607
Views
27
CrossRef citations to date
0
Altmetric
Research Article

Aberrant B Cell Selection and Activation in Systemic Lupus Erythematosus

&
Pages 445-470 | Accepted 06 Mar 2013, Published online: 14 Jun 2013

REFERENCES

  • Tsokos GC. Systemic lupus erythematosus. N Engl J Med 2011;365(22):2110–2121.
  • D'Cruz DP, Khamashta MA, Hughes GR. Systemic lupus erythematosus. Lancet 2007;369(9561): 587–596.
  • Isenberg DA, Manson JJ, Ehrenstein MR, Rahman A.. Fifty years of anti-ds DNA antibodies: are we approaching journey's end. Rheumatology 2007;46(7):1052–1056.
  • Arbuckle MR, McClain MT, Rubertone MV, Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 2003;349(16):1526–1533.
  • Kramers C, Hylkema MN, van Bruggen MC, Anti-nucleosome antibodies complexed to nucleosomal antigens show anti-DNA reactivity and bind to rat glomerular basement membrane in vivo. J Clin Invest 1994;94(2):568–577.
  • Grootscholten C, van Bruggen MC, van der Pijl JW, Deposition of nucleosomal antigens (histones and DNA) in the epidermal basement membrane in human lupus nephritis. Arthritis Rheum 2003;48(5):1355–1362.
  • Kalaaji M, Mortensen E, Jorgensen L, et al. Nephritogenic lupus antibodies recognize glomerular basement membrane-associated chromatin fragments released from apoptotic intraglomerular cells. Am J Pathol 2006;168(6):1779–1792.
  • Chan OT, Hannum LG, Haberman AM, et al. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J Exp Med 1999;189(10): 1639–1648.
  • Jiang C, Zhao ML, Scearce RM, Diaz M. Activation-induced deaminase-deficient MRL/lpr mice secrete high levels of protective antibodies against lupus nephritis. Arthritis Rheum 2011;63(4):1086–1096.
  • Ehrenstein MR, Notley CA. The importance of natural IgM: scavenger, protector and regulator. Nat Rev Immunol 2010;10(11):778–786.
  • Nanton MR, Way SS, Shlomchik MJ, McSorley SJ. Cutting Edge: B cells are essential for protective immunity against Salmonella independent of antibody secretion. J Immunol 2012;189(12):5503–5507.
  • Lund FE, Randall TD. Effector and regulatory B cells: modulators of CD4(+) T cell immunity. Nat Rev Immunol 2010;10(4):236–247.
  • Harris DP, Haynes L, Sayles PC, Reciprocal regulation of polarized cytokine production by effector B and T cells. Nat Immunol 2000;1(6):475–482.
  • Townsend SE, Goodnow CC. Abortive proliferation of rare T cells induced by direct or indirect antigen presentation by rare B cells in vivo. J Exp Med 1998;187(10):1611–1621.
  • Bekar KW, Owen T, Dunn R, Prolonged effects of short-term anti-CD20 B cell depletion therapy in murine systemic lupus erythematosus. Arthritis Rheum 2010;62(8):2443–2457.
  • Looney RJ, Anolik JH, Campbell D, B cell depletion as a novel treatment for systemic lupus erythematosus: a phase I/II dose-escalation trial of rituximab. Arthritis Rheum 2004;50(8):2580–2589.
  • Merrill JT, Neuwelt CM, Wallace DJ, Efficacy and safety of rituximab in moderately-to-severely active systemic lupus erythematosus: the randomized, double-blind, phase II/III systemic lupus erythematosus evaluation of rituximab trial. Arthritis Rheum 2010;62(1):222–233.
  • Merrill J, Buyon J, Furie R, Assessment of flares in lupus patients enrolled in a phase II/III study of rituximab (EXPLORER). Lupus 2011;20(7):709–716.
  • Rovin BH, Furie R, Latinis K. Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the Lupus Nephritis Assessment with Rituximab study. Arthritis Rheum 2012;64(4):1215–1226.
  • Coca A, Sanz I. Updates on B-cell immunotherapies for systemic lupus erythematosus and Sjogren's syndrome. Curr Opin Rheumatol 2012;24(5):451–456.
  • Ahuja A, Shupe J, Dunn R, et al. Depletion of B cells in murine lupus: efficacy and resistance. J Immunol 2007;179(5):3351–3361.
  • Haas KM, Watanabe R, Matsushita T, Protective and pathogenic roles for B cells during systemic autoimmunity in NZB/W F1 mice. J Immunol 2010;184(9):4789–4800.
  • Navarra SV, Guzman RM, Gallacher AE, Efficacy and safety of belimumab in patients with active systemic lupus erythematosus: a randomised, placebo-controlled, phase 3 trial. Lancet 2011;377(9767):721–731.
  • Merrill JT, Ginzler EM, Wallace DJ, Long-term safety profile of belimumab plus standard therapy in patients with systemic lupus erythematosus. Arthritis Rheum 2012;64(10):3364–3373.
  • Jung D, Giallourakis C, Mostoslavsky R, Alt FW. Mechanism and control of V(D)J recombination at the immunoglobulin heavy chain locus. Annu Rev Immunol 2006;24:541–570.
  • Wardemann H, Yurasov S, Schaefer A, Predominant autoantibody production by early human B cell precursors. Science 2003;301(5638):1374–1377.
  • von Boehmer H, Melchers F. Checkpoints in lymphocyte development and autoimmune disease. Nat Immunol 2010;11(1):14–20.
  • Nishimoto N, Kubagawa H, Ohno T, Normal pre-B cells express a receptor complex of mu heavy chains and surrogate light-chain proteins. Proc Natl Acad Sci USA 1991;88(14):6284–6288.
  • Lassoued K, Nunez CA, Billips L, Expression of surrogate light chain receptors is restricted to a late stage in pre-B cell differentiation. Cell 1993;73(1):73–86.
  • Kline GH, Hartwell L, Beck-Engeser GB. Pre-B cell receptor-mediated selection of pre-B cells synthesizing functional mu heavy chains. J Immunol 1998;161(4):1608–1618.
  • Herzog S, Jumaa H. Self-recognition and clonal selection: autoreactivity drives the generation of B cells. Curr Opin Immunol 2012;24(2):166–172.
  • Ohnishi K, Melchers F. The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling. Nat Immunol 2003;4(9):849–856.
  • Bradl H, Wittmann J, Milius D, et al. Interaction of murine precursor B cell receptor with stroma cells is controlled by the unique tail of lambda 5 and stroma cell-associated heparan sulfate. J Immunol 2003;171(5):2338–2348.
  • Gauthier L, Rossi B, Roux F, Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering. Proc Natl Acad Sci USA 2002;99(20):13014–13019.
  • Kohler F, Hug E, Eschbach C, Autoreactive B cell receptors mimic autonomous pre-B cell receptor signaling and induce proliferation of early B cells. Immunity 2008;29(6):912–921.
  • Ubelhart R, Bach MP, Eschbach C, N-linked glycosylation selectively regulates autonomous precursor BCR function. Nat Immunol 2010;11(8):759–765.
  • Eschbach C, Bach MP, Fidler I, Efficient generation of B lymphocytes by recognition of self-antigens. Eur J Immunol 2011;41(8):2397–2403.
  • Keenan RA, De Riva A, Corleis B, Censoring of autoreactive B cell development by the pre-B cell receptor. Science 2008;321(5889):696–699.
  • Kitamura D, Kudo A, Schaal S, A critical role of lambda 5 protein in B cell development. Cell 1992;69(5):823–831.
  • Minegishi Y, Conley ME. Negative selection at the pre-BCR checkpoint elicited by human mu heavy chains with unusual CDR3 regions. Immunity 2001;14(5):631–641.
  • Meffre E, Davis E, Schiff C. Circulating human B cells that express surrogate light chains and edited receptors. Nat Immunol 2000;1(3):207–213.
  • Meffre E, Chiorazzi M, Nussenzweig MC. Circulating human B cells that express surrogate light chains display a unique antibody repertoire. J Immunol 2001;167(4):2151–2156.
  • Meffre E, Schaefer A, Wardemann H, Surrogate light chain expressing human peripheral B cells produce self-reactive antibodies. J Exp Med 2004;199(1):145–150.
  • Geier JK, Schlissel MS. Pre-BCR signals and the control of Ig gene rearrangements. Semin Immunol 2006;18(1):31–39.
  • Nemazee DA, Burki K. Clonal deletion of B lymphocytes in a transgenic mouse bearing anti-MHC class I antibody genes. Nature 1989;337(6207):562–566.
  • Tiegs SL, Russell DM, Nemazee D. Receptor editing in self-reactive bone marrow B cells. J Exp Med 1993;177(4):1009–1020.
  • Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med 1993;177(4):999–1008.
  • Vela JL, Ait-Azzouzene D, Duong BH, Rearrangement of mouse immunoglobulin kappa deleting element recombining sequence promotes immune tolerance and lambda B cell production. Immunity 2008;28(2):161–170.
  • Retter MW, Nemazee D. Receptor editing occurs frequently during normal B cell development. J Exp Med 1998;188(7):1231–1238.
  • Casellas R, Shih TA, Kleinewietfeld M. Contribution of receptor editing to the antibody repertoire. Science 2001;291(5508):1541–1544.
  • Halverson R, Torres RM, Pelanda R. Receptor editing is the main mechanism of B cell tolerance toward membrane antigens. Nat Immunol 2004;5(6):645–650.
  • Lamoureux JL, Watson LC, Cherrier M, Reduced receptor editing in lupus-prone MRL/lpr mice. J Exp Med 2007;204(12):2853–2864.
  • Panigrahi AK, Goodman NG, Eisenberg RA, RS rearrangement frequency as a marker of receptor editing in lupus and type 1 diabetes. J Exp Med 2008;205(13):2985–2994.
  • Li Y, Li H, Weigert M. Autoreactive B cells in the marginal zone that express dual receptors. J Exp Med 2002;195(2):181–188.
  • Gerdes T, Wabl M. Autoreactivity and allelic inclusion in a B cell nuclear transfer mouse. Nat Immunol 2004;5(12): 1282–1287.
  • Liu S, Velez MG, Humann J, Receptor editing can lead to allelic inclusion and development of B cells that retain antibodies reacting with high avidity autoantigens. J Immunol 2005;175(8):5067–5076.
  • Casellas R, Zhang Q, Zheng NY, Igkappa allelic inclusion is a consequence of receptor editing. J Exp Med 2007;204(1):153–160.
  • Pauza ME, Rehmann JA, LeBien TW. Unusual patterns of immunoglobulin gene rearrangement and expression during human B cell ontogeny: human B cells can simultaneously express cell surface kappa and lambda light chains. J Exp Med 1993;178(1):139–149.
  • Giachino C, Padovan E, Lanzavecchia A. kappa+lambda+ dual receptor B cells are present in the human peripheral repertoire. J Exp Med 1995;181(3):1245–1250.
  • Fournier EM, Velez MG, Leahy K, Dual-reactive B cells are autoreactive and highly enriched in the plasmablast and memory B cell subsets of autoimmune mice. J Exp Med 2012;209(10):1797–1812.
  • Gauld SB, Benschop RJ, Merrell KT, Cambier JC. Maintenance of B cell anergy requires constant antigen receptor occupancy and signaling. Nat Immunol 2005;6(11):1160–1167.
  • Goodnow CC, Sprent J, Fazekas de St Groth B, Vinuesa CG. Cellular and genetic mechanisms of self tolerance and autoimmunity. Nature 2005;435(7042):590–597.
  • Shlomchik MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity 2008;28(1):18–28.
  • Cambier JC, Gauld SB, Merrell KT, Vilen BJ. B-cell anergy: from transgenic models to naturally occurring anergic B cells? Nat Rev Immunol 2007;7(8):633–643.
  • Erikson J, Radic MZ, Camper SA, Expression of anti-DNA immunoglobulin transgenes in non-autoimmune mice. Nature 1991;349(6307):331–334.
  • Nguyen KA, Mandik L, Bui A, Characterization of anti-single-stranded DNA B cells in a non-autoimmune background. J Immunol 1997;159(6):2633–2644.
  • Roark JH, Bui A, Nguyen KA, Persistence of functionally compromised anti-double-stranded DNA B cells in the periphery of non-autoimmune mice. Int Immunol 1997;9(11):1615–1626.
  • Mandik-Nayak L, Seo SJ, Sokol C, MRL-lpr/lpr mice exhibit a defect in maintaining developmental arrest and follicular exclusion of anti-double-stranded DNA B cells. J Exp Med 1999;189(11):1799–1814.
  • Merrell KT, Benschop RJ, Gauld SB, Aviszus K. Identification of anergic B cells within a wild-type repertoire. Immunity 2006;25(6):953–962.
  • Culton DA, O'Conner BP, Conway KL, Early preplasma cells define a tolerance checkpoint for autoreactive B cells. J Immunol 2006;176(2):790–802.
  • Zikherman J, Parameswaran R, Weiss A. Endogenous antigen tunes the responsiveness of naive B cells but not T cells. Nature 2012;489(7414):160–164.
  • Healy JI, Dolmetsch RE, Timmerman LA, Different nuclear signals are activated by the B cell receptor during positive versus negative signaling. Immunity 1997;6(4):419–428.
  • Dolmetsch RE, Lewis RS, Goodnow CC, Healy JI. Differential activation of transcription factors induced by Ca2+ response amplitude and duration. Nature 1997;386(6627):855–858.
  • Browne CD, Del Nagro CJ, Cato MH, Suppression of phosphatidylinositol 3,4,5-trisphosphate production is a key determinant of B cell anergy. Immunity 2009;31(5):749–760.
  • O'Neill SK, Getahun A, Gauld SB, Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity 2011;35(5):746–756.
  • Yurasov S, Wardemann H, Hammersen J, Defective B cell tolerance checkpoints in systemic lupus erythematosus. J Exp Med 2005;201(5):703–711.
  • Yurasov S, Tiller T, Tsuiji M, Persistent expression of autoantibodies in SLE patients in remission. J Exp Med 2006;203(10):2255–2261.
  • Sims GP, Ettinger R, Shirota Y, Identification and characterization of circulating human transitional B cells. Blood 2005;105(11):4390–4398.
  • Dorner T, Jacobi AM, Lee J, Lipsky PE. Abnormalities of B cell subsets in patients with systemic lupus erythematosus. J Immunol Methods 2011;363(2):187–197.
  • Vossenkamper A, Lutalo PM, Spencer J. Translational mini-review series on B cell subsets in disease. Transitional B cells in systemic lupus erythematosus and Sjogren's syndrome: clinical implications and effects of B cell-targeted therapies. Clin Exp Immunol 2012;167(1):7–14.
  • Odendahl M, Jacobi A, Hansen A, Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol 2000;165(10):5970–5979.
  • Harada Y, Kawano MM, Huang N, Identification of early plasma cells in peripheral blood and their clinical significance. Br J Haematol 1996;92(1):184–191.
  • Jacobi AM, Odendahl M, Reiter K, Correlation between circulating CD27high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 2003;48(5):1332–1342.
  • Tsuiji M, Yurasov S, Velinzon K, A checkpoint for autoreactivity in human IgM+ memory B cell development. J Exp Med 2006;203(2):393–400.
  • Mietzner B, Tsuiji M, Scheid J, et al. Autoreactive IgG memory antibodies in patients with systemic lupus erythematosus arise from nonreactive and polyreactive precursors. Proc Natl Acad Sci USA 2008;105(28):9727–9732.
  • Fecteau JF, Cote G, Neron S. A new memory CD27-IgG+ B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation. J Immunol 2006;177(6):3728–3736.
  • Wei C, Anolik J, Cappione A, et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus. J Immunol 2007;178(10):6624–6633.
  • Jacobi AM, Reiter K, Mackay M, Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95. Arthritis Rheum 2008;58(6):1762–1773.
  • Dorner T, Giesecke C, Lipsky PE. Mechanisms of B cell autoimmunity in SLE. Arthritis Res Ther 2011;13(5): 243.
  • Casola S, Otipoby KL, Alimzhanov M, B cell receptor signal strength determines B cell fate. Nat Immunol 2004;5(3): 317–327.
  • Maas A, Dingjan GM, Grosveld F, Hendriks RW. Early arrest in B cell development in transgenic mice that express the E41K Bruton's tyrosine kinase mutant under the control of the CD19 promoter region. J Immunol 1999;162(11):6526–6533.
  • Dingjan GM, Maas A, Nawijn MC, et al. Severe B cell deficiency and disrupted splenic architecture in transgenic mice expressing the E41K mutated form of Bruton's tyrosine kinase. EMBO J 1998;17(18):5309–5320.
  • Kersseboom R, Kil L, Flierman R, et al. Constitutive activation of Bruton's tyrosine kinase induces the formation of autoreactive IgM plasma cells. Eur J Immunol 2010;40(9):2643–2654.
  • Sato S, Hasegawa M, Fujimoto M, Quantitative genetic variation in CD19 expression correlates with autoimmunity. J Immunol 2000;165(11): 6635–6643.
  • Paus D, Phan TG, Chan TD, Antigen recognition strength regulates the choice between extrafollicular plasma cell and germinal center B cell differentiation. J Exp Med 2006;203(4):1081–1091.
  • Bolland S, Ravetch JV. Spontaneous autoimmune disease in Fc(gamma)RIIB-deficient mice results from strain-specific epistasis. Immunity 2000;13(2):277–285.
  • Jellusova J, Wellmann U, Amann K, CD22 x Siglec-G double-deficient mice have massively increased B1 cell numbers and develop systemic autoimmunity. J Immunol 2010;184(7):3618–3627.
  • Hibbs ML, Tarlinton DM, Armes J, Multiple defects in the immune system of Lyn-deficient mice, culminating in autoimmune disease. Cell 1995;83(2):301–311.
  • Tsui HW, Siminovitch KA, de Souza L, Tsui FW. Motheaten and viable motheaten mice have mutations in the haematopoietic cell phosphatase gene. Nat Genet 1993;4(2):124–129.
  • Pao LI, Lam KP, Henderson JM, B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 2007;27(1): 35–48.
  • Kil LP, de Bruijn MJ, van Nimwegen M, Btk levels set the threshold for B-cell activation and negative selection of autoreactive B cells in mice. Blood 2012;119(16):3744–3756.
  • Bretscher P, Cohn M. A theory of self-nonself discrimination. Science 1970;169(3950):1042–1049.
  • Rifkin IR, Leadbetter EA, Busconi L, Toll-like receptors, endogenous ligands, and systemic autoimmune disease. Immunol Rev 2005;204:27–42.
  • Leadbetter EA, Rifkin IR, Hohlbaum AM, Chromatin-IgG complexes activate B cells by dual engagement of IgM and Toll-like receptors. Nature 2002;416(6881):603–607.
  • Sweet RA, Cullen JL, Shlomchik MJ. Rheumatoid factor B cell memory leads to rapid, switched antibody-forming cell responses. J Immunol 2013;190(5):1974–1981.
  • Viglianti GA, Lau CM, Hanley TM, Activation of autoreactive B cells by CpG dsDNA. Immunity 2003;19(6):837–847.
  • Lau CM, Broughton C, Tabor AS, et al. RNA-associated autoantigens activate B cells by combined B cell antigen receptor/Toll-like receptor 7 engagement. J Exp Med 2005;202(9):1171–1177.
  • Shlomchik MJ. Activating systemic autoimmunity: B's, T's, and tolls. Curr Opin Immunol 2009;21(6):626–633.
  • Christensen SR, Kashgarian M, Alexopoulou L, Toll-like receptor 9 controls anti-DNA autoantibody production in murine lupus. J Exp Med 2005;202(2):321–331.
  • Christensen SR, Shupe J, Nickerson K, Toll-like receptor 7 and TLR9 dictate autoantibody specificity and have opposing inflammatory and regulatory roles in a murine model of lupus. Immunity 2006;25(3):417–428.
  • Ehlers M, Fukuyama H, McGaha TL, TLR9/MyD88 signaling is required for class switching to pathogenic IgG2a and 2b autoantibodies in SLE. J Exp Med 2006;203(3):553–561.
  • Lartigue A, Courville P, Auquit I, Role of TLR9 in anti-nucleosome and anti-DNA antibody production in lpr mutation-induced murine lupus. J Immunol 2006;177(2):1349–1354.
  • Pisitkun P, Deane JA, Difilippantonio MJ, Autoreactive B cell responses to RNA-related antigens due to TLR7 gene duplication. Science 2006;312(5780):1669–1672.
  • Subramanian S, Tus K, Li QZ, A Tlr7 translocation accelerates systemic autoimmunity in murine lupus. Proc Natl Acad Sci USA 2006;103(26):9970–9975.
  • Deane JA, Pisitkun P, Barrett RS, Control of toll-like receptor 7 expression is essential to restrict autoimmunity and dendritic cell proliferation. Immunity 2007;27(5):801–810.
  • Herlands RA, Christensen SR, Sweet RA, T cell-independent and toll-like receptor-dependent antigen-driven activation of autoreactive B cells. Immunity 2008;29(2):249–260.
  • Yu P, Wellmann U, Kunder S, Toll-like receptor 9-independent aggravation of glomerulonephritis in a novel model of SLE. Int Immunol 2006;18(8):1211–1219.
  • Nickerson KM, Christensen SR, Cullen JL, Meng W. TLR9 promotes tolerance by restricting survival of anergic anti-DNA B cells, yet is also required for their activation. J Immunol 2013;190(4):1447–1456.
  • Kool M, van Loo G, Waelput W. The ubiquitin-editing protein A20 prevents dendritic cell activation, recognition of apoptotic cells, and systemic autoimmunity. Immunity 2011;35(1):82–96.
  • Lee YH, Lee HS, Choi SJ, Associations between TLR polymorphisms and systemic lupus erythematosus: a systematic review and meta-analysis. Clin Exp Rheumatol 2012;30(2):262–265.
  • Musone SL, Taylor KE, Lu TT, Multiple polymorphisms in the TNFAIP3 region are independently associated with systemic lupus erythematosus. Nat Genet 2008;40(9):1062–1064.
  • Jacob CO, Zhu J, Armstrong DL, Identification of IRAK1 as a risk gene with critical role in the pathogenesis of systemic lupus erythematosus. Proc Natl Acad Sci USA 2009;106(15):6256–6261.
  • Gottipati S, Rao NL, Fung-Leung WP. IRAK1: a critical signaling mediator of innate immunity. Cellular signaling 2008;20(2):269–276.
  • Graham RR, Kozyrev SV, Baechler EC, A common haplotype of interferon regulatory factor 5 (IRF5) regulates splicing and expression and is associated with increased risk of systemic lupus erythematosus. Nat Genet 2006;38(5):550–555.
  • Deng Y, Tsao BP. Genetic susceptibility to systemic lupus erythematosus in the genomic era. Nat Rev Rheumatol 2010;6(12):683–692.
  • Takaoka A, Yanai H, Kondo S, Integral role of IRF-5 in the gene induction programme activated by Toll-like receptors. Nature 2005;434(7030):243–249.
  • Pan Z, Scheerens H, Li SJ, Discovery of selective irreversible inhibitors for Bruton's tyrosine kinase. ChemMedChem 2007;2(1):58–61.
  • Muramatsu M, Kinoshita K, Fagarasan S, Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 2000;102(5):553–563.
  • Stavnezer J. Complex regulation and function of activation-induced cytidine deaminase. Trends Immunol 2011;32(5):194–201.
  • Victora GD, Nussenzweig MC. Germinal centers. Annu Rev Immunol 2012;30:429–457.
  • Shlomchik MJ, Weisel F. Germinal center selection and the development of memory B and plasma cells. Immunol Rev 2012;247(1):52–63.
  • Shlomchik M, Mascelli M, Shan H. Anti-DNA antibodies from autoimmune mice arise by clonal expansion and somatic mutation. J Exp Med 1990;171(1):265–292.
  • Winkler TH, Fehr H, Kalden JR. Analysis of immunoglobulin variable region genes from human IgG anti-DNA hybridomas. Eur J Immunol 1992;22(7):1719–1728.
  • Zhang J, Jacobi AM, Wang T, Diamond B. Pathogenic autoantibodies in systemic lupus erythematosus are derived from both self-reactive and non-self-reactive B cells. Mol Med 2008;14(11–12):675–681.
  • Jacobson BA, Panka DJ, Nguyen KA, Anatomy of autoantibody production: dominant localization of antibody-producing cells to T cell zones in Fas-deficient mice. Immunity 1995;3(4):509–519.
  • William J, Euler C, Christensen S, Shlomchik MJ. Evolution of autoantibody responses via somatic hypermutation outside of germinal centers. Science 2002;297(5589):2066–2070.
  • William J, Euler C, Leadbetter E, Visualizing the onset and evolution of an autoantibody response in systemic autoimmunity. J Immunol 2005;174(11):6872–6878.
  • Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 2009;9(12):845–857.
  • Luzina IG, Atamas SP, Storrer CE. Spontaneous formation of germinal centers in autoimmune mice. J Leukoc Biol 2001;70(4):578–584.
  • Cappione A, 3rd, Anolik JH, Pugh-Bernard A, Germinal center exclusion of autoreactive B cells is defective in human systemic lupus erythematosus. J Clin Invest 2005;115(11):3205–3216.
  • Young CL, Adamson TC, 3rd, Vaughan JH, Fox RI. Immunohistologic characterization of synovial membrane lymphocytes in rheumatoid arthritis. Arthritis Rheum 1984;27(1):32–39.
  • Stott DI, Hiepe F, Hummel M, Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren's syndrome. J Clin Invest 1998;102(5):938–946.
  • Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 2006;6(3):205–217.
  • Victora GD, Schwickert TA, Fooksman DR, Germinal center dynamics revealed by multiphoton microscopy with a photoactivatable fluorescent reporter. Cell 2010;143(4):592–605.
  • Schwickert TA, Victora GD, Fooksman DR. A dynamic T cell-limited checkpoint regulates affinity-dependent B cell entry into the germinal center. J Exp Med 2011;208(6):1243–1252.
  • Khalil AM, Cambier JC, Shlomchik MJ. B cell receptor signal transduction in the GC is short-circuited by high phosphatase activity. Science 2012;336(6085):1178–1181.
  • Rathmell JC, Townsend SE, Xu JC, Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell 1996;87(2): 319–329.
  • Schram BR, Rothstein TL. NF-kappa B is required for surface Ig-induced Fas resistance in B cells. J Immunol 2003;170(6):3118–3124.
  • Zhang Y, Meyer-Hermann M, George LA, Germinal center B cells govern their own fate via antibody feedback. J Exp Med 2013;210(3):457–464.
  • Renshaw BR, Fanslow WC, 3rd, Armitage RJ. Humoral immune responses in CD40 ligand-deficient mice. J Exp Med 1994;180(5):1889–1900.
  • Han S, Hathcock K, Zheng B, Cellular interaction in germinal centers. Roles of CD40 ligand and B7–2 in established germinal centers. J Immunol 1995;155(2):556–567.
  • Mohan C, Shi Y, Laman JD, Datta SK. Interaction between CD40 and its ligand gp39 in the development of murine lupus nephritis. J Immunol 1995;154(3):1470–1480.
  • Koshy M, Berger D, Crow MK. Increased expression of CD40 ligand on systemic lupus erythematosus lymphocytes. J Clin Invest 1996;98(3):826–837.
  • Desai-Mehta A, Lu L, Ramsey-Goldman R, Datta SK. Hyperexpression of CD40 ligand by B and T cells in human lupus and its role in pathogenic autoantibody production. J Clin Invest 1996;97(9):2063–2073.
  • Kalled SL, Cutler AH, Datta SK, Thomas DW. Anti-CD40 ligand antibody treatment of SNF1 mice with established nephritis: preservation of kidney function. J Immunol 1998;160(5):2158–2165.
  • Huang W, Sinha J, Newman J, The effect of anti-CD40 ligand antibody on B cells in human systemic lupus erythematosus. Arthritis Rheum 2002;46(6):1554–1562.
  • Grammer AC, Slota R, Fischer R, et al. Abnormal germinal center reactions in systemic lupus erythematosus demonstrated by blockade of CD154-CD40 interactions. J Clin Invest 2003;112(10):1506–1520.
  • Kalunian KC, Davis JC, Jr., Merrill JT, Treatment of systemic lupus erythematosus by inhibition of T cell costimulation with anti-CD154: a randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2002;46(12):3251–3258.
  • Boumpas DT, Furie R, Manzi S, A short course of BG9588 (anti-CD40 ligand antibody) improves serologic activity and decreases hematuria in patients with proliferative lupus glomerulonephritis. Arthritis Rheum 2003;48(3):719–727.
  • Goodnow CC. Multistep pathogenesis of autoimmune disease. Cell 2007;130(1):25–35.
  • Finck BK, Linsley PS, Wofsy D. Treatment of murine lupus with CTLA4Ig. Science 1994;265(5176):1225–1227.
  • Mihara M, Tan I, Chuzhin Y, CTLA4Ig inhibits T cell-dependent B-cell maturation in murine systemic lupus erythematosus. J Clin Invest 2000;106(1):91–101.
  • Merrill JT, Burgos-Vargas R, Westhovens R, Chalmers A . The efficacy and safety of abatacept in patients with non-life-threatening manifestations of systemic lupus erythematosus: results of a twelve-month, multicenter, exploratory, phase IIb, randomized, double-blind, placebo-controlled trial. Arthritis Rheum 2010;62(10): 3077–3087.
  • Croft M, So T, Duan W, Soroosh P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol Rev 2009;229(1):173–191.
  • Stuber E, Neurath M, Calderhead D, Cross-linking of OX40 ligand, a member of the TNF/NGF cytokine family, induces proliferation and differentiation in murine splenic B cells. Immunity 1995;2(5):507–521.
  • Cunninghame Graham DS, Graham RR, Manku H, Polymorphism at the TNF superfamily gene TNFSF4 confers susceptibility to systemic lupus erythematosus. Nat Genet 2008;40(1):83–89.
  • Crotty S, Kersh EN, Cannons J, SAP is required for generating long-term humoral immunity. Nature 2003;421(6920):282–287.
  • Hron JD, Caplan L, Gerth AJ, SH2D1A regulates T-dependent humoral autoimmunity. J Exp Med 2004;200(2):261–266.
  • Qi H, Cannons JL, Klauschen F, SAP-controlled T-B cell interactions underlie germinal centre formation. Nature 2008;455(7214):764–769.
  • Qi H. From SAP-less T cells to helpless B cells and back: dynamic T-B cell interactions underlie germinal center development and function. Immunol Rev 2012;247(1):24–35.
  • Komori H, Furukawa H, Mori S, A signal adaptor SLAM-associated protein regulates spontaneous autoimmunity and Fas-dependent lymphoproliferation in MRL-Faslpr lupus mice. J Immunol 2006;176(1):395–400.
  • Vinuesa CG, Cook MC, Angelucci C, A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005;435(7041):452–458.
  • Linterman MA, Rigby RJ, Wong RK, Follicular helper T cells are required for systemic autoimmunity. J Exp Med 2009;206(3): 561–576.
  • Nutt SL, Tarlinton DM. Germinal center B and follicular helper T cells: siblings, cousins or just good friends? Nat Immunol 2011;12(6):472–477.
  • Yoshinaga SK, Whoriskey JS, Khare SD, T-cell co-stimulation through B7RP-1 and ICOS. Nature 1999;402(6763):827–832.
  • Akiba H, Takeda K, Kojima Y, The role of ICOS in the CXCR5+ follicular B helper T cell maintenance in vivo. J Immunol 2005;175(4):2340–2348.
  • Bossaller L, Burger J, Draeger R, ICOS deficiency is associated with a severe reduction of CXCR5+CD4 germinal center Th cells. J Immunol 2006;177(7):4927–4932.
  • Hu YL, Metz DP, Chung J, B7RP-1 blockade ameliorates autoimmunity through regulation of follicular helper T cells. J Immunol 2009;182(3):1421–1428.
  • Odegard JM, Marks BR, DiPlacido LD, ICOS-dependent extrafollicular helper T cells elicit IgG production via IL-21 in systemic autoimmunity. J Exp Med 2008;205(12):2873–2886.
  • Hutloff A, Buchner K, Reiter K, Involvement of inducible costimulator in the exaggerated memory B cell and plasma cell generation in systemic lupus erythematosus. Arthritis Rheum 2004;50(10):3211–3220.
  • Bauquet AT, Jin H, Paterson AM, The costimulatory molecule ICOS regulates the expression of c-Maf and IL-21 in the development of follicular T helper cells and TH-17 cells. Nat Immunol 2009;10(2):167–175.
  • Vogelzang A, McGuire HM, Yu D, A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity 2008;29(1):127–137.
  • Nurieva RI, Chung Y, Hwang D, Generation of T follicular helper cells is mediated by interleukin-21 but independent of T helper 1, 2, or 17 cell lineages. Immunity 2008;29(1):138–149.
  • Zotos D, Coquet JM, Zhang Y, IL-21 regulates germinal center B cell differentiation and proliferation through a B cell-intrinsic mechanism. J Exp Med 2010;207(2):365–378.
  • Bubier JA, Sproule, Foreman TJ, A critical role for IL-21 receptor signaling in the pathogenesis of systemic lupus erythematosus in BXSB-Yaa mice. Proc Natl Acad Sci USA 2009;106(5): 1518–1523.
  • Rankin AL, Guay H, Herber D, IL-21 receptor is required for the systemic accumulation of activated B and T lymphocytes in MRL/MpJ-Fas(lpr/lpr)/J mice. J Immunol 2012;188(4): 1656–1667.
  • Herber D, Brown TP, Liang S, IL-21 has a pathogenic role in a lupus-prone mouse model and its blockade with IL-21R.Fc reduces disease progression. J Immunol 2007;178(6):3822–3830.
  • Sawalha AH, Kaufman KM, Kelly JA, Genetic association of interleukin-21 polymorphisms with systemic lupus erythematosus. Ann Rheum Dis 2008;67(4):458–461.
  • Webb R, Merrill JT, Kelly JA, A polymorphism within IL21R confers risk for systemic lupus erythematosus. Arthritis Rheum 2009;60(8):2402–2407.
  • Korn T, Bettelli E, Gao W, IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 2007;448(7152):484–487.
  • Zhou L, Ivanov II, Spolski R, IL-6 programs T(H)-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 2007;8(9):967–974.
  • Yu D, Rao S, Tsai LM, The transcriptional repressor Bcl-6 directs T follicular helper cell lineage commitment. Immunity 2009;31(3):457–468.
  • Wu HY, Quintana FJ, Weiner HL. Nasal anti-CD3 antibody ameliorates lupus by inducing an IL-10-secreting CD4+ CD25- LAP+ regulatory T cell and is associated with down-regulation of IL-17+ CD4+ ICOS+ CXCR5+ follicular helper T cells. J Immunol 2008;181(9):6038–6050.
  • Hsu HC, Yang P, Wang J, Interleukin 17-producing T helper cells and interleukin 17 orchestrate autoreactive germinal center development in autoimmune BXD2 mice. Nat Immunol 2008;9(2):166–175.
  • Doreau A, Belot A, Bastid J, Interleukin 17 acts in synergy with B cell-activating factor to influence B cell biology and the pathophysiology of systemic lupus erythematosus. Nat Immunol 2009;10(7):778–785.
  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 1992;356(6367):314–317.
  • Takahashi T, Tanaka M, Brannan CI, Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 1994;76(6):969–976.
  • Rieux-Laucat F. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science 1995;268(5215): 1347–1349.
  • Fischer U, Huber J, Boelens WC, et al. The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 1995;82(3):475–483.
  • Drappa J, Vaishnaw AK, Sullivan KE, Fas gene mutations in the Canale-Smith syndrome, an inherited lymphoproliferative disorder associated with autoimmunity. N Engl J Med 1996;335(22):1643–1649.
  • Holzelova E, Vonarbourg C, Stolzenberg MC. Autoimmune lymphoproliferative syndrome with somatic Fas mutations. N Engl J Med 2004;351(14):1409–1418.
  • Jenks SA, Sanz I. Altered B cell receptor signaling in human systemic lupus erythematosus. Autoimmun Rev 2009;8(3):209–213.
  • Harley IT, Kaufman KM, Langefeld CD, Genetic susceptibility to SLE: new insights from fine mapping and genome-wide association studies. Nat Rev Genet 2009;10(5):285–290.
  • Kozyrev SV, Abelson AK, Wojcik J, Functional variants in the B-cell gene BANK1 are associated with systemic lupus erythematosus. Nat Genet 2008;40(2):211–216.
  • Nimmerjahn F, Ravetch JV. Fcgamma receptors as regulators of immune responses. Nat Rev Immunol 2008;8(1):34–47.
  • Brownlie RJ, Lawlor KE, Niederer HA, Distinct cell-specific control of autoimmunity and infection by FcgammaRIIb. J Exp Med 2008;205(4):883–895.
  • Rahman ZS, Niu H, Perry D, Wakeland E, Expression of the autoimmune Fcgr2b NZW allele fails to be upregulated in germinal center B cells and is associated with increased IgG production. Genes Immun 2007;8(7):604–612.
  • Mackay M, Stanevsky A, Wang T, Selective dysregulation of the FcgammaIIB receptor on memory B cells in SLE. J Exp Med 2006;203(9):2157–2164.
  • Su K, Yang H, Li X, Expression profile of FcgammaRIIb on leukocytes and its dysregulation in systemic lupus erythematosus. J Immunol 2007;178(5):3272–3280.
  • Lee YH, Ji JD, Song GG. Fcgamma receptor IIB and IIIB polymorphisms and susceptibility to systemic lupus erythematosus and lupus nephritis: a meta-analysis. Lupus 2009;18(8): 727–734.
  • Chen JY, Wang CM, Ma CC, Association of a transmembrane polymorphism of Fcgamma receptor IIb (FCGR2B) with systemic lupus erythematosus in Taiwanese patients. Arthritis Rheum 2006;54(12):3908–3917.
  • Kyogoku C, Dijstelbloem HM, Tsuchiya N, Fcgamma receptor gene polymorphisms in Japanese patients with systemic lupus erythematosus: contribution of FCGR2B to genetic susceptibility. Arthritis Rheum 2002;46(5):1242–1254.
  • Niederer HA, Clatworthy MR, Willcocks LC, Smith KG. FcgammaRIIB, FcgammaRIIIB, and systemic lupus erythematosus. Ann N Y Acad Sci 2010;1183:69–88.
  • Groom J, Mackay F. B cells flying solo. Immunol Cell Biol 2008;86(1):40–46.
  • Rickert RC, Jellusova J, Miletic AV. Signaling by the tumor necrosis factor receptor superfamily in B-cell biology and disease. Immunol Rev 2011;244(1):115–133.
  • Thompson JS, Bixler SA, Qian F, BAFF-R, a newly identified TNF receptor that specifically interacts with BAFF. Science 2001;293(5537):2108–2111.
  • Hsu BL, Harless SM, Lindsley RC, Cutting edge: BLyS enables survival of transitional and mature B cells through distinct mediators. J Immunol 2002;168(12):5993–5996.
  • Mackay F, Schneider P. Cracking the BAFF code. Nat Rev Immunol 2009;9(7):491–502.
  • Groom JR, Fletcher CA, Walters SN, et al. BAFF and MyD88 signals promote a lupuslike disease independent of T cells. J Exp Med 2007;204(8):1959–1971.
  • Yu G, Boone T, Delaney J, APRIL and TALL-I and receptors BCMA and TACI: system for regulating humoral immunity. Nat Immunol 2000;1(3):252–256.
  • Mantchev GT, Cortesao CS, Rebrovich M, TACI is required for efficient plasma cell differentiation in response to T-independent type 2 antigens. J Immunol 2007;179(4):2282–2288.
  • Day ES, Cachero TG, Qian F, Selectivity of BAFF/BLyS and APRIL for binding to the TNF family receptors BAFFR/BR3 and BCMA. Biochemistry 2005;44(6):1919–1931.
  • Marsters SA, Yan M, Pitti RM, Interaction of the TNF homologues BLyS and APRIL with the TNF receptor homologues BCMA and TACI. Current biology: CB 2000;10(13):785–788.
  • Xu S, Lam KP. B-cell maturation protein, which binds the tumor necrosis factor family members BAFF and APRIL, is dispensable for humoral immune responses. Mol Cell Biol 2001;21(12):4067–4074.
  • O'Connor BP, Raman VS, Erickson LD, BCMA is essential for the survival of long-lived bone marrow plasma cells. J Exp Med 2004;199(1):91–98.
  • Bergtold A, Desai DD, Gavhane A, Clynes R. Cell surface recycling of internalized antigen permits dendritic cell priming of B cells. Immunity 2005;23(5):503–514.
  • Qi H, Egen JG, Huang AY, Germain RN. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science 2006;312(5780):1672–1676.
  • Litinskiy MB, Nardelli B, Hilbert DM, et al. DCs induce CD40-independent immunoglobulin class switching through BLyS and APRIL. Nat Immunol 2002;3(9):822–829.
  • Balazs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity 2002;17(3):341–352.
  • Tezuka H, Abe Y, Iwata M, Regulation of IgA production by naturally occurring TNF/iNOS-producing dendritic cells. Nature 2007;448(7156):929–933.
  • Craxton A, Magaletti D, Ryan EJ, Clark EA. Macrophage- and dendritic cell–dependent regulation of human B-cell proliferation requires the TNF family ligand BAFF. Blood 2003;101(11):4464–4471.
  • Puga I, Cols M, Barra CM, B cell-helper neutrophils stimulate the diversification and production of immunoglobulin in the marginal zone of the spleen. Nat Immunol 2012;13(2):170–180.
  • Planelles L, Carvalho-Pinto CE, Hardenberg G, APRIL promotes B-1 cell-associated neoplasm. Cancer Cell 2004;6(4):399–408.
  • Mackay F, Woodcock SA, Lawton P, Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J Exp Med 1999;190(11):1697–1710.
  • Huang W, Moisini I, Bethunaickan R, et al. BAFF/APRIL inhibition decreases selection of naive but not antigen-induced autoreactive B cells in murine systemic lupus erythematosus. J Immunol 2011;187(12):6571–6580.
  • Brinkmann V, Reichard U, Goosmann C, Neutrophil extracellular traps kill bacteria. Science 2004;303(5663):1532–1535.
  • Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol 2012;189(6): 2689–2695.
  • Baumann I, Kolowos W, Voll RE, Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum 2002;46(1):191–201.
  • Gaipl US, Kuhn A, Sheriff A, Clearance of apoptotic cells in human SLE. Curr Dir Autoimmun 2006;9:173–187.
  • Knight JS, Kaplan MJ. Lupus neutrophils: ‘NET’ gain in understanding lupus pathogenesis. Curr Opin Rheumatol 2012;24(5):441–450.
  • Garcia-Romo GS, Caielli S, Vega B, Netting neutrophils are major inducers of type I IFN production in pediatric systemic lupus erythematosus. Sci Transl Med 2011;3(73):73ra20.
  • Lande R, Ganguly D, Facchinetti V, Neutrophils activate plasmacytoid dendritic cells by releasing self-DNA-peptide complexes in systemic lupus erythematosus. Sci Transl Med 2011;3(73):73ra19.
  • Villanueva E, Yalavarthi S, Berthier CC, Netting neutrophils induce endothelial damage, infiltrate tissues, and expose immunostimulatory molecules in systemic lupus erythematosus. J Immunol 2011;187(1): 538–552.
  • Ronnblom L, Eloranta ML. The interferon signature in autoimmune diseases. Curr Opin Rheumatol 2013;25(2):248–253.
  • Obermoser G, Pascual V. The interferon-alpha signature of systemic lupus erythematosus. Lupus 2010;19(9):1012–1019.
  • Sozzani S, Bosisio D, Scarsi M, Tincani A. Type I interferons in systemic autoimmunity. Autoimmunity 2010;43(3):196–203.
  • Brkic Z, Maria NI, van Helden-Meeuwsen CG, Prevalence of interferon type I signature in CD14 monocytes of patients with Sjogren's syndrome and association with disease activity and BAFF gene expression. Ann Rheum Dis. 2013;72(5):728–735.
  • Blanco P, Palucka AK, Gill M, Induction of dendritic cell differentiation by IFN-alpha in systemic lupus erythematosus. Science 2001;294(5546):1540–1543.
  • Joo H, Coquery C, Xue Y, Serum from patients with SLE instructs monocytes to promote IgG and IgA plasmablast differentiation. J Exp Med 2012;209(7):1335–1348.
  • Teichmann LL, Ols ML, Kashgarian M, Dendritic cells in lupus are not required for activation of T and B cells but promote their expansion, resulting in tissue damage. Immunity 2010;33(6):967–978.
  • Di Paolo JA, Huang T, Balazs M, Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 2011;7(1):41–50.
  • Taylor KE, Chung SA, Graham RR, Risk alleles for systemic lupus erythematosus in a large case-control collection and associations with clinical subphenotypes. PLos Genet 2011;7(2):e1001311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.