2011;30(8):889–94.
  • Farid M, Kim M, Steinert RF. Results of penetrating keratoplasty performed with a femtosecond laser zigzag incision initial report. Ophthalmology 2007;114(12):2208–12.
  • Ugarte M, Falcon MG. Spontaneous wound dehiscence after removal of single continuous penetrating keratoplasty suture: Conservative management. Cornea 2006;25(10):1260–1.
  • Kaiserman I, Bahar I, Rootman DS. Corneal wound malapposition after penetrating keratoplasty: An optical coherence tomography study. Br J Ophthalmol 2008;92(8):1103–7.
  • Vengayil S, Vanathi M, Panda A, Khokhar S. Anterior segment OCT-based diagnosis and management of retained Descemet’s membrane following penetrating keratoplasty. Cont Lens Anterior Eye 2008;31(3):161–3.
  • Yamaguchi T, Ohnuma K, Tomida D, et al. The contribution of the posterior surface to the corneal aberrations in eyes after keratoplasty. Invest Ophthalmol Vis Sci 2011;52(9):6222–9.
  • Gora M, Karnowski K, Szkulmowski M, et al. Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt Express 2009;17(17):14880–94.
  • Karnowski K, Kaluzny BJ, Szkulmowski M, et al. Corneal topography with high-speed swept source OCT in clinical examination. Biomed Opt Express 2011;2(9):2709–20.
  • Li Y, Shekhar R, Huang D. Corneal pachymetry mapping with high-speed optical coherence tomography. Ophthalmology 2006;113(5):792–9e2.
  • Thomas J, Wang J, Rollins AM, Sturm J. Comparison of corneal thickness measured with optical coherence tomography, ultrasonic pachymetry, and a scanning slit method. J Refract Surg 2006;22(7):671–8.
  • Greenlee EC, Kwon YH. Graft failure: III. Glaucoma escalation after penetrating keratoplasty. Int Ophthalmol 2008;28(3):191–207.
  • Banitt M, Lee RK. Management of patients with combined glaucoma and corneal transplant surgery. Eye (Lond) 2009;23(10):1972–9.
  • Goldsmith JA, Li Y, Chalita MR, et al. Anterior chamber width measurement by high-speed optical coherence tomography. Ophthalmology 2005;112(2):238–44.
  • Hoerauf H, Gordes RS, Scholz C, et al. First experimental and clinical results with transscleral optical coherence tomography. Ophthalmic Surg Lasers 2000;31(3):218–22.
  • Hoerauf H, Scholz C, Koch P, et al. Transscleral optical coherence tomography: A new imaging method for the anterior segment of the eye. Arch Ophthalmol 2002;120(6):816–9.
  • Dada T, Shah BM, Bali SJ, et al. Anterior segment OCT imaging in opaque grafts with secondary glaucoma following tectonic penetrating keratoplasty for perforated corneal ulcers. Eye (Lond) 2011;25(11):1522–4.
  • Chua J, Mehta JS, Tan DT. Use of anterior segment optical coherence tomography to assess secondary glaucoma after penetrating keratoplasty. Cornea 2009;28(2):243–5.
  • Luengo-Gimeno F, Tan DT, Mehta JS. Evolution of deep anterior lamellar keratoplasty (DALK). Ocul Surf 2011;9(2):98–110.
  • Shimmura S, Tsubota K. Deep anterior lamellar keratoplasty. Curr Opin Ophthalmol 2006;17(4):349–55.
  • Anwar M, Teichmann KD. Deep lamellar keratoplasty: Surgical techniques for anterior lamellar keratoplasty with and without baring of Descemet’s membrane. Cornea 2002;21(4):374–83.
  • Tan DT, Anshu A, Parthasarathy A, Htoon HM. Visual acuity outcomes after deep anterior lamellar keratoplasty: A case-control study. Br J Ophthalmol 2010;94(10):1295–9.
  • Reinhart WJ, Musch DC, Jacobs DS, et al. Deep anterior lamellar keratoplasty as an alternative to penetrating keratoplasty: A report by the American Academy of Ophthalmology. Ophthalmology 2011;118(1):209–18.
  • Lim LS, Aung HT, Aung T, Tan DT. Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures. Am J Ophthalmol 2008;145(1):81–90.
  • Wylegala E, Nowinska A. Usefulness of anterior segment optical coherence tomography in Descemet membrane detachment. Eur J Ophthalmol 2009;19(5):723–8.
  • Mackool RJ, Holtz SJ. Descemet membrane detachment. Arch Ophthalmol 1977;95(3):459–63.
  • Melles GR, Eggink FA, Lander F, et al. A surgical technique for posterior lamellar keratoplasty. Cornea 1998;17(6):618–26.
  • Lee WB, Jacobs DS, Musch DC, et al. Descemet’s stripping endothelial keratoplasty: Safety and outcomes: A report by the American Academy of Ophthalmology. Ophthalmology 2009;116(9):1818–30.
  • Tarnawska D, Wylegala E. Monitoring cornea and graft morphometric dynamics after descemet stripping and endothelial keratoplasty with anterior segment optical coherence tomography. Cornea 2010;29(3):272–7.
  • Shih CY, Ritterband DC, Palmiero PM, et al. The use of postoperative slit-lamp optical coherence tomography to predict primary failure in descemet stripping automated endothelial keratoplasty. Am J Ophthalmol 2009;147(5):796–800, e1.
  • Kymionis GD, Suh LH, Dubovy SR, Yoo SH. Diagnosis of residual Descemet’s membrane after Descemet’s stripping endothelial keratoplasty with anterior segment optical coherence tomography. J Cataract Refract Surg 2007;33(7):1322–4.
  • Suh LH, Shousha MA, Ventura RU, et al. Epithelial ingrowth after Descemet stripping automated endothelial keratoplasty: Description of cases and assessment with anterior segment optical coherence tomography. Cornea 2011;30(5):528–34.
  • Colby KA, Koo EB. Expanding indications for the Boston keratoprosthesis. Curr Opin Ophthalmol 2011;22(4):267–73.
  • Traish AS, Chodosh J. Expanding application of the Boston type I keratoprosthesis due to advances in design and improved post-operative therapeutic strategies. Semin Ophthalmol 2010;25(5-6):239–43.
  • Garcia JP, Jr., de la Cruz J, Rosen RB, Buxton DF. Imaging implanted keratoprostheses with anterior-segment optical coherence tomography and ultrasound biomicroscopy. Cornea 2008;27(2):180–8.
  • Utine CA, Tzu JH, Akpek EK. Clinical features and prognosis of Boston type I keratoprosthesis-associated corneal melt. Ocul Immunol Inflamm 2011;19(6):413–8.
  • Garcia JP, Jr., Ritterband DC, Buxton DF, De la Cruz J. Evaluation of the stability of Boston type I keratoprosthesis-donor cornea interface using anterior segment optical coherence tomography. Cornea 2010;29(9):1031–5.
  • Cade F, Grosskreutz CL, Tauber A, Dohlman CH. Glaucoma in eyes with severe chemical burn, before and after keratoprosthesis. Cornea 2011;30(12):1322–7.
  • Kamyar R, Weizer JS, de Paula FH, et al. Glaucoma associated with Boston type I keratoprosthesis. Cornea 2011.
  • Talajic JC, Agoumi Y, Gagne S, et al. Prevalence, progression, and impact of glaucoma on vision after Boston type 1 keratoprosthesis surgery. Am J Ophthalmol 2011.
  • Panarelli J, Ko A, Garcia JP, et al. Angle closure by anterior segment optical coherence tomography after Boston keratoprosthesis. ARVO Meeting Abstracts 2011;52(6):343.
  • Elderkin S, De la Cruz J, Garcia JP, Ritterband DC. Angle structures in patients implanted with type I Boston keratoprosthesis utilizing anterior segment optical coherence tomography. ARVO Meeting Abstracts 2008;49(5):3269.
  • Basu S, Senthil S, Sangwan VS. Correlation of anterior chamber angle morphology with progression of glaucoma in eyes with Boston type 1 keratoprosthesis. ARVO/ISIE 2011;85.
  • Twa MD, Karpecki PM, King BJ, et al. One-year results from the phase III investigation of the KeraVision Intacs. J Am Optom Assoc 1999;70(8):515–24.
  • Rabinowitz YS. INTACS for keratoconus. Int Ophthalmol Clin 2010;50(3):63–76.
  • Linebarger EJ, Song D, Ruckhofer J, Schanzlin DJ. Intacs: The intrastromal corneal ring. Int Ophthalmol Clin 2000;40(3):199–208.
  • Shetty R, Kurian M, Anand D, et al. Intacs in advanced keratoconus. Cornea 2008;27(9):1022–9.
  • Kymionis GD, Siganos CS, Tsiklis NS, et al. Long-term follow-up of Intacs in keratoconus. Am J Ophthalmol 2007;143(2):236–44.
  • Kaya V, Utine CA, Karakus SH, et al. Refractive and visual outcomes after Intacs vs ferrara intrastromal corneal ring segment implantation for keratoconus: A comparative study. J Refract Surg 2011;1–6.
  • Colin J, Cochener B, Savary G, et al. Intacs inserts for treating keratoconus: One-year results. Ophthalmology 2001;108(8):1409–14.
  • Ruckhofer J, Stoiber J, Alzner E, Grabner G. One year results of European Multicenter Study of intrastromal corneal ring segments. Part 2: Complications, visual symptoms, and patient satisfaction. J Cataract Refract Surg 2001;27(2):287–96.
  • Lai MM, Tang M, Andrade EM, et al. Optical coherence tomography to assess intrastromal corneal ring segment depth in keratoconic eyes. J Cataract Refract Surg 2006;32(11):1860–5.
  • Spoerl E, Huhle M, Seiler T. Induction of cross-links in corneal tissue. Exp Eye Res 1998;66(1):97–103.
  • Wollensak G, Spoerl E, Seiler T. Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol 2003;135(5):620–7.
  • Raiskup-Wolf F, Hoyer A, Spoerl E, Pillunat LE. Collagen crosslinking with riboflavin and ultraviolet-A light in keratoconus: Long-term results. J Cataract Refract Surg 2008;34(5):796–801.
  • Wollensak G, Spoerl E, Seiler T. Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 2003;29(9):1780–5.
  • Wollensak G, Iomdina E. Long-term biomechanical properties of rabbit cornea after photodynamic collagen crosslinking. Acta Ophthalmol 2009;87(1):48–51.
  • Seiler T, Hafezi F. Corneal cross-linking-induced stromal demarcation line. Cornea 2006;25(9):1057–9.
  • Sutton GL, Kim P. Laser in situ keratomileusis in 2010 – a review. Clin Experiment Ophthalmol 2010;38(2):192–210.
  • Durrie DS, Aziz AA. Lift-flap retreatment after laser in situ keratomileusis. J Refract Surg 1999;15(2):150–3.
  • Rocha KM, Randleman JB, Stulting RD. Analysis of microkeratome thin flap architecture using Fourier-domain optical coherence tomography. J Refract Surg 2011;27(10):759–63.
  • Li Y, Netto MV, Shekhar R, et al. A longitudinal study of LASIK flap and stromal thickness with high-speed optical coherence tomography. Ophthalmology 2007;114(6):1124–32.
  • Thompson RW, Jr., Choi DM, Price MO, et al. Noncontact optical coherence tomography for measurement of corneal flap and residual stromal bed thickness after laser in situ keratomileusis. J Refract Surg 2003;19(5):507–15.
  • Izquierdo L, Jr., Henriquez MA, Zakrzewski PA. Detection of an abnormally thick LASIK flap with anterior segment OCT imaging prior to planned LASIK retreatment surgery. J Refract Surg 2008;24(2):197–9.
  • Avila M, Li Y, Song JC, Huang D. High-speed optical coherence tomography for management after laser in situ keratomileusis. J Cataract Refract Surg 2006;32(11):1836–42.
  • Ramos JL, Zhou S, Yo C, et al. High-resolution imaging of complicated LASIK flap interface fluid syndrome. Ophthalmic Surg Lasers Imaging 2008;39(4 Suppl):S80–2.
  • Wirbelauer C, Pham DT. Imaging interface fluid after laser in situ keratomileusis with corneal optical coherence tomography. J Cataract Refract Surg 2005;31(4):853–6.
  • Rosas Salaroli CH, Li Y, Huang D. High-resolution optical coherence tomography visualization of LASIK flap displacement. J Cataract Refract Surg 2009;35(9):1640–2.
  • Ustundag C, Bahcecioglu H, Ozdamar A, et al. Optical coherence tomography for evaluation of anatomical changes in the cornea after laser in situ keratomileusis. J Cataract Refract Surg 2000;26(10):1458–62.
  • Ashok Kumar D, Prakash G, Agarwal A, Jacob S. Quantitative assessment of post-LASIK corneal infiltration with frequency domain anterior segment OCT: A case report. Cont Lens Anterior Eye 2009;32(6):296–9.
  • Sikder S, Khalifa YM, Neuffer MC, Moshirfar M. Tomographic corneal profile analysis of central toxic keratopathy after LASIK. Cornea 2012;31(1):48–51.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.