459
Views
13
CrossRef citations to date
0
Altmetric
MICROBIAL IMMUNOPATHOLOGY

Pathogenesis and Treatment of HIV Infection: The Cellular, the Immune System and the Neuroendocrine Systems Perspective

, , , , , , , , , , & show all
Pages 282-306 | Accepted 17 Feb 2013, Published online: 25 Apr 2013

REFERENCES

  • Hightower GK, Wong JK, Letendre SL, Higher HIV-1 genetic diversity is associated with AIDS and neuropsychological impairment. Virology 2012;433:498–505.
  • Stoddart CA, Reyes RA. Models of HIV-1 disease: a review of current status. Drug Discovery Today: Disease Models 2006;3:113–119.
  • Durand CM, Blankson JN, Siliciano RF. Developing strategies for HIV-1 eradication. Trends Immunol 2012;33:554–562.
  • Craigie R, Bushman FD. HIV DNA integration. Cold Spring Harb Perspect Med 2012;2:a006890.
  • Hu WS, Hughes SH. HIV-1 reverse transcription. Cold Spring Harb Perspect Med 2012:2.
  • Karn J, Stoltzfus CM. Transcriptional and posttranscriptional regulation of HIV-1 gene expression. Cold Spring Harb Perspect Med 2012;2:a006916.
  • Sundquist WI, Krausslich HG. HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2012;2:a006924.
  • Wilen CB, Tilton JC, Doms RW. HIV: cell binding and entry. Cold Spring Harb Perspect Med 2012:2.
  • Saphire AC, Bobardt MD, Zhang Z, Syndecans serve as attachment receptors for human immunodeficiency virus type 1 on macrophages. J Virol 2001;75:9187–9200.
  • Arthos J, Cicala C, Martinelli E, HIV-1 envelope protein binds to and signals through integrin alpha4beta7, the gut mucosal homing receptor for peripheral T cells. Nat Immunol 2008;9:301–309.
  • Geijtenbeek TB, Kwon DS, Torensma R, DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 2000;100:587–597.
  • Dalgleish AG, Beverley PC, Clapham PR, The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 1984;312:763–767.
  • Klatzmann D, Barre-Sinoussi F, Nugeyre MT, et al. Selective tropism of lymphadenopathy associated virus (LAV) for helper-inducer T lymphocytes. Science 1984;225:59–63.
  • Maddon PJ, Dalgleish AG, McDougal JS, The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986;47:333–348.
  • McDougal JS, Kennedy MS, Sligh JM, Binding of HTLV-III/LAV to T4+ T cells by a complex of the 110K viral protein and the T4 molecule. Science 1986;231:382–385.
  • Alkhatib G, Combadiere C, Broder CC, CC CKR5: a RANTES, MIP-1alpha, MIP-1beta receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996;272:1955–1958.
  • Choe H, Farzan M, Sun Y, The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996;85:1135–1148.
  • Deng H, Liu R, Ellmeier W, Identification of a major co-receptor for primary isolates of HIV-1. Nature 1996;381:661–666.
  • Doranz BJ, Rucker J, Yi Y, A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996;85:1149–1158.
  • Dragic T, Litwin V, Allaway GP, HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996;381:667–673.
  • Feng Y, Broder CC, Kennedy PE, Berger EA. HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 1996;272:872–877.
  • Roberts JD, Bebenek K, Kunkel TA. The accuracy of reverse transcriptase from HIV-1. Science 1988;242:1171–1173.
  • Harris RS, Bishop KN, Sheehy AM, DNA deamination mediates innate immunity to retroviral infection. Cell 2003;113:803–809.
  • Lecossier D, Bouchonnet F, Clavel F, Hance AJ. Hypermutation of HIV-1 DNA in the absence of the Vif protein. Science 2003;300:1112.
  • Mangeat B, Turelli P, Caron G, Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 2003;424:99–103.
  • Mariani R, Chen D, Schrofelbauer B, Species-specific exclusion of APOBEC3G from HIV-1 virions by Vif. Cell 2003;114:21–31.
  • Zhang H, Yang B, Pomerantz RJ, The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 2003;424:94–98.
  • Coffin JM. Structure, replication, and recombination of retrovirus genomes: some unifying hypotheses. J Gen Virol 1979;42:1–26.
  • Abram ME, Ferris AL, Shao W, Nature, position, and frequency of mutations made in a single cycle of HIV-1 replication. J Virol 2010;84:9864–9878.
  • Mansky LM, Temin HM. Lower in vivo mutation rate of human immunodeficiency virus type 1 than that predicted from the fidelity of purified reverse transcriptase. J Virol 1995;69:5087–5094.
  • Vartanian JP, Henry M, Wain-Hobson S. Sustained G–>A hypermutation during reverse transcription of an entire human immunodeficiency virus type 1 strain Vau group O genome. J Gen Virol 2002;83:801–805.
  • Vartanian JP, Meyerhans A, Asjo B, Wain-Hobson S. Selection, recombination, and G—-A hypermutation of human immunodeficiency virus type 1 genomes. J Virol 1991;65:1779–1788.
  • Bocharov G, Ford NJ, Edwards J, A genetic-algorithm approach to simulating human immunodeficiency virus evolution reveals the strong impact of multiply infected cells and recombination. J Gen Virol 2005;86:3109–3118.
  • Jung A, Maier R, Vartanian JP, Recombination: Multiply infected spleen cells in HIV patients. Nature 2002;418:144.
  • Schultz A, Sopper S, Sauermann U, Stable multi-infection of splenocytes during SIV infection–the basis for continuous recombination. Retrovirology 2012;9:31.
  • Jetzt AE, Yu H, Klarmann GJ, High rate of recombination throughout the human immunodeficiency virus type 1 genome. J Virol 2000;74:1234–1240.
  • Levy DN, Aldrovandi GM, Kutsch O, Shaw GM. Dynamics of HIV-1 recombination in its natural target cells. Proc Natl Acad Sci USA 2004;101:4204–4209.
  • Onafuwa A, An W, Robson ND, Telesnitsky A. Human immunodeficiency virus type 1 genetic recombination is more frequent than that of Moloney murine leukemia virus despite similar template switching rates. J Virol 2003;77:4577–4587.
  • Rhodes TD, Nikolaitchik O, Chen J, Genetic recombination of human immunodeficiency virus type 1 in one round of viral replication: effects of genetic distance, target cells, accessory genes, and lack of high negative interference in crossover events. J Virol 2005;79:1666–1677.
  • Streeck H, Jolin JS, Qi Y, Human immunodeficiency virus type 1-specific CD8 +T-cell responses during primary infection are major determinants of the viral set point and loss of CD4+ T cells. J Virol 2009;83:7641–7648.
  • Cheynier R, Henrichwark S, Hadida F, HIV and T cell expansion in splenic white pulps is accompanied by infiltration of HIV-specific cytotoxic T lymphocytes. Cell 1994;78:373–387.
  • Coffin JM. Genetic diversity and evolution of retroviruses. Curr Top Microbiol Immunol 1992;176:143–164.
  • Gratton S, Cheynier R, Dumaurier MJ, Highly restricted spread of HIV-1 and multiply infected cells within splenic germinal centers. Proc Natl Acad Sci USA 2000;97:14566–14571.
  • Meyerhans A, Cheynier R, Albert J, Temporal fluctuations in HIV quasispecies in vivo are not reflected by sequential HIV isolations. Cell 1989;58:901–910.
  • Farnet CM, Bushman FD. HIV-1 cDNA integration: requirement of HMG I(Y) protein for function of preintegration complexes in vitro. Cell 1997;88:483–492.
  • Brown PO. Integration of retroviral DNA. Curr Top Microbiol Immunol 1990;157:19–48.
  • Schroder AR, Shinn P, Chen H, HIV-1 integration in the human genome favors active genes and local hotspots. Cell 2002;110:521–529.
  • Fujinaga K, Irwin D, Huang Y, Dynamics of human immunodeficiency virus transcription: P-TEFb phosphorylates RD and dissociates negative effectors from the transactivation response element. Mol Cell Biol 2004;24:787–795.
  • Kim YK, Bourgeois CF, Isel C, Phosphorylation of the RNA polymerase II carboxyl-terminal domain by CDK9 is directly responsible for human immunodeficiency virus type 1 Tat-activated transcriptional elongation. Mol Cell Biol 2002;22:4622–4637.
  • Wei P, Garber ME, Fang SM, A novel CDK9-associated C-type cyclin interacts directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. Cell 1998;92:451–462.
  • Malim MH, Tiley LS, McCarn DF, HIV-1 structural gene expression requires binding of the Rev trans-activator to its RNA target sequence. Cell 1990;60:675–683.
  • Pollard VW, Malim MH. The HIV-1 Rev protein. Annu Rev Microbiol 1998;52:491–532.
  • Bolinger C, Boris-Lawrie K. Mechanisms employed by retroviruses to exploit host factors for translational control of a complicated proteome. Retrovirology 2009;6:8.
  • Decroly E, Wouters S, Di Bello C, Identification of the paired basic convertases implicated in HIV gp160 processing based on in vitro assays and expression in CD4(+) cell lines. J Biol Chem 1996;271:30442–30450.
  • Baldauf HM, Pan X, Erikson E, SAMHD1 restricts HIV-1 infection in resting CD4(+) T cells. Nat Med 2012;18:1682–1689.
  • Descours B, Cribier A, Chable-Bessia C, SAMHD1 restricts HIV-1 reverse transcription in quiescent CD4+ T-cells. Retrovirology 2012;9:87.
  • Goldstone DC, Ennis-Adeniran V, Hedden JJ, HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 2011;480:379–382.
  • Hrecka K, Hao C, Gierszewska M, Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 2011;474:658–661.
  • Laguette N, Sobhian B, Casartelli N, SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 2011;474:654–657.
  • Lahouassa H, Daddacha W, Hofmann H, SAMHD1 restricts the replication of human immunodeficiency virus type 1 by depleting the intracellular pool of deoxynucleoside triphosphates. Nat Immunol 2012;13:223–228.
  • Meyerhans A, Vartanian JP, Hultgren C, Restriction and enhancement of human immunodeficiency virus type 1 replication by modulation of intracellular deoxynucleoside triphosphate pools. J Virol 1994; 68:535–540.
  • Stremlau M, Owens CM, Perron MJ, The cytoplasmic body component TRIM5alpha restricts HIV-1 infection in Old World monkeys. Nature 2004; 427:848–853.
  • Zhang X, Kondo M, Chen J, Inhibitory effect of human TRIM5alpha on HIV-1 production. Microbes Infect 2010;12:768–777.
  • Neil SJ, Zang T, Bieniasz PD. Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 2008;451:425–430.
  • Van Damme N, Goff D, Katsura C, The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 2008;3:245–252.
  • Sheehy AM, Gaddis NC, Malim MH. The antiretroviral enzyme APOBEC3G is degraded by the proteasome in response to HIV-1 Vif. Nat Med 2003;9:1404–1407.
  • Ogg GS, Jin X, Bonhoeffer S, Quantitation of HIV-1-specific cytotoxic T lymphocytes and plasma load of viral RNA. Science 1998;279:2103–2106.
  • Betts MR, Nason MC, West SM, HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood 2006;107:4781–4789.
  • Mothe B, Llano A, Ibarrondo J, CTL responses of high functional avidity and broad variant cross-reactivity are associated with HIV control. PLoS ONE 2012;7:e29717.
  • Saez-Cirion A, Lacabaratz C, Lambotte O, HIV controllers exhibit potent CD8 T cell capacity to suppress HIV infection ex vivo and peculiar cytotoxic T lymphocyte activation phenotype. Proc Natl Acad Sci USA 2007;104:6776–6781.
  • Migueles SA, Osborne CM, Royce C, Lytic granule loading of CD8+ T cells is required for HIV-infected cell elimination associated with immune control. Immunity 2008;29:1009–1021.
  • Kuan-Hsiang G. Huang DB, Aris Katzourakis, B-cell depletion reveals a role for antibodies in the control of chronic HIV-1 infection. Nat Commun 2010;1(102):1.
  • Trkola A, Kuster H, Rusert P, Delay of HIV-1 rebound after cessation of antiretroviral therapy through passive transfer of human neutralizing antibodies. Nat Med 2005;11:615–622.
  • Williams LD, Bansal A, Sabbaj S, Interleukin-21-producing HIV-1-specific CD8 T cells are preferentially seen in elite controllers. J Virol 2011;85:2316–2324.
  • Hersperger AR, Pereyra F, Nason M, Perforin expression directly ex vivo by HIV-specific CD8 T-cells is a correlate of HIV elite control. PLoS Pathog 2010;6:e1000917.
  • Dalmau J, Puertas MC, Azuara M, Contribution of immunological and virological factors to extremely severe primary HIV type 1 infection. Clin Infect Dis 2009;48:229–238.
  • Alter G, Heckerman D, Schneidewind A, HIV-1 adaptation to NK-cell-mediated immune pressure. Nature 2011;476:96–100.
  • Alter G, Martin MP, Teigen N, Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 2007;204:3027–3036.
  • Thibault S, Fromentin R, Tardif MR, Tremblay MJ. TLR2 and TLR4 triggering exerts contrasting effects with regard to HIV-1 infection of human dendritic cells and subsequent virus transfer to CD4+ T cells. Retrovirology 2009;6:42.
  • Martin MP, Gao X, Lee JH, Epistatic interaction between KIR3DS1 and HLA-B delays the progression to AIDS. Nat Genet 2002;31:429–434.
  • Manel N, Hogstad B, Wang Y, A cryptic sensor for HIV-1 activates antiviral innate immunity in dendritic cells. Nature 2010;467:214–217.
  • Izquierdo-Useros N, Lorizate M, Contreras FX, Sialyllactose in viral membrane gangliosides is a novel molecular recognition pattern for mature dendritic cell capture of HIV-1. PLoS Biol 2012;10:e1001315.
  • Pereyra F, Jia X, McLaren PJ, The major genetic determinants of HIV-1 control affect HLA class I peptide presentation. Science 2010;330:1551–1557.
  • Pereyra F, Addo MM, Kaufmann DE, Genetic and immunologic heterogeneity among persons who control HIV infection in the absence of therapy. J Infect Dis 2008;197:563–571.
  • Gao X, Nelson G, Karacki P, Effect of a single amino acid change in MHC class I molecules on the rate of progression to AIDS. N Engl J Med 2001;344:1668–1675.
  • Kaslow RA, Carrington M, Apple R, Influence of combinations of human major histocompatibility complex genes on the course of HIV-1 infection. Nature Medicine 1996;2:405–411.
  • Frahm N, Kiepiela P, Adams S, Control of human immunodeficiency virus replication by cytotoxic T lymphocytes targeting subdominant epitopes. Nat Immunol 2006;7:173–178.
  • Kawashima Y, Pfafferott K, Frater J, Adaptation of HIV-1 to human leukocyte antigen class I. Nature 2009;458:641–645.
  • Miura T, Brockman MA, Brumme ZL, HLA-associated alterations in replication capacity of chimeric NL4–3 viruses carrying gag-protease from elite controllers of human immunodeficiency virus type 1. J Virol 2009;83:140–149.
  • Lassen KG, Lobritz MA, Bailey JR, Elite suppressor-derived HIV-1 envelope glycoproteins exhibit reduced entry efficiency and kinetics. PLoS Pathog 2009;5:e1000377.
  • Yue L, Prentice HA, Farmer P, Cumulative impact of host and viral factors on HIV-1 viral load control during early infection. J Virol 2012;87(2):708–715.
  • Goonetilleke N, Liu M, Salazar-Gonzalez J, The first T cell response to transmitted/founder virus contributes to the control of acute viremia in HIV-1 infection. J Exp Med 2009 Jun 1 [Epub ahead of print] 2009.
  • Lichterfeld M, Yu XG, Cohen D, HIV-1 Nef is preferentially recognized by CD8 T cells in primary HIV-1 infection despite a relatively high degree of genetic diversity. Aids 2004;18:1383–1392.
  • Bansal A, Gough E, Sabbaj S, CD8 T-cell responses in early HIV-1 infection are skewed towards high entropy peptides. AIDS 2005;19:241–250.
  • Perez CL, Milush JM, Buggert M, Targeting of conserved Gag-epitopes in early HIV infection is associated with lower plasma viral load and slower CD4+ T cell depletion. AIDS Res Hum Retroviruses 2012;29(3):602–612.
  • Ferrari G, Korber B, Goonetilleke N, Relationship between functional profile of HIV-1 specific CD8 T cells and epitope variability with the selection of escape mutants in acute HIV-1 infection. PLoS Pathog 2011;7:e1001273.
  • Ganusov VV, Goonetilleke N, Liu MK, Fitness costs and diversity of the cytotoxic T lymphocyte (CTL) response determine the rate of CTL escape during acute and chronic phases of HIV infection. J Virol 2011;85:10518–10528.
  • Altfeld M, Addo MM, Shankarappa R, Enhanced detection of human immunodeficiency virus type 1-specific T-cell responses to highly variable regions by using peptides based on autologous virus sequences. J Virol 2003;77:7330–7340.
  • Frahm N, Kaufmann DE, Yusim K, Increased sequence diversity coverage improves detection of HIV-specific T cell responses. J Immunol 2007;179:6638–6650.
  • Janes H, Frahm N, DeCamp A, MRKAd5 HIV-1 Gag/Pol/Nef vaccine-induced T-cell responses inadequately predict distance of breakthrough HIV-1 sequences to the vaccine or viral load. PLoS ONE 2012;7:e43396.
  • Rolland M, Tovanabutra S, deCamp AC, Genetic impact of vaccination on breakthrough HIV-1 sequences from the STEP trial. Nat Med 2011;17:366–371.
  • Almeida JR, Sauce D, Price DA, Antigen sensitivity is a major determinant of CD8+ T-cell polyfunctionality and HIV-suppressive activity. Blood 2009;113:6351–6360.
  • Almeida JR, Price DA, Papagno L, Superior control of HIV-1 replication by CD8+ T cells is reflected by their avidity, polyfunctionality, and clonal turnover. J Exp Med 2007;204: 2473–2485.
  • Berger C, Frahm N, Price D, High functional avidity CTL responses to HLA-B-restricted Gag-derived epitopes associate with relative HIV control. J Virology 2011; in press.
  • Yerly D, Heckerman D, Allen TM, Increased cytotoxic T-lymphocyte epitope variant cross-recognition and functional avidity are associated with hepatitis C virus clearance. J Virol 2008;82:3147–3153.
  • Bennett MS, Joseph A, Ng HL, Fine-tuning of T-cell receptor avidity to increase HIV epitope variant recognition by cytotoxic T lymphocytes. Aids 2010;24:2619–2628.
  • Bennett MS, Ng HL, Dagarag M, Epitope-dependent avidity thresholds for cytotoxic T-lymphocyte clearance of virus-infected cells. J Virol 2007;81:4973–4980.
  • Lichterfeld M, Yu XG, Mui SK, Selective depletion of high-avidity human immunodeficiency virus type 1 (HIV-1)-specific CD8+ T cells after early HIV-1 infection. J Virol 2007;81: 4199–4214.
  • Geldmacher C, Currier JR, Herrmann E, CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. J Virol 2007;81:2440–2448.
  • Kiepiela P, Ngumbela K, Thobakgale C, CD8+ T-cell responses to different HIV proteins have discordant associations with viral load. Nat Med 2007;13:46–53.
  • Masemola A, Mashishi T, Khoury G, Hierarchical targeting of subtype C human immunodeficiency virus type 1 proteins by CD8+ T cells: correlation with viral load. J Virol 2004;78: 3233–3243.
  • Zuñiga R, Lucchetti A, Galvan P, Relative dominance of Gag p24 specific CTL is associated with HIV control. J Virology 2006;80:3122–3125.
  • Sacha JB, Chung C, Rakasz EG, Gag-specific CD8+ T lymphocytes recognize infected cells before AIDS-virus integration and viral protein expression. J Immunol 2007;178:2746–2754.
  • Sacha JB, Chung C, Reed J, Pol-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells prior to Nef-mediated major histocompatibility complex class I downregulation. J Virol 2007;81:11703–11712.
  • Sacha JB, Buechler MB, Newman LP, Simian immunodeficiency virus-specific CD8+ T cells recognize Vpr- and Rev-derived epitopes early after infection. J Virol 2010;84:10907–10912.
  • Sacha JB, Giraldo-Vela JP, Buechler MB, Gag- and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection. Proc Natl Acad Sci USA 2009;106:9791–9796.
  • Borghans JA, Molgaard A, de Boer RJ, Kesmir C. HLA alleles associated with slow progression to AIDS truly prefer to present HIV-1 p24. PLoS ONE 2007;2:e920.
  • Mothe B, Llano A, Ibarrondo J, Definition of the viral targets of protective HIV-1-specific T cell responses. J Transl Med 2011;9:208.
  • Mothe B, Llano A, Rosati M, A minimal T-cell immunogen designed to cover HIV-1 specificities associated with control of HIV is immunogenic in mice and is able to break CTL immunodominance. AIDS Vaccine meeting 2012. Boston, USA 2012, September 10th.
  • Rolland M, Nickle DC, Mullins JI. HIV-1 group M conserved elements vaccine. PLOS Pathogen 2007;3:e157.
  • Anisman H, Baines MG, Berczi I, Neuroimmune mechanisms in health and disease: 1. Health. Canadian Med Assoc J 1996;155:867–874.
  • Butts CL, Sternberg EM. Neuroendocrine factors alter host defense by modulating immune function. Cellular Immun 2008;252:7–15.
  • Besedovsky HO, Rey AD. Physiology of psychoneuroimmunology: a personal view. Brain Behav Immun 2007;21:34–44.
  • Kelley KW. From hormones to immunity: the physiology of immunology. Brain Behav Immun 2004;18:95–113.
  • Kiess W, Belohradsky BH. Endocrine regulation of the immune system. Klin Wochenschr 1986;64:1–7.
  • Ahlqvist J. Endocrine influences on lymphatic organs, immune responses, inflammation and autoimmunity. Acta Endocrinol Suppl (Copenh) 1976;206:3.
  • Heijnen C. Neural and endocrine effects on immunity. In: Robert A editor. Psychoneuroimmunology. 4th ed. Burlington: Academic Press; 2007: 39–43.
  • Besedovsky HO, del Rey AE, Sorkin E. Immune-neuroendocrine interactions. J Immunol 1985;135:750s–754s.
  • Brown TT. The effects of HIV-1 infection on endocrine organs. Best Pract Res Clin Endocrinol Metab 2011;25:403–413.
  • Comsa J, Leonhardt H, Wekerle H. Hormonal coordination of the immune response. Rev Physiol Biochem Pharmacol 1982;92:115–191.
  • Blalock JE, Smith EM, Meyer WJ, 3rd. The pituitary-adrenocortical axis and the immune system. Clin Endocrinol Metab 1985;14:1021–1038.
  • Claman HN. Corticosteroids as immunomodulators. Ann NY Acad Sci 1993;685:288–292.
  • Blalock JE. The immune system as a sensory organ. J Immunol 1984;132:1067–1070.
  • Blalock JE, Harbour-McMenamin D, Smith EM. Peptide hormones shared by the neuroendocrine and immunologic systems. J Immunol 1985;135:858s-861s.
  • Cotter AG, Powderly WG. Endocrine complications of human immunodeficiency virus infection: hypogonadism, bone disease and tenofovir-related toxicity. Best Pract Res Clin Endocrinol Metab 2011;25:501–515.
  • Falutz J. Growth hormone and HIV infection: contribution to disease manifestations and clinical implications. Best Pract Res Clin Endocrinol Metab 2011;25:517–529.
  • Samaras K. Endocrine disease in HIV infection. Best Pract Res Clin Endocrinol Metab 2011;25:vii–viii.
  • Worm SW, Lundgren JD. The metabolic syndrome in HIV. Best Pract Res Clin Endocrinol Metab 2011;25:479–486.
  • Bailey RC, Kamenga MC, Nsuami MJ, Growth of children according to maternal and child HIV, immunological and disease characteristics: a prospective cohort study in Kinshasa, Democratic Republic of Congo. Int J Epidemiol 1999;28:532–540.
  • Isanaka S, Duggan C, Fawzi WW. Patterns of postnatal growth in HIV-infected and HIV-exposed children. Nutr Rev 2009;67:343–359.
  • Newell ML, Borja MC, Peckham C. Height, weight, and growth in children born to mothers with HIV-1 infection in Europe. Pediatrics 2003;111:e52–e60.
  • Schwartz LJ, St Louis Y, Wu R, Endocrine function in children with human immunodeficiency virus infection. Am J Dis Child 1991;145:330–333.
  • Dobs AS, Dempsey MA, Ladenson PW, Polk BF. Endocrine disorders in men infected with human immunodeficiency virus. Am J Med 1988;84:611–616.
  • Membreno L, Irony I, Dere W, Adrenocortical function in acquired immunodeficiency syndrome. J Clin Endocrinol Metab 1987;65:482–487.
  • Villette JM, Bourin P, Doinel C, Circadian variations in plasma levels of hypophyseal, adrenocortical and testicular hormones in men infected with human immunodeficiency virus. J Clin Endocrinol Metab 1990;70:572–577.
  • Brown TT, Glesby MJ. Management of the metabolic effects of HIV and HIV drugs. Nat Rev Endocrinol 2012;8:11–21.
  • Zapanti E, Terzidis K, Chrousos G. Dysfunction of the hypothalamic-pituitary-adrenal axis in HIV infection and disease. Hormones (Athens) 2008;7:205–216.
  • Dort K, Padia S, Wispelwey B, Moore CC. Adrenal suppression due to an interaction between ritonavir and injected triamcinolone: a case report. AIDS Res Ther 2009;6:10.
  • Kino T, Chrousos GP. Human immunodeficiency virus type-1 accessory protein Vpr: a causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome? Ann NY Acad Sci 2004, 1024:153–167.
  • Brooke SM, Sapolsky RM. The effects of steroid hormones in HIV-related neurotoxicity: a mini review. Biol Psychiatry 2000;48:881–893.
  • Costa A, Nappi RE, Polatti F, Stimulating effect of HIV-1 coat protein gp120 on corticotropin-releasing hormone and arginine vasopressin in the rat hypothalamus: involvement of nitric oxide. Exp Neurol 2000;166:376–384.
  • Mellado M, Llorente M, Rodriguez-Frade JM, HIV-1 envelope protein gp120 triggers a Th2 response in mice that shifts to Th1 in the presence of human growth hormone. Vaccine 1998;16:1111–1115.
  • Mulroney SE, McDonnell KJ, Pert CB, HIV gp120 inhibits the somatotropic axis: a possible GH-releasing hormone receptor mechanism for the pathogenesis of AIDS wasting. Proc Natl Acad Sci USA 1998;95:1927–1932.
  • Pozzoli G, Tringali G, Dello Russo C, HIV-1 Gp120 protein modulates corticotropin releasing factor synthesis and release via the stimulation of its mRNA from the rat hypothalamus in vitro: involvement of inducible nitric oxide synthase. J Neuroimmunol 2001;118:268–276.
  • Butler TR, Smith KJ, Self RL, Neurodegenerative effects of recombinant HIV-1 Tat(1–86) are associated with inhibition of microtubule formation and oxidative stress-related reductions in microtubule-associated protein-2(a,b). Neurochem Res 2011;36:819–828.
  • Fekete EM, Antoni MH, Lopez C, Stress buffering effects of oxytocin on HIV status in low-income ethnic minority women. Psychoneuroendocrinology 2011;36:881–890.
  • Fumaz CR, Gonzalez-Garcia M, Borras X, Psychological stress is associated with high levels of IL-6 in HIV-1 infected individuals on effective combined antiretroviral treatment. Brain Behav Immun 2012;26:568–572.
  • Sherr L, Nagra N, Kulubya G, . HIV infection associated post-traumatic stress disorder and post-traumatic growth–a systematic review. Psychol Health Med 2011;16:612–629.
  • Hirschfeld S, Laue L, Cutler GB, Jr., Pizzo PA. Thyroid abnormalities in children infected with human immunodeficiency virus. J Pediatr 1996;128:70–74.
  • Jaquet D, Levine M, Ortega-Rodriguez E, Clinical and metabolic presentation of the lipodystrophic syndrome in HIV-infected children. AIDS 2000;14:2123–2128.
  • Kim RJ, Carlow DC, Rutstein JH, Rutstein RM. Hypoadiponectinemia, dyslipidemia, and impaired growth in children with HIV-associated facial lipoatrophy. J Pediatr Endocrinol Metab 2007;20:65–74.
  • Christeff N, Gherbi N, Mammes O, Serum cortisol and DHEA concentrations during HIV infection. Psychoneuroendocrinology 1997;22(Suppl 1):S11–S18.
  • Koutkia P, Eaton K, You SM, Growth hormone secretion among HIV infected patients: effects of gender, race and fat distribution. AIDS 2006;20:855–862.
  • Hinz S, McCormack D, van der Spuy ZM. Endocrine function in HIV-infected women. Gynecol Endocrinol 2002;16:33–38.
  • Ricart-Engel W, Fernandez-Real JM, Gonzalez-Huix F, The relation between thyroid function and nutritional status in HIV-infected patients. Clin Endocrinol (Oxf) 1996;44:53–58.
  • Biglino A, Limone P, Forno B, Altered adrenocorticotropin and cortisol response to corticotropin-releasing hormone in HIV-1 infection. Eur J Endocrinol 1995;133:173–179.
  • Plana M, Garcia F, Darwich L, The reconstitution of the thymus in immunosuppressed individuals restores CD4-specific cellular and humoral immune responses. Immunology 2011;133:318–328.
  • Gelato M, McNurlan M, Freedland E. Role of recombinant human growth hormone in HIV-associated wasting and cachexia: pathophysiology and rationale for treatment. Clin Ther 2007;29:2269–2288.
  • Gilden D. Human growth hormone available for AIDS wasting. GMHC Treat Issues 1995;9:9–11.
  • Grunfeld C, Thompson M, Brown SJ, Recombinant human growth hormone to treat HIV-associated adipose redistribution syndrome: 12 week induction and 24-week maintenance therapy. J Acquir Immune Defic Syndr 2007;45:286–297.
  • Herasimtschuk AA, Westrop SJ, Moyle GJ, Effects of recombinant human growth hormone on HIV-1-specific T-cell responses, thymic output and proviral DNA in patients on HAART: 48-week follow-up. J Immune Based Ther Vaccines 2008;6:7.
  • Koutkia P, Canavan B, Breu J, Growth hormone-releasing hormone in HIV-infected men with lipodystrophy: a randomized controlled trial. JAMA 2004;292:210–218.
  • Lo J, You SM, Canavan B, Low-dose physiological growth hormone in patients with HIV and abdominal fat accumulation: a randomized controlled trial. JAMA 2008;300:509–519.
  • Lo JC, Mulligan K, Noor MA, The effects of recombinant human growth hormone on body composition and glucose metabolism in HIV-infected patients with fat accumulation. J Clin Endocrinol Metab 2001;86:3480–3487.
  • Napolitano LA, Schmidt D, Gotway MB, Growth hormone enhances thymic function in HIV-1-infected adults. J Clin Invest 2008;118:1085–1098.
  • Lohse N, Hansen AB, Gerstoft J, Obel N. Improved survival in HIV-infected persons: consequences and perspectives. J Antimicrob Chemother 2007;60:461–463.
  • Nakagawa F, Lodwick RK, Smith CJ, Projected life expectancy of people with HIV according to timing of diagnosis. AIDS 2012;26:335–343.
  • Arts EJ, Hazuda DJ. HIV-1 Antiretroviral drug therapy. Cold Spring Harb Perspect Med 2012;2:a007161.
  • Shelburne SA, Visnegarwala F, Darcourt J, Incidence and risk factors for immune reconstitution inflammatory syndrome during highly active antiretroviral therapy. AIDS 2005;19:399–406.
  • Dornadula G, Zhang H, VanUitert B, Residual HIV-1 RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 1999;282:1627–1632.
  • Palmer S, Maldarelli F, Wiegand A, Low-level viremia persists for at least 7 years in patients on suppressive antiretroviral therapy. Proc Natl Acad Sci USA 2008;105:3879–3884.
  • Doyle T, Smith C, Vitiello P, Plasma HIV-1 RNA detection below 50 copies/ml and risk of virologic rebound in patients receiving highly active antiretroviral therapy. Clin Infect Dis 2012;54:724–732.
  • Rong L, Perelson AS. Modeling HIV persistence, the latent reservoir, and viral blips. J Theor Biol 2009;260:308–331.
  • Baker JV, Peng G, Rapkin J, CD4+ count and risk of non-AIDS diseases following initial treatment for HIV infection. AIDS 2008;22:841–848.
  • Ferry T, Raffi F, Collin-Filleul F, Uncontrolled viral replication as a risk factor for non-AIDS severe clinical events in HIV-infected patients on long-term antiretroviral therapy: APROCO/COPILOTE (ANRS CO8) cohort study. J Acquir Immune Defic Syndr 2009;51:407–415.
  • Calmy A, Gayet-Ageron A, Montecucco F, HIV increases markers of cardiovascular risk: results from a randomized, treatment interruption trial. AIDS 2009;23:929–939.
  • Hunt PW, Brenchley J, Sinclair E, Relationship between T cell activation and CD4+ T cell count in HIV-seropositive individuals with undetectable plasma HIV RNA levels in the absence of therapy. J Infect Dis 2008;197:126–133.
  • Abrams D, Levy Y, Losso MH, Interleukin-2 therapy in patients with HIV infection. N Engl J Med 2009;361:1548–1559.
  • Wong JK, Hezareh M, Gunthard HF, Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 1997;278:1291–1295.
  • Finzi D, Hermankova M, Pierson T, Identification of a reservoir for HIV-1 in patients on highly active antiretroviral therapy. Science 1997;278:1295–1300.
  • Chun TW, Fauci AS. Latent reservoirs of HIV: obstacles to the eradication of virus. Proc Natl Acad Sci USA 1999;96:10958–10961.
  • Chun TW, Justement JS, Moir S, Decay of the HIV reservoir in patients receiving antiretroviral therapy for extended periods: implications for eradication of virus. J Infect Dis 2007;195:1762–1764.
  • Buzon MJ, Massanella M, Llibre JM, HIV-1 replication and immune dynamics are affected by raltegravir intensification of HAART-suppressed subjects. Nat Med 2010;16:460–465.
  • ORVACS. Ongoing clinical trial. [http://clinicaltrials.gov/ct2/show/NCT01019551]
  • Margolis DM, Archin NM. Eliminating persistent HIV infection: getting to the end of the rainbow. J Infect Dis 2007;195:1734–1736.
  • Archin NM, Liberty AL, Kashuba AD, Administration of vorinostat disrupts HIV-1 latency in patients on antiretroviral therapy. Nature 2012;487:482–485.
  • Shan L, Deng K, Shroff NS, Stimulation of HIV-1-specific cytolytic T lymphocytes facilitates elimination of latent viral reservoir after virus reactivation. Immunity 2012;36:491–501.
  • Hutter G, Nowak D, Mossner M, Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 2009;360:692–698.
  • Hutter G, Thiel E. Allogeneic transplantation of CCR5-deficient progenitor cells in a patient with HIV infection: an update after 3 years and the search for patient no. 2. AIDS 2011;25:273–274.
  • Deeks SG, Autran B, Berkhout B, Towards an HIV cure: a global scientific strategy. Nat Rev Immunol 2012;12:607–614.
  • Killian MS, Levy JA. HIV/AIDS: 30 years of progress and future challenges. Eur J Immunol 2011;41:3401–3411.
  • Buchbinder SP, Mehrotra DV, Duerr A, Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the Step Study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 2008;372:1881–1893.
  • Johnston R, Barre-Sinoussi F. Controversies in HIV cure research. J Int AIDS Soc 2012;15:16.
  • McElrath MJ, De Rosa SC, Moodie Z, HIV-1 vaccine-induced immunity in the test-of-concept Step Study: a case-cohort analysis. Lancet 2008;372:1894–1905.
  • Rerks-Ngarm S, Pitisuttithum P, Nitayaphan S, Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. N Engl J Med 2009;361:2209–2220.
  • Sekaly R, Pulendran B. Systems biology in understanding HIV pathogenesis and guiding vaccine development. Curr Opin HIV AIDS 2012;7:1–3.
  • Bocharov G, Chereshnev V, Gainova I, Human immunodeficiency virus infection: from biological observations to mechanistic mathematical modelling. Mathematical Modelling of Natural Phenomena 2012;7:78–104.
  • Germain RN, Meier-Schellersheim M, Nita-Lazar A, Fraser ID. Systems biology in immunology: a computational modeling perspective. Annu Rev Immunol 2011;29:527–585.
  • Ludewig B, Stein J, Sharpe J, A global “imaging’’ view on systems approaches in immunology. Eur J Immunol 2012;42:3116–3125.
  • Boldizsar F, Talaber G, Szabo M, Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology 2010;215:521–526.
  • La Cava A, Matarese G. The weight of leptin in immunity. Nat Rev Immunol 2004;4:371–379.
  • Fabris N, Mocchegiani E, Mariotti S, Thyroid function modulates thymic endocrine activity. J Clin Endocrinol Metab 1986;62:474–478.
  • Gala RR. Prolactin and growth hormone in the regulation of the immune system. Proc Soc Exp Biol Med 1991;198:513–527.
  • Kelley KW. Immunologic roles of two metabolic hormones, growth hormone and insulin-like growth factor-I, in aged animals. Nutr Rev 1995;53:S95–103; discussion S103–104.
  • Baudler S, Baumgartl J, Hampel B, Insulin-like growth factor-1 controls type 2 T cell-independent B cell response. J Immunol 2005;174:5516–5525.
  • Liu E, Law HK, Lau YL. Insulin-like growth factor I promotes maturation and inhibits apoptosis of immature cord blood monocyte-derived dendritic cells through MEK and PI 3-kinase pathways. Pediatr Res 2003;54:919–925.
  • Smith KG, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 2010;10:328–343.
  • Elenkov IJ. Systemic stress-induced Th2 shift and its clinical implications. Int Rev Neurobiol 2002;52:163–186.
  • Elenkov IJ. Glucocorticoids and the Th1/Th2 balance. Ann NY Acad Sci 2004;1024:138–146.
  • Jefferies WM. Cortisol and immunity. Med Hypotheses 1991;34:198–208.
  • McLachlan JA, Serkin CD, Bakouche O. Dehydroepiandrosterone modulation of lipopolysaccharide-stimulated monocyte cytotoxicity. J Immunol 1996;156:328–335.
  • Shirshev SV, Orlova EG. Molecular mechanisms of regulation of functional activity of mononuclear phagocytes by leptin. Biochemistry (Mosc) 2005;70:841–847.
  • Cutolo M, Seriolo B, Villaggio B, Androgens and estrogens modulate the immune and inflammatory responses in rheumatoid arthritis. Annals NY Acad Sci 2002;966:131–142.
  • Fijak M, Schneider E, Klug J, Testosterone replacement effectively inhibits the development of experimental autoimmune orchitis in rats: evidence for a direct role of testosterone on regulatory T cell expansion. J Immunol 2011;186:5162–5172.
  • Olsen NJ, Kovacs WJ. Gonadal Steroids and Immunity. Endoc Rev 1996;17:369–384.
  • Davey RT, Jr., Chaitt DG, Piscitelli SC, Subcutaneous administration of interleukin-2 in human immunodeficiency virus type 1-infected persons. J Infect Dis 1997;175:781–789.
  • Jacobson EL, Pilaro F, Smith KA. Rational interleukin 2 therapy for HIV positive individuals: daily low doses enhance immune function without toxicity. Proc Natl Acad Sci USA 1996;93:10405–10410.
  • Kovacs JA, Vogel S, Albert JM, Controlled trial of interleukin-2 infusions in patients infected with the human immunodeficiency virus. N Engl J Med 1996;335:1350–1356.
  • Clerici M, Lucey DR, Berzofsky JA, Restoration of HIV-specific cell-mediated immune responses by interleukin-12 in vitro. Science 1993;262:1721–1724.
  • Jacobson MA, Spritzler J, Landay A, A Phase I, placebo-controlled trial of multi-dose recombinant human interleukin-12 in patients with HIV infection. AIDS 2002;16:1147–1154.
  • Landay AL, Clerici M, Hashemi F, In vitro restoration of T cell immune function in human immunodeficiency virus-positive persons: effects of interleukin (IL)-12 and anti-IL-10. J Infect Dis 1996;173:1085–1091.
  • Castelli J, Thomas EK, Gilliet M, Mature dendritic cells can enhance CD8+ cell noncytotoxic anti-HIV responses: the role of IL-15. Blood 2004;103:2699–2704.
  • Kanai T, Thomas EK, Yasutomi Y, Letvin NL. IL-15 stimulates the expansion of AIDS virus-specific CTL. J Immunol 1996;157:3681–3687.
  • Mueller YM, Petrovas C, Bojczuk PM, Interleukin-15 increases effector memory CD8+ t cells and NK Cells in simian immunodeficiency virus-infected macaques. J Virol 2005;79: 4877–4885.
  • Clerici M, Stocks NI, Zajac RA, Detection of three distinct patterns of T helper cell dysfunction in asymptomatic, human immunodeficiency virus-seropositive patients. Independence of CD4+ cell numbers and clinical staging. J Clin Invest 1989;84:1892–1899.
  • Chernoff AE, Granowitz EV, Shapiro L, A randomized, controlled trial of IL-10 in humans. Inhibition of inflammatory cytokine production and immune responses. J Immunol 1995;154:5492–5499.
  • Cremer I, Vieillard V, De Maeyer E. Interferon-beta-induced human immunodeficiency virus resistance in CD34(+) human hematopoietic progenitor cells: correlation with a down-regulation of CCR-5 expression. Virology 1999;253:241–249.
  • Emilie D, Burgard M, Lascoux-Combe C, Early control of HIV replication in primary HIV-1 infection treated with antiretroviral drugs and pegylated IFN alpha: results from the Primoferon A (ANRS 086) Study. AIDS 2001;15:1435–1437.
  • Haas DW, Lavelle J, Nadler JP, A randomized trial of interferon alpha therapy for HIV type 1 infection. AIDS Res Hum Retroviruses 2000;16:183–190.
  • Angel JB, High K, Rhame F, Phase III study of granulocyte-macrophage colony-stimulating factor in advanced HIV disease: effect on infections, CD4 cell counts and HIV suppression. Leukine/HIV Study Group. AIDS 2000;14:387–395.
  • Deresinski SC. Granulocyte-macrophage colony-stimulating factor: potential therapeutic, immunological and antiretroviral effects in HIV infection. AIDS 1999;13:633–643.
  • Charpentier B, Hiesse C, Lantz O, Evidence that antihuman tumor necrosis factor monoclonal antibody prevents OKT3-induced acute syndrome. Transplantation 1992;54:997–1002.
  • Sampaio EP, Sarno EN, Galilly R, Thalidomide selectively inhibits tumor necrosis factor alpha production by stimulated human monocytes. J Exp Med 1991;173:699–703.
  • Emini EA, Schleif WA, Nunberg JH, et al. Prevention of HIV-1 infection in chimpanzees by gp120 V3 domain-specific monoclonal antibody. Nature 1992;355:728–730.
  • Trkola A, Pomales AB, Yuan H, et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995;69:6609–6617.
  • Zolla-Pazner S, Gorny MK. Passive immunization for the prevention and treatment of HIV infection. AIDS 1992;6:1235–1247.
  • Lafeuillade A, Poggi C, Hittinger G, Predictors of plasma human immunodeficiency virus type 1 RNA control after discontinuation of highly active antiretroviral therapy initiated at acute infection combined with structured treatment interruptions and immune-based therapies. J Infect Dis 2003;188:1426–1432.
  • Lori F. Hydroxyurea and HIV: 5 years later–from antiviral to immune-modulating effects. AIDS 1999;13:1433–1442.
  • Margolis DM, Kewn S, Coull JJ, The addition of mycophenolate mofetil to antiretroviral therapy including abacavir is associated with depletion of intracellular deoxyguanosine triphosphate and a decrease in plasma HIV-1 RNA. J Acquir Immune Defic Syndr 2002;31:45–49.
  • Pantaleo G. How immune-based interventions can change HIV therapy. Nat Med 1997;3:483–486.
  • Rizzardi GP, Harari A, Capiluppi B, Treatment of primary HIV-1 infection with cyclosporin A coupled with highly active antiretroviral therapy. J Clin Invest 2002;109:681–688.
  • Kourtis AP, Ibegbu C, Nahmias AJ, Early progression of disease in HIV-infected infants with thymus dysfunction. N Engl J Med 1996;335:1431–1436.
  • Markert ML, Kostyu DD, Ward FE, Successful formation of a chimeric human thymus allograft following transplantation of cultured postnatal human thymus. J Immunol 1997;158:998–1005.
  • Merigan TC, Hirsch RL, Fisher AC, The prognostic significance of serum viral load, codon 215 reverse transcriptase mutation and CD4+ T cells on progression of HIV disease in a double-blind study of thymopentin. AIDS 1996;10:159–165.
  • Ho M, Armstrong J, McMahon D, et al. A phase 1 study of adoptive transfer of autologous CD8+ T lymphocytes in patients with acquired immunodeficiency syndrome (AIDS)-related complex or AIDS. Blood 1993;81:2093–2101.
  • Lieberman J, Skolnik PR, Parkerson GR, 3rd, Safety of autologous, ex vivo-expanded human immunodeficiency virus (HIV)-specific cytotoxic T-lymphocyte infusion in HIV-infected patients. Blood 1997;90:2196–2206.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.