657
Views
75
CrossRef citations to date
0
Altmetric
IMMUNOLOGY OF THE EYE – INSIDE AND OUT

Host Defense at the Ocular Surface

, , , , , , , , & show all
Pages 4-18 | Accepted 10 Nov 2012, Published online: 29 Jan 2013

REFERENCES

  • www.who.int/blindness/Vision2020_report.pdf.
  • Saint Andre A, Blackwell NM, Hall LR, The role of endosymbiotic Wolbachia bacteria in the pathogenesis of river blindness. Science 2002;295:1892–1895.
  • Turner JD, Langley RS, Johnston KL, Wolbachia lipoprotein stimulates innate and adaptive immunity through Toll-like receptors 2 and 6 to induce disease manifestations of filariasis. J Biol Chem 2009;284:22364–22378.
  • Tamarozzi F, Halliday A, Gentil K, Onchocerciasis: the role of Wolbachia bacterial endosymbionts in parasite biology, disease pathogenesis, and treatment. Clin Microbiol Rev 2011;24:459–468.
  • Knickelbein JE, Khanna KM, Yee MB, Noncytotoxic lytic granule-mediated CD8+ T cell inhibition of HSV-1 reactivation from neuronal latency. Science 2008;322:268–271.
  • Gimenez F, Suryawanshi A, Rouse BT. Pathogenesis of herpes stromal keratitis—a focus on corneal neovascularization. Prog Retin Eye Res 2012 [Epub ahead of print].
  • Suryawanshi A, Mulik S, Sharma S, Ocular neovascularization caused by herpes simplex virus type 1 infection results from breakdown of binding between vascular endothelial growth factor A and its soluble receptor. J Immunol 2011;186:3653–3665.
  • Karthikeyan RS, Leal SM, Jr., Prajna NV, Expression of innate and adaptive immune mediators in human corneal tissue infected with Aspergillus or fusarium. J Infect Dis 2011;204:942–950.
  • Leal SM, Jr., Cowden S, Hsia YC, Distinct roles for Dectin-1 and TLR4 in the pathogenesis of Aspergillus fumigatus keratitis. PLoS Pathog 2010;6:e1000976.
  • Clarke DW, Niederkorn JY. The immunobiology of Acanthamoeba keratitis. Microbes Infect 2006;8:1400–1405.
  • Iovieno A, Ledee DR, Miller D, Alfonso EC. Detection of bacterial endosymbionts in clinical Acanthamoeba isolates. Ophthalmology 2010;117:445–452.
  • Bhosai SJ, Bailey RL, Gaynor BD, Lietman TM. Trachoma: an update on prevention, diagnosis, and treatment. Curr Opin Ophthalmol 2012;23:288–295.
  • Leal SM, Jr., Pearlman E. The role of cytokines and pathogen recognition molecules in fungal keratitis—insights from human disease and animal models. Cytokine 2012;58:107–111.
  • Hazlett LD. Corneal response to Pseudomonas aeruginosa infection. Prog Retin Eye Res 2004;23:1–30.
  • Hazlett LD. Inflammatory response to Pseudomonas aeruginosa keratitis. Ocul Surf 2005;3:S139–S141.
  • Hazlett LD, Hendricks RL. Reviews for immune privilege in the year 2010: immune privilege and infection. Ocul Immunol Inflamm 2010;18:237–243.
  • Garreis F, Gottschalt M, Paulsen FP. Antimicrobial peptides as a major part of the innate immune defense at the ocular surface. Dev Ophthalmol 2012;45:16–22.
  • Dartt DA. Tear lipocalin: structure and function. Ocul Surf 2011;9:126–138.
  • Flanagan JL, Willcox MD. Role of lactoferrin in the tear film. Biochimie 2009;91:35–43.
  • Govindarajan B, Gipson IK. Membrane-tethered mucins have multiple functions on the ocular surface. Exp Eye Res 2011;90:655–663.
  • McDermott AM. The role of antimicrobial peptides at the ocular surface. Ophthalmic Res 2009;41:60–75.
  • Augustin DK, Heimer SR, Tam C, Role of defensins in corneal epithelial barrier function against Pseudomonas aeruginosa traversal. Infect Immun 2011;79:595–605.
  • Wu M, McClellan SA, Barrett RP, Beta-defensins 2 and 3 together promote resistance to Pseudomonas aeruginosa keratitis. J Immunol 2009;183:8054–8060.
  • Tam C, Mun JJ, Evans DJ, Fleiszig SM. Cytokeratins mediate epithelial innate defense through their antimicrobial properties. J Clin Invest 2012;122:3665–3677.
  • Pearlman E, Johnson A, Adhikary G, Toll-like receptors at the ocular surface. Ocul Surf 2008;6:108–116.
  • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2011;11:373–384.
  • Zanoni I, Ostuni R, Marek LR, CD14 controls the LPS-induced endocytosis of Toll-like receptor 4. Cell 2011;147:868–880.
  • Yarovinsky F, Zhang D, Andersen JF, TLR11 activation of dendritic cells by a protozoan profilin-like protein. Science 2005;308:1626–1629.
  • Zhang D, Zhang G, Hayden MS, A toll-like receptor that prevents infection by uropathogenic bacteria. Science 2004;303:1522–1526.
  • Shimazu R, Akashi S, Ogata H, MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J Exp Med 1999;189:1777–1782.
  • Viriyakosol S, Tobias PS, Kitchens RL, Kirkland TN. MD-2 binds to bacterial lipopolysaccharide. J Biol Chem 2001;276:38044–38051.
  • Visintin A, Mazzoni A, Spitzer JA, Segal DM. Secreted MD-2 is a large polymeric protein that efficiently confers lipopolysaccharide sensitivity to Toll-like receptor 4. Proc Natl Acad Sci USA 2001;98:12156–12161.
  • Park BS, Song DH, Kim HM, The structural basis of lipopolysaccharide recognition by the TLR4-MD-2 complex. Nature 2009;458:1191–1195.
  • Gioannini TL, Teghanemt A, Zhang D, Isolation of an endotoxin-MD-2 complex that produces Toll-like receptor 4-dependent cell activation at picomolar concentrations. Proc Natl Acad Sci USA 2004;101:4186–4191.
  • Brissette-Storkus CS, Reynolds SM, Lepisto AJ, Hendricks RL. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci 2002;43:2264–2271.
  • Chinnery HR, Pearlman E, McMenamin PG. Cutting edge: membrane nanotubes in vivo: a feature of MHC class II+ cells in the mouse cornea. J Immunol 2008;180:5779–5783.
  • Chinnery HR, Ruitenberg MJ, Plant GW, The chemokine receptor CX3CR1 mediates homing of MHC class II-positive cells to the normal mouse corneal epithelium. Invest Ophthalmol Vis Sci 2007;48:1568–1574.
  • Hamrah P, Dana MR. Corneal antigen-presenting cells. Chem Immunol Allergy 2007;92:58–70.
  • Hamrah P, Huq SO, Liu Y, et al. Corneal immunity is mediated by heterogeneous population of antigen-presenting cells. J Leukoc Biol 2003;74:172–178.
  • Sun Y, Karmakar M, Roy S, TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. J Immunol 2010;185:4272–4283.
  • Huang X, Du W, McClellan SA, TLR4 is required for host resistance in Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2006;47:4910–4916.
  • McClellan SA, Huang X, Barrett RP, Macrophages restrict Pseudomonas aeruginosa growth, regulate polymorphonuclear neutrophil influx, and balance pro- and anti-inflammatory cytokines in BALB/c mice. J Immunol 2003;170:5219–5227.
  • Leal SM, Jr., Vareechon C, Cowden S, Fungal antioxidant pathways promote survival against neutrophils during infection. J Clin Invest 2012;122:2482–2498.
  • Nathan C. Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 2006;6:173–182.
  • Tam C, Mun JJ, Evans DJ, Fleiszig SM. The impact of inoculation parameters on the pathogenesis of contact lens-related infectious keratitis. Invest Ophthalmol Vis Sci 2010;51:3100–3106.
  • Adhikary G, Sun Y, Pearlman E. C-Jun NH2 terminal kinase (JNK) is an essential mediator of Toll-like receptor 2-induced corneal inflammation. J Leukoc Biol 2008;83:991–997.
  • Kumar A, Zhang J, Yu FS. Toll-like receptor 2-mediated expression of beta-defensin-2 in human corneal epithelial cells. Microbes Infect 2006;8:380–389.
  • Johnson AC, Li X, Pearlman E. MyD88 functions as a negative regulator of TLR3/TRIF-induced corneal inflammation by inhibiting activation of c-Jun N-terminal kinase. J Biol Chem 2008;283:3988–3996.
  • Ueta M, Hamuro J, Kiyono H, Kinoshita S. Triggering of TLR3 by polyI:C in human corneal epithelial cells to induce inflammatory cytokines. Biochem Biophys Res Commun 2005;331:285–294.
  • Zhang J, Xu K, Ambati B, Yu FS. Toll-like receptor 5-mediated corneal epithelial inflammatory responses to Pseudomonas aeruginosa flagellin. Invest Ophthalmol Vis Sci 2003;44:4247–4254.
  • Chinnery HR, McLenachan S, Binz N, TLR9 ligand CpG-ODN applied to the injured mouse cornea elicits retinal inflammation. Am J Pathol 2012;180:209–220.
  • Sun Y, Pearlman E. Inhibition of corneal inflammation by the TLR4 antagonist Eritoran tetrasodium (E5564). Invest Ophthalmol Vis Sci 2009;50:1247–1254.
  • Ueta M, Nochi T, Jang MH, Intracellularly expressed TLR2s and TLR4s contribution to an immunosilent environment at the ocular mucosal epithelium. J Immunol 2004;173:3337–3347.
  • Visintin A, Halmen KA, Khan N, et al. MD-2 expression is not required for cell surface targeting of Toll-like receptor 4 (TLR4). J Leukoc Biol 2006;80:1584–1592.
  • Zhang J, Kumar A, Wheater M, Yu FS. Lack of MD-2 expression in human corneal epithelial cells is an underlying mechanism of lipopolysaccharide (LPS) unresponsiveness. Immunol Cell Biol 2009;87:141–148.
  • Roy S, Sun Y, Pearlman E. Interferon-gamma-induced MD-2 protein expression and lipopolysaccharide (LPS) responsiveness in corneal epithelial cells is mediated by Janus tyrosine kinase-2 activation and direct binding of STAT1 protein to the MD-2 promoter. J Biol Chem 2011;286:23753–23762.
  • Hazlett LD, Li Q, Liu J, et al. NKT cells are critical to initiate an inflammatory response after Pseudomonas aeruginosa ocular infection in susceptible mice. J Immunol 2007;179:1138–1146.
  • Kumar A, Yin J, Zhang J, Yu FS. Modulation of corneal epithelial innate immune response to pseudomonas infection by flagellin pretreatment. Invest Ophthalmol Vis Sci 2007;48:4664–4670.
  • Redfern RL, Reins RY, McDermott AM. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells. Exp Eye Res 2011;92:209–220.
  • Rudner XL, Kernacki KA, Barrett RP, Hazlett LD. Prolonged elevation of IL-1 in Pseudomonas aeruginosa ocular infection regulates macrophage-inflammatory protein-2 production, polymorphonuclear neutrophil persistence, and corneal perforation. J Immunol 2000;164:6576–6582.
  • Karmakar M. Cutting Edge: IL-1β processing during Pseudomonas aeruginosa infection is mediated by neutrophil serine proteases and is independent of NLRC4 and Caspase-1. Cutting Edge J Immunol 2012;189(9):4231–4235.
  • Gross O, Thomas CJ, Guarda G, Tschopp J. The inflammasome: an integrated view. Immunol Rev 2011;243:136–151.
  • Schroder K, Tschopp J. The inflammasomes. Cell 2010;140:821–832.
  • Miao EA, Alpuche-Aranda CM, Dors M, Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 2006;7:569–575.
  • Miao EA, Ernst RK, Dors M, Pseudomonas aeruginosa activates caspase 1 through Ipaf. Proc Natl Acad Sci USA 2008;105:2562–2567.
  • Miao EA, Mao DP, Yudkovsky N, Innate immune detection of the type III secretion apparatus through the NLRC4 inflammasome. Proc Natl Acad Sci USA 2010;107:3076–3080.
  • Tomalka J, Ganesan S, Azodi E, A novel role for the NLRC4 inflammasome in mucosal defenses against the fungal pathogen Candida albicans. PLoS Pathog 2011;7:e1002379.
  • Franchi L, Stoolman J, Kanneganti TD, Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 2007;37:3030–3039.
  • Black RA, Kronheim SR, Cantrell M, Generation of biologically active interleukin-1 beta by proteolytic cleavage of the inactive precursor. J Biol Chem 1988;263:9437–9442.
  • Hazuda DJ, Strickler J, Kueppers F, Processing of precursor interleukin 1 beta and inflammatory disease. J Biol Chem 1990;265:6318–6322.
  • Mankan AK, Dau T, Jenne D, Hornung V. The NLRP3/ASC/Caspase-1 axis regulates IL-1beta processing in neutrophils. Eur J Immunol 2011;42(3):710–715.
  • Thakur A, Barrett RP, Hobden JA, Hazlett LD. Caspase-1 inhibitor reduces severity of Pseudomonas aeruginosa keratitis in mice. Invest Ophthalmol Vis Sci 2004;45:3177–3184.
  • Thakur A, Barrett RP, McClellan S, Hazlett LD. Regulation of Pseudomonas aeruginosa corneal infection in IL-1 beta converting enzyme (ICE, caspase-1) deficient mice. Curr Eye Res 2004;29:225–233.
  • Wald D, Qin J, Zhao Z, SIGIRR, a negative regulator of Toll-like receptor-interleukin 1 receptor signaling. Nat Immunol 2003;4:920–927.
  • Huang X, Hazlett LD, Du W, Barrett RP. SIGIRR promotes resistance against Pseudomonas aeruginosa keratitis by down-regulating type-1 immunity and IL-1R1 and TLR4 signaling. J Immunol 2006;177:548–556.
  • Huang X, Du W, Barrett RP, Hazlett LD. ST2 is essential for Th2 responsiveness and resistance to Pseudomonas aeruginosa keratitis. Invest Ophthalmol Vis Sci 2007;48:4626–4633.
  • Jiang X, McClellan SA, Barrett RP, VIP and growth factors in the infected cornea. Invest Ophthalmol Vis Sci 2011;52:6154–6161.
  • Jiang X, McClellan SA, Barrett RP, Vasoactive intestinal peptide downregulates proinflammatory TLRs while upregulating anti-inflammatory TLRs in the infected cornea. J Immunol 2012;189:269–278.
  • Hazlett LD, McClellan SA, Barrett RP, Spantide I decreases type I cytokines, enhances IL-10, and reduces corneal perforation in susceptible mice after Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci 2007;48:797–807.
  • Zhou Z, Barrett RP, McClellan SA, Substance P delays apoptosis, enhancing keratitis after Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci 2008;49:4458–4467.
  • Burdelya LG, Krivokrysenko VI, Tallant TC, An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 2008;320:226–230.
  • Vijay-Kumar M, Aitken JD, Sanders CJ, Flagellin treatment protects against chemicals, bacteria, viruses, and radiation. J Immunol 2008;180:8280–8285.
  • Kumar A, Gao N, Standiford TJ, Topical flagellin protects the injured corneas from Pseudomonas aeruginosa infection. Microbes Infect 2010;12:978–989.
  • Kumar A, Hazlett LD, Yu FS. Flagellin suppresses the inflammatory response and enhances bacterial clearance in a murine model of Pseudomonas aeruginosa keratitis. Infect Immun 2008;76: 89–96.
  • Yu FS, Cornicelli MD, Kovach MA, Flagellin stimulates protective lung mucosal immunity: role of cathelicidin-related antimicrobial peptide. J Immunol 2011;185:1142–1149.
  • Galan JE, Wolf-Watz H. Protein delivery into eukaryotic cells by type III secretion machines. Nature 2006;444:567–573.
  • Hauser AR. The type III secretion system of Pseudomonas aeruginosa: infection by injection. Nat Rev Microbiol 2009;7:654–665.
  • Sato H, Frank DW. ExoU is a potent intracellular phospholipase. Mol Microbiol 2004;53: 1279–1290.
  • Barbieri JT, Sun J. Pseudomonas aeruginosa ExoS and ExoT. Rev Physiol Biochem Pharmacol 2004;152:79–92.
  • Kazmierczak BI, Mostov K, Engel JN. Epithelial cell polarity alters Rho-GTPase responses to Pseudomonas aeruginosa. Mol Biol Cell 2004;15:411–419.
  • Krall R, Sun J, Pederson KJ, Barbieri JT. In vivo rho GTPase-activating protein activity of Pseudomonas aeruginosa cytotoxin ExoS. Infect Immun 2002;70:360–367.
  • Engel J, Balachandran P. Role of Pseudomonas aeruginosa type III effectors in disease. Curr Opin Microbiol 2009;12:61–66.
  • Feltman H, Schulert G, Khan S, Prevalence of type III secretion genes in clinical and environmental isolates of Pseudomonas aeruginosa. Microbiology 2001;147:2659–2669.
  • Cowell BA, Weissman BA, Yeung KK, Phenotype of Pseudomonas aeruginosa isolates causing corneal infection between 1997 and 2000. Cornea 2003;22:131–134.
  • Lee EJ, Cowell BA, Evans DJ, Fleiszig SM, Contribution of ExsA-regulated factors to corneal infection by cytotoxic and invasive Pseudomonas aeruginosa in a murine scarification model. Invest Ophthalmol Vis Sci 2003;44:3892–3898.
  • Stover CK, Pham XQ, Erwin AL, Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 2000;406:959–964.
  • Angus AA, Lee AA, Augustin DK, Pseudomonas aeruginosa induces membrane blebs in epithelial cells, which are utilized as a niche for intracellular replication and motility. Infect Immun 2008;76:1992–2001.
  • Angus AA, Evans DJ, Barbieri JT, Fleiszig SM. The ADP-ribosylation domain of Pseudomonas aeruginosa ExoS is required for membrane Bleb-Niche formation and bacterial survival within epithelial cells. Infect Immun 2010;78(11):4500–4510.
  • Behlau I, Gilmore MS. Microbial biofilms in ophthalmology and infectious disease. Arch Ophthalmol 2008;126:1572–1581.
  • Mukherjee PK, Zhou G, Munyon R, Ghannoum MA. Candida biofilm: a well-designed protected environment. Med Mycol 2005;43:191–208.
  • Szczotka-Flynn LB, Imamura Y, Chandra J, Increased resistance of contact lens-related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 2009;28:918–926.
  • Szczotka-Flynn LB, Pearlman E, Ghannoum M. Microbial contamination of contact lenses, lens care solutions, and their accessories: a literature review. Eye Contact Lens 2010;36:116–129.
  • Johnson AC, Heinzel FP, Diaconu E, Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-dependent corneal inflammation. Invest Ophthalmol Vis Sci 2005;46:589–595.
  • Szczotka-Flynn L, Diaz M. Risk of corneal inflammatory events with silicone hydrogel and low dk hydrogel extended contact lens wear: a meta-analysis. Optom Vis Sci 2007;84:247–256.
  • Dong Q, Brulc JM, Iovieno A, Diversity of bacteria at healthy human conjunctiva. Invest Ophthalmol Vis Sci 2011;52:5408–5413.
  • Hume EB, Conerly LL, Moreau JM, Serratia marcescens keratitis: strain-specific corneal pathogenesis in rabbits. Curr Eye Res 1999;19:525–532.
  • Willcox MD, Hume EB. Differences in the pathogenesis of bacteria isolated from contact-lens-induced infiltrative conditions. Aust N Z J Ophthalmol 1999;27:231–233.
  • Sun Y, Karmakar M, Taylor PR, ExoS and ExoT ADP ribosyltransferase activities mediate Pseudomonas aeruginosa keratitis by promoting neutrophil apoptosis and bacterial survival. J Immunol 2012;188:1884–1895.
  • Zhou R, Zhang R, Sun Y, Innate immune regulation of Serratia marcescens induced corneal inflammation and infection. Invest Ophthalmol Vis Sci 2012;53(11):7382–7388.
  • Bharathi MJ, Ramakrishnan R, Meenakshi R, Microbial keratitis in South India: influence of risk factors, climate, and geographical variation. Ophthalmic Epidemiol 2007;14:61–69.
  • Hume EB, Cole N, Garthwaite LL, A protective role for IL-6 in staphylococcal microbial keratitis. Invest Ophthalmol Vis Sci 2006;47:4926–4930.
  • Moore QC, 3rd, McCormick CC, Norcross EW, Development of a Streptococcus pneumoniae keratitis model in mice. Ophthalmic Res 2009;42:141–146.
  • Sun Y, Fox T, Adhikary G, Inhibition of corneal inflammation by liposomal delivery of short-chain, C-6 ceramide. J Leukoc Biol 2008;83:1512–1521.
  • Sun Y, Zhang R, Gadek TR, Corneal inflammation is inhibited by the LFA-1 antagonist, lifitegrast (SAR 1118). J Ocul Pharmacol Ther 2013;29: In press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.