1,080
Views
53
CrossRef citations to date
0
Altmetric
Research Article

B-Cell Receptor Signaling Inhibitors for Treatment of Autoimmune Inflammatory Diseases and B-Cell Malignancies

, &
Pages 397-427 | Accepted 14 Jun 2013, Published online: 25 Jul 2013

REFERENCES

  • LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood 2008;112:1570–1580.
  • Bouaziz JD, Yanaba K, Tedder TF. Regulatory B cells as inhibitors of immune responses and inflammation. Immunol Rev 2008;224:201–214.
  • Maseda D, Smith SH, DiLillo DJ, Regulatory B10 cells differentiate into antibody-secreting cells after transient IL-10 production in vivo. J Immunol 2012;188:1036–1048.
  • DiLillo DJ, Matsushita T, Tedder TF. B10 cells and regulatory B cells balance immune responses during inflammation, autoimmunity, and cancer. Ann N Y Acad Sci. 2010;1183:38–57.
  • Luther SA, Bidgol A, Hargreaves DC, Differing activities of homeostatic chemokines CCL19, CCL21, and CXCL12 in lymphocyte and dendritic cell recruitment and lymphoid neogenesis. J Immunol 2002;169:424–433.
  • Luther SA, Lopez T, Bai W, BLC expression in pancreatic islets causes B cell recruitment and lymphotoxin-dependent lymphoid neogenesis. Immunity 2000;12:471–481.
  • McCarthy DD, Summers-Deluca L, Vu F, The lymphotoxin pathway: beyond lymph node development. Immunol Res 2006;35:41–54.
  • Oliveira HC, Popi AF, Bachi AL, B-1 cells modulate the kinetics of wound-healing process in mice. Immunobiology 2010;215:215–222.
  • Hippen BE, DeMattos A, Cook WJ, Association of CD20+ infiltrates with poorer clinical outcomes in acute cellular rejection of renal allografts. Am J Transplant: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons 2005;5:2248–2252.
  • Lehnhardt A, Mengel M, Pape L, Ehrich JH, Offner G, Strehlau J. Nodular B-cell aggregates associated with treatment refractory renal transplant rejection resolved by rituximab. Am J Transplant 2006;6:847–851.
  • DiLillo DJ, Yanaba K, Tedder TF. B cells are required for optimal CD4+ and CD8+ T cell tumor immunity: therapeutic B cell depletion enhances B16 melanoma growth in mice. J Immunol 2010;184:4006–4016.
  • Peng SL. Signaling in B cells via Toll-like receptors. Curr Opin Immunol 2005;17:230–236.
  • Cunningham-Rundles C, Ponda PP. Molecular defects in T- and B-cell primary immunodeficiency diseases. Nat Rev Immunol 2005;5:880–892.
  • Vinuesa CG, Sanz I, Cook MC. Dysregulation of germinal centres in autoimmune disease. Nat Rev Immunol 2009;9:845–857.
  • Mattsson PT, Lappalainen I, Backesjo CM, Six X-linked agammaglobulinemia-causing missense mutations in the Src homology 2 domain of Bruton's tyrosine kinase: phosphotyrosine-binding and circular dichroism analysis. J Immunol. 2000;164:4170–4177.
  • Vihinen M, Mattsson PT, Smith CI. Bruton tyrosine kinase (BTK) in X-linked agammaglobulinemia (XLA). Front Biosci: a journal and virtual library 2000;5:D917–928.
  • Murakami M, Honjo T. Transgenic mouse models for B-cell dominant autoimmune diseases. Curr Opin Immunol 1997;9:846–850.
  • Fields ML, Erikson J. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Curr Opin Immunol 2003;15:709–717.
  • Martin F, Chan AC. B cell immunobiology in disease: evolving concepts from the clinic. Annu Rev Immunol 2006;24:467–496.
  • Shlomchik MJ. Sites and stages of autoreactive B cell activation and regulation. Immunity 2008;28:18–28.
  • Yanaba K, Bouaziz JD, Matsushita T, B-lymphocyte contributions to human autoimmune disease. Immunol Rev 2008;223:284–299.
  • Basten A, Silveira PA. B-cell tolerance: mechanisms and implications. Curr Opin Immunol 2010;22:566–574.
  • Meffre E, Wardemann H. B-cell tolerance checkpoints in health and autoimmunity. Curr Opin Immunol 2008;20:632–638.
  • Tighe H, Warnatz K, Brinson D, Peripheral deletion of rheumatoid factor B cells after abortive activation by IgG. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:646–651.
  • Song YW, Kang EH. Autoantibodies in rheumatoid arthritis: rheumatoid factors and anticitrullinated protein antibodies. QJM: monthly journal of the Association of Physicians 2010;103:139–146.
  • Takai T. Roles of Fc receptors in autoimmunity. Nat Rev Immunol 2002;2:580–592.
  • Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol 2001;2:764–766.
  • Herberman RB, Reynolds CW, Ortaldo JR. Mechanism of cytotoxicity by natural killer (NK) cells. Annu Rev Immunol 1986;4:651–680.
  • Li Y, Li H, Weigert M. Autoreactive B cells in the marginal zone that express dual receptors. J Exp Med 2002;195:181–188.
  • Viau M, Zouali M. B-lymphocytes, innate immunity, and autoimmunity. Clin Immunol (Orlando, Fla) 2005;114:17–26.
  • Pao LI, Lam KP, Henderson JM, B cell-specific deletion of protein-tyrosine phosphatase Shp1 promotes B-1a cell development and causes systemic autoimmunity. Immunity 2007;27: 35–48.
  • Serreze DV, Chapman HD, Varnum DS, B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new “speed congenic” stock of NOD.Ig mu null mice. J Exp Med 1996;184:2049–2053.
  • Wong FS, Wen L, Tang M, Investigation of the role of B-cells in type 1 diabetes in the NOD mouse. Diabetes 2004;53:2581–2587.
  • Tian J, Zekzer D, Lu Y, B cells are crucial for determinant spreading of T cell autoimmunity among beta cell antigens in diabetes-prone nonobese diabetic mice. J Immunol 2006;176:2654–2661.
  • Falcone M, Lee J, Patstone G, B lymphocytes are crucial antigen-presenting cells in the pathogenic autoimmune response to GAD65 antigen in nonobese diabetic mice. J Immunol 1998;161:1163–1168.
  • Marino E, Grey ST. A new role for an old player: do B cells unleash the self-reactive CD8+ T cell storm necessary for the development of type 1 diabetes? J Autoimmun 2008;31:301–305.
  • Noorchashm H, Lieu YK, Noorchashm N, I-Ag7-mediated antigen presentation by B lymphocytes is critical in overcoming a checkpoint in T cell tolerance to islet beta cells of nonobese diabetic mice. J Immunol 1999;163:743–750.
  • Katz JD, Wang B, Haskins K, Following a diabetogenic T cell from genesis through pathogenesis. Cell 1993;74:1089–1100.
  • Brodie GM, Wallberg M, Santamaria P, B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 2008;57:909–917.
  • Fiocco U, Sfriso P, Oliviero F, Co-stimulatory modulation in rheumatoid arthritis: the role of (CTLA4-Ig) abatacept. Autoimmun Rev 2008;8:76–82.
  • Lagana B, Vinciguerra M, D'Amelio R. Modulation of T-cell co-stimulation in rheumatoid arthritis: clinical experience with abatacept. Clin Drug Investig 2009;29:185–202.
  • Takemura S, Braun A, Crowson C, Lymphoid neogenesis in rheumatoid synovitis. J Immunol 2001;167:1072–1080.
  • Bugatti S, Codullo V, Caporali R, Montecucco C. B cells in rheumatoid arthritis. Autoimmun Rev 2007;7:137–142.
  • Kim HJ, Berek C. B cells in rheumatoid arthritis. Arthritis Res 2000;2:126–131.
  • Shealy DJ, Visvanathan S. Anti-TNF antibodies: lessons from the past, roadmap for the future. Handbook Exp Pharmacol 2008;181:101–129.
  • Woodrick R, Ruderman EM. Anti-interleukin-6 therapy in rheumatoid arthritis. Bulletin of the NYU Hosp Joint Dis 2010;68:211–217.
  • Constantinescu CS, Farooqi N, O'Brien K, Gran B. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). Br J Pharmacol 2011;164:1079–1106.
  • t Hart BA, Gran B, Weissert R. EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 2011;17:119–125.
  • Yanaba K, Yoshizaki A, Asano Y, IL-10-producing regulatory B10 cells inhibit intestinal injury in a mouse model. Am J Pathol 2011;178:735–743.
  • Davis RE, Ngo VN, Lenz G, Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 2010;463:88–92.
  • Herishanu Y, Perez-Galan P, Liu D, The lymph node microenvironment promotes B-cell receptor signaling, NF-kappaB activation, and tumor proliferation in chronic lymphocytic leukemia. Blood 2011;117:563–574.
  • Cecconi D, Zamo A, Bianchi E, Signal transduction pathways of mantle cell lymphoma: a phosphoproteome-based study. Proteomics 2008;8:4495–4506.
  • Pighi C, Gu TL, Dalai I, Phospho-proteomic analysis of mantle cell lymphoma cells suggests a pro-survival role of B-cell receptor signaling. Cell Oncol 2011;34:141–153.
  • Rinaldi A, Kwee I, Taborelli M, Genomic and expression profiling identifies the B-cell associated tyrosine kinase Syk as a possible therapeutic target in mantle cell lymphoma. Br J Haematol 2006;132:303–316.
  • Martinez N, Camacho FI, Algara P, The molecular signature of mantle cell lymphoma reveals multiple signals favoring cell survival. Cancer Res 2003;63:8226–8232.
  • Rizzatti EG, Falcao RP, Panepucci RA, Gene expression profiling of mantle cell lymphoma cells reveals aberrant expression of genes from the PI3K-AKT, WNT and TGFbeta signalling pathways. Br J Haematol 2005;130:516–526.
  • Tuveson DA, Carter RH, Soltoff SP, Fearon DT. CD19 of B cells as a surrogate kinase insert region to bind phosphatidylinositol 3-kinase. Science 1993;260:986–989.
  • Fujimoto M, Fujimoto Y, Poe JC, CD19 regulates Src family protein tyrosine kinase activation in B lymphocytes through processive amplification. Immunity 2000;13:47–57.
  • Okada T, Maeda A, Iwamatsu A, BCAP: the tyrosine kinase substrate that connects B cell receptor to phosphoinositide 3-kinase activation. Immunity 2000;13:817–827.
  • Yamazaki T, Takeda K, Gotoh K, Essential immunoregulatory role for BCAP in B cell development and function. J Exp Med 2002;195:535–545.
  • Aiba Y, Kameyama M, Yamazaki T, Regulation of B-cell development by BCAP and CD19 through their binding to phosphoinositide 3-kinase. Blood 2008;111:1497–1503.
  • Pierce SK, Liu W. The tipping points in the initiation of B cell signalling: how small changes make big differences. Nat Rev Immunol 2010;10:767–777.
  • Monroe JG. ITAM-mediated tonic signalling through pre-BCR and BCR complexes. Nat Rev Immunol 2006;6:283–294.
  • Kraus M, Alimzhanov MB, Rajewsky N, Rajewsky K. Survival of resting mature B lymphocytes depends on BCR signaling via the Igalpha/beta heterodimer. Cell 2004;117:787–800.
  • Duhren-von Minden M, Ubelhart R, Schneider D, Chronic lymphocytic leukaemia is driven by antigen-independent cell-autonomous signalling. Nature 2012;489:309–312.
  • Agathangelidis A, Darzentas N, Hadzidimitriou A, Stereotyped B-cell receptors in one-third of chronic lymphocytic leukemia: a molecular classification with implications for targeted therapies. Blood 2012;119:4467–4475.
  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B. The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 2010;11:329–341.
  • Vanhaesebroeck B, Leevers SJ, Ahmadi K, Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 2001;70:535–602.
  • Hawkins PT, Anderson KE, Davidson K, Stephens LR. Signalling through Class I PI3Ks in mammalian cells. Biochem Soc Trans 2006;34:647–662.
  • Franke TF, Yang SI, Chan TO, The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 1995;81:727–736.
  • Datta K, Bellacosa A, Chan TO, Tsichlis PN. Akt is a direct target of the phosphatidylinositol 3-kinase. Activation by growth factors, v-src and v-Ha-ras, in Sf9 and mammalian cells. J Biol Chem 1996;271:30835–30839.
  • Brazil DP, Hemmings BA. Ten years of protein kinase B signalling: a hard Akt to follow. Trends Biochem Sci 2001;26:657–664.
  • Varnai P, Rother KI, Balla T. Phosphatidylinositol 3-kinase-dependent membrane association of the Bruton's tyrosine kinase pleckstrin homology domain visualized in single living cells. J Biol Chem 1999;274:10983–10989.
  • Bilancio A, Okkenhaug K, Camps M, Key role of the p110delta isoform of PI3K in B-cell antigen and IL-4 receptor signaling: comparative analysis of genetic and pharmacologic interference with p110delta function in B cells. Blood 2006;107:642–650.
  • Okkenhaug K, Bilancio A, Farjot G, Impaired B and T cell antigen receptor signaling in p110delta PI 3-kinase mutant mice. Science 2002;297:1031–1034.
  • Clayton E, Bardi G, Bell SE, A crucial role for the p110delta subunit of phosphatidylinositol 3-kinase in B cell development and activation. J Exp Med 2002;196:753–763.
  • Jou ST, Carpino N, Takahashi Y, Essential, nonredundant role for the phosphoinositide 3-kinase p110delta in signaling by the B-cell receptor complex. Mol Cell Biol 2002;22:8580–8591.
  • Sasaki T, Irie-Sasaki J, Jones RG, Function of PI3Kgamma in thymocyte development, T cell activation, and neutrophil migration. Science 2000;287:1040–1046.
  • Ramadani F, Bolland DJ, Garcon F, The PI3K isoforms p110alpha and p110delta are essential for pre-B cell receptor signaling and B cell development. Sci Signaling 2010;3:ra60.
  • Sadhu C, Masinovsky B, Dick K, Sowell CG, Staunton DE. Essential role of phosphoinositide 3-kinase delta in neutrophil directional movement. J Immunol 2003;170:2647–2654.
  • Lannutti BJ, Meadows SA, Herman SE, CAL-101, a p110delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011;117:591–594.
  • Durand CA, Hartvigsen K, Fogelstrand L, Phosphoinositide 3-kinase p110 delta regulates natural antibody production, marginal zone and B-1 B cell function, and autoantibody responses. J Immunol 2009;183:5673–5684.
  • Dil N, Marshall AJ. Role of phosphoinositide 3-kinase p110 delta in TLR4- and TLR9-mediated B cell cytokine production and differentiation. Mol Immunol 2009;46:1970–1978.
  • Kahl B, Byrd JC, Flinn IW, Clinical safety and activity in a phase 1 study of CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110 delta, In patients with relapsed or refractory non-hodgkin lymphoma. Blood 2010;116:741–741.
  • Durand CA, Richer MJ, Brenker K, Selective pharmacological inhibition of phosphoinositide 3-kinase p110delta opposes the progression of autoimmune diabetes in non-obese diabetic (NOD) mice. Autoimmunity 2013;46:62–73.
  • Haylock-Jacobs S, Comerford I, Bunting M, PI3Kdelta drives the pathogenesis of experimental autoimmune encephalomyelitis by inhibiting effector T cell apoptosis and promoting Th17 differentiation. J Autoimmun 2011;36:278–287.
  • Maxwell MJ, Tsantikos E, Kong AM, Attenuation of phosphoinositide 3-kinase delta signaling restrains autoimmune disease. J Autoimmun 2012;38:381–391.
  • Fung-Leung WP. Phosphoinositide 3-kinase delta (PI3Kdelta) in leukocyte signaling and function. Cell Signal 2011;23:603–608.
  • Puri KD, Doggett TA, Douangpanya J, Mechanisms and implications of phosphoinositide 3-kinase delta in promoting neutrophil trafficking into inflamed tissue. Blood 2004;103:3448–3456.
  • Ali K, Bilancio A, Thomas M, Essential role for the p110delta phosphoinositide 3-kinase in the allergic response. Nature 2004;431:1007–1011.
  • Ali K, Camps M, Pearce WP, Isoform-specific functions of phosphoinositide 3-kinases: p110 delta but not p110 gamma promotes optimal allergic responses in vivo. J Immunol 2008; 180:2538–2544.
  • Okkenhaug K, Patton DT, Bilancio A, The p110delta isoform of phosphoinositide 3-kinase controls clonal expansion and differentiation of Th cells. J Immunol 2006;177:5122–5128.
  • Soond DR, Bjorgo E, Moltu K, PI3K p110delta regulates T-cell cytokine production during primary and secondary immune responses in mice and humans. Blood 2010;115:2203–2213.
  • Park SJ, Lee KS, Kim SR, Phosphoinositide 3-kinase delta inhibitor suppresses interleukin-17 expression in a murine asthma model. Eur Respir J 2010;36:1448–1459.
  • Crome SQ, Wang AY, Levings MK. Translational mini-review series on Th17 cells: function and regulation of human T helper 17 cells in health and disease. Clin Exp Immunol 2010;159:109–119.
  • Jain R, Tartar DM, Gregg RK, Innocuous IFNgamma induced by adjuvant-free antigen restores normoglycemia in NOD mice through inhibition of IL-17 production. J Exp Med 2008;205:207–218.
  • Emamaullee JA, Davis J, Merani S, Inhibition of Th17 cells regulates autoimmune diabetes in NOD mice. Diabetes 2009;58:1302–1311.
  • Sinclair LV, Finlay D, Feijoo C, Phosphatidylinositol-3-OH kinase and nutrient-sensing mTOR pathways control T lymphocyte trafficking. Nat Immunol 2008;9:513–521.
  • Flinn IW, Horwitz SM, Patel M, Clinical Safety and activity in a phase 1 trial of IPI-145, a potent inhibitor of phosphoinositide-3-kinase-delta,gamma, in patients with advanced hematologic malignancies. Blood 2012;120: Meeting Abstract: 3663.
  • Porter JR, Ali J, DiNitto JP, The potent phosphoinositide-3-kinase-(delta,gamma) inhibitor IPI-145 is active in preclinical models of arthritis and well tolerated in healthy adult subjects. Arthritis Rheum 2012;64:S147–S147.
  • Herman SE, Gordon AL, Wagner AJ, Phosphatidylinositol 3-kinase-delta inhibitor CAL-101 shows promising preclinical activity in chronic lymphocytic leukemia by antagonizing intrinsic and extrinsic cellular survival signals. Blood 2010;116:2078–2088.
  • Castillo JJ, Furman M, Winer ES. CAL-101: a phosphatidylinositol-3-kinase p110-delta inhibitor for the treatment of lymphoid malignancies. Expert Opin Inv Drug 2012;21:15–22.
  • Ikeda H, Hideshima T, Fulciniti M, PI3K/p110{delta} is a novel therapeutic target in multiple myeloma. Blood 2010;116:1460–1468.
  • Meadws SA, Kashishian A, Johnson D, CAL-101 (GS-1101), a specific inhibitor of phosphatidylinositol-3-kinase-delta (PI3K delta), disrupts signals from the microenvironment, induces apoptosis, and enhances the antitumor activity of everolimus (RAD001), an inhibitor of mammalian target of rapamycin (mTOR), in mantle cell lymphoma (MCL). Blood 2011;118:1593–1593.
  • Iyengar S, Clear AJ, Owen A, PI3K Inhibition with GDC-0941 Has greater efficacy compared to p110 delta-selective inhibition with CAL-101 in mantle cell lymphoma and may be particularly advantageous in multiply relapsed patients. Blood 2011;118:719–719.
  • Meadows SA, Kashishian A, Johnson D, CAL-101, a potent selective inhibitor of the p110 delta isoform of phosphatidylinositol 3-kinase, attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of hodgkin, lymphoma. Blood 2010;116:1601–1601.
  • Niedermeier M, Hennessy BT, Knight ZA, Isoform-selective phosphoinositide 3’-kinase inhibitors inhibit CXCR4 signaling and overcome stromal cell-mediated drug resistance in chronic lymphocytic leukemia: a novel therapeutic approach. Blood 2009;113:5549–5557.
  • Longo PG, Laurenti L, Gobessi S, The Akt/Mcl-1 pathway plays a prominent role in mediating antiapoptotic signals downstream of the B-cell receptor in chronic lymphocytic leukemia B cells. Blood 2008;111:846–855.
  • Lannutti BJ, Meadows SA, Herman SEM, CAL-101, a p110 delta selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood 2011;117:591–594.
  • Herko A, Mavis C, Czuczman MS, Hernandez F. AMG 319, a novel inhibitor of phosphoinositide-3 kinase delta (PI3Kd), demonstrates activity in lymphoma pre-clinical models. Blood 2012;120: Meeting Abstract: 3718.
  • Hoellenriegel J, Meadows SA, Sivina M, The phosphoinositide 3′-kinase delta inhibitor, CAL-101, inhibits B-cell receptor signaling and chemokine networks in chronic lymphocytic leukemia. Blood 2011;118:3603–3612.
  • Meadows SA, Vega F, Kashishian A, PI3Kdelta inhibitor, GS-1101 (CAL-101), attenuates pathway signaling, induces apoptosis, and overcomes signals from the microenvironment in cellular models of Hodgkin lymphoma. Blood 2012;119:1897–1900.
  • Sharman Jde Vos S, Leonard JP, A phase 1 study of the selective phosphatidylinositol 3-kinase-delta (PI3K delta) inhibitor, CAL-101 (GS-1101), in combination with rituximab and/or bendamustine in patients with relapsed or refractory chronic lymphocytic leukemia (CLL). Blood 2011;118:779–780.
  • de Vos S, Schreeder MT, Flinn IW, A phase 1 study of the selective phosphatidylinositol 3-kinase-delta (PI3K delta) inhibitor, Cal-101 (GS-1101), in combination with rituximab and/or bendamustine in patients with previously treated, indolent non-hodgkin lymphoma (iNHL). Blood 2011;118:1160–1160.
  • Flinn IW, Schreeder MT, Wagner-Johnston N, A phase 1 study of CAL-101, An isoform-selective inhibitor of phosphatidylinositol 3-kinase P110 delta, In combination with rituximab and/or bendamustine in patients with relapsed or refractory B-cell malignancies. Blood 2010;116:1168–1168.
  • Brown J, Byrd J, Furman R, Clinical activity in a phase 1 study of Cal-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110delta, in patients with B-cell malignancies. Haematol-the Hematol J 2010;95:466–466.
  • Flinn IW, Byrd JC, Furman RR, Evidence of clinical activity in a phase I study of CAL-101, an Oral P110 delta isoform-selective inhibitor of phosphatidylinositol 3-kinase, in patients with relapsed or refractory B-Cell malignancies. Blood 2009;114:380–380.
  • Flinn IW, Byrd JC, Furman RR, Preliminary evidence of clinical activity in a phase I study of CAL-101, a selective inhibitor of the p1108 isoform of phosphatidylinositol 3-kinase (P13K), in patients with select hematologic malignancies. J Clin Oncol 2009;27: Meeting Abstract: 3543.
  • Flinn W, Byrd J, Furman R, Preliminary evidence of clinical activity in a phase 1 study of cal-101, a potent selective inhibitor of the P110delta isoform of phosphatidylinositol 3-kinase, in patient with B-cell malignancies. Haematologica-the Hematol J 2009;94:303–303.
  • Furman RR, Byrd JC, Brown JR, CAL-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110 delta, demonstrates clinical activity and pharmacodynamic effects In patients with relapsed or refractory chronic lymphocytic leukemia. Blood 2010;116:31–31.
  • Kahl B, Byrd J, Flinn I, Significant clinical activity of cal-101, an isoform-selective inhibitor of phosphatidylinositol 3 kinase P110d, in patients with relapsed or refractory indolent and mantle cell lymphoma. Ann Oncol 2011;22:199–199.
  • Leonard J, Schreeder M, Coutre S, A phase 1 study of cal-101, an isoform-selective inhibitor of phosphatidylinositol 3-kinase P110d, in combination with anti-Cd20 monoclonal antibody therapy and/or bendamustine in patients with previously treated B-cell malignancies. Ann Oncol 2011;22:137–137.
  • Reif K, Okkenhaug K, Sasaki T, Penninger JM, Vanhaesebroeck B, Cyster JG. Cutting edge: differential roles for phosphoinositide 3-kinases, p110gamma and p110delta, in lymphocyte chemotaxis and homing. J Immunol 2004;173:2236–2240.
  • Taniguchi T, Kobayashi T, Kondo J, Molecular cloning of a porcine gene syk that encodes a 72-kDa protein-tyrosine kinase showing high susceptibility to proteolysis. J Biol Chem 1991;266:15790–15796.
  • Arias-Palomo E, Recuero-Checa MA, Bustelo XR, Llorca O. 3D structure of Syk kinase determined by single-particle electron microscopy. Biochim Biophys Acta 2007;1774:1493–1499.
  • Gradler U, Schwarz D, Dresing V, Structural and biophysical characterization of the Syk activation switch. J Mol Biol 2013;425:309–333.
  • Tsang E, Giannetti AM, Shaw D, Molecular mechanism of the Syk activation switch. J Biol Chem 2008;283:32650–32659.
  • Kurosaki T, Kurosaki M. Transphosphorylation of Bruton's tyrosine kinase on tyrosine 551 is critical for B cell antigen receptor function. J Biol Chem 1997;272:15595–15598.
  • Rolli V, Gallwitz M, Wossning T, Amplification of B cell antigen receptor signaling by a Syk/ITAM positive feedback loop. Mol Cell 2002;10:1057–1069.
  • de Castro RO, Zhang J, Jamur MC, Tyrosines in the carboxyl terminus regulate Syk kinase activity and function. J Biol Chem 2010;285:26674–26684.
  • Kurosaki T, Johnson SA, Pao L, Role of the Syk autophosphorylation site and SH2 domains in B cell antigen receptor signaling. J Exp Med 1995;182:1815–1823.
  • Furlong MT, Mahrenholz AM, Kim KH, Identification of the major sites of autophosphorylation of the murine protein-tyrosine kinase Syk. Biochim Biophys Acta 1997;1355:177–190.
  • Keshvara LM, Isaacson C, Harrison ML, Geahlen RL. Syk activation and dissociation from the B-cell antigen receptor is mediated by phosphorylation of tyrosine 130. J Biol Chem 1997;272:10377–10381.
  • Zhang Y, Oh H, Burton RA, Tyr130 phosphorylation triggers Syk release from antigen receptor by long-distance conformational uncoupling. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:11760–11765.
  • Kulathu Y, Hobeika E, Turchinovich G, Reth M. The kinase Syk as an adaptor controlling sustained calcium signalling and B-cell development. The EMBO J 2008;27:1333–1344.
  • DeFranco AL. Transmembrane signaling by antigen receptors of B and T lymphocytes. Curr Opin Cell Biol 1995;7:163–175.
  • DeFranco AL. The complexity of signaling pathways activated by the BCR. Curr Opin Immunol 1997;9:296–308.
  • Sada K, Takano T, Yanagi S, Yamamura H. Structure and function of Syk protein-tyrosine kinase. J Biochem 2001;130:177–186.
  • Vendel AC, Calemine-Fenaux J, Izrael-Tomasevic A, B and T lymphocyte attenuator regulates B cell receptor signaling by targeting Syk and BLNK. J Immunol 2009;182:1509–1517.
  • Cheng AM, Rowley B, Pao W, Syk tyrosine kinase required for mouse viability and B-cell development. Nature 1995;378:303–306.
  • Turner M, Mee PJ, Costello PS, Perinatal lethality and blocked B-cell development in mice lacking the tyrosine kinase Syk. Nature 1995;378:298–302.
  • Wong BR, Grossbard EB, Payan DG, Masuda ES. Targeting Syk as a treatment for allergic and autoimmune disorders. Expert Opin Inv Drug 2004;13:743–762.
  • Tan SL, Liao C, Lucas MC, Targeting the SYK-BTK axis for the treatment of immunological and hematological disorders: recent progress and therapeutic perspectives. Pharmacol Ther 2013;138:294–309.
  • Mallick-Wood CA, Pao W, Cheng AM, Disruption of epithelial gamma delta T cell repertoires by mutation of the Syk tyrosine kinase. Proceedings of the National Academy of Sciences of the United States of America. 1996;93:9704–9709.
  • Gong Q, White L, Johnson R, Restoration of thymocyte development and function in zap-70-/- mice by the Syk protein tyrosine kinase. Immunity 1997;7:369–377.
  • Geahlen RL, Burg DL. The role of Syk in cell signaling. Adv Exp Med Biol 1994;365:103–109.
  • Law CL, Sidorenko SP, Chandran KA, Molecular cloning of human Syk. A B cell protein-tyrosine kinase associated with the surface immunoglobulin M-B cell receptor complex. J Biol Chem 1994;269:12310–12319.
  • Mocsai A, Ruland J, Tybulewicz VL. The SYK tyrosine kinase: a crucial player in diverse biological functions. Nat Rev Immunol 2010;10:387–402.
  • Turner M, Schweighoffer E, Colucci F, Tyrosine kinase SYK: essential functions for immunoreceptor signalling. Immunol Today 2000;21:148–154.
  • Abtahian F, Guerriero A, Sebzda E, Regulation of blood and lymphatic vascular separation by signaling proteins SLP-76 and Syk. Science 2003;299:247–251.
  • Braselmann S, Taylor V, Zhao H, R406, an orally available spleen tyrosine kinase inhibitor blocks fc receptor signaling and reduces immune complex-mediated inflammation. J Pharmacol Exp Ther 2006;319:998–1008.
  • Coffey G, DeGuzman F, Inagaki M, Specific inhibition of spleen tyrosine kinase suppresses leukocyte immune function and inflammation in animal models of rheumatoid arthritis. J Pharmacol Exp Ther 2012;340:350–359.
  • Le Roux D, Lankar D, Yuseff MI, Syk-dependent actin dynamics regulate endocytic trafficking and processing of antigens internalized through the B-cell receptor. Mol Biol Cell 2007;18:3451–3462.
  • Katkere B, Rosa S, Drake JR. The Syk-binding ubiquitin ligase c-Cbl mediates signaling-dependent B cell receptor ubiquitination and B cell receptor-mediated antigen processing and presentation. J Biol Chem 2012;287:16636–16644.
  • Burger JA, Quiroga MP, Hartmann E, High-level expression of the T-cell chemokines CCL3 and CCL4 by chronic lymphocytic leukemia B cells in nurselike cell cocultures and after BCR stimulation. Blood 2009;113:3050–3058.
  • Quiroga MP, Balakrishnan K, Kurtova AV, B-cell antigen receptor signaling enhances chronic lymphocytic leukemia cell migration and survival: specific targeting with a novel spleen tyrosine kinase inhibitor, R406. Blood 2009;114:1029–1037.
  • Buchner M, Baer C, Prinz G, Spleen tyrosine kinase inhibition prevents chemokine- and integrin-mediated stromal protective effects in chronic lymphocytic leukemia. Blood 2010;115: 4497–4506.
  • Fruchon S, Kheirallah S, Al Saati T, Involvement of the Syk-mTOR pathway in follicular lymphoma cell invasion and angiogenesis. Leukemia 2012;26:795–805.
  • Chen L, Monti S, Juszczynski P, SYK-dependent tonic B-cell receptor signaling is a rational treatment target in diffuse large B-cell lymphoma. Blood 2008;111:2230–2237.
  • Spurgeon SE, Coffey G, Fletcher LB, The selective SYK inhibitor P505–15 (PRT062607) inhibits B cell signaling and function in vitro and in vivo and augments the activity of fludarabine in chronic lymphocytic leukemia. J Pharmacol Exp Ther 2013;344:378–387.
  • Cheng S, Coffey G, Zhang XH, SYK inhibition and response prediction in diffuse large B-cell lymphoma. Blood 2011;118:6342–6352.
  • Liubchenko GA, Appleberry HC, Striebich CC, Rheumatoid arthritis is associated with signaling alterations in naturally occurring autoreactive B-lymphocytes. J Autoimmun 2013;40: 111–121.
  • Pine PR, Chang B, Schoettler N, Inflammation and bone erosion are suppressed in models of rheumatoid arthritis following treatment with a novel Syk inhibitor. Clin Immunol (Orlando, Fla.) 2007;124:244–257.
  • Tsokos GC, Liossis SN. Immune cell signaling defects in lupus: activation, anergy and death. Immunol Today 1999;20:119–124.
  • Shahaf G, Gross AJ, Sternberg-Simon M, Lyn deficiency affects B-cell maturation as well as survival. Eur J Immunol 2012;42:511–521.
  • Anolik JH, Barnard J, Cappione A, Rituximab improves peripheral B cell abnormalities in human systemic lupus erythematosus. Arthritis Rheum 2004;50:3580–3590.
  • Bahjat FR, Pine PR, Reitsma A, An orally bioavailable spleen tyrosine kinase inhibitor delays disease progression and prolongs survival in murine lupus. Arthritis Rheum 2008;58:1433–1444.
  • Deng GM, Liu L, Bahjat FR, Suppression of skin and kidney disease by inhibition of spleen tyrosine kinase in lupus-prone mice. Arthritis Rheum 2010;62:2086–2092.
  • Smith J, McDaid JP, Bhangal G, A spleen tyrosine kinase inhibitor reduces the severity of established glomerulonephritis. J Am Soc Nephrol: JASN. 2010;21:231–236.
  • Colonna L, Catalano G, Chew C, Therapeutic targeting of Syk in autoimmune diabetes. J Immunol 2010;185:1532–1543.
  • Podolanczuk A, Lazarus AH, Crow AR, Grossbard E, Bussel JB. Of mice and men: an open-label pilot study for treatment of immune thrombocytopenic purpura by an inhibitor of Syk. Blood 2009;113:3154–3160.
  • Iwata S, Yamaoka K, Niiro H, Amplification of Toll-like receptor-mediated signaling through spleen tyrosine kinase in human B-cell activation. J Allergy Clin Immunol 2012;129:1594–1601 e1592.
  • Carreno C, Domenech A, Prats N, Miralpeix M, Ramis I. Characterization of a model of tracheal plasma extravasation in passively sensitized rats using anti-allergic and anti-inflammatory drugs by oral and intratracheal route. Pulm Pharmacol Ther 2012;25:87–93.
  • Sanderson MP, Gelling SJ, Rippmann JF, Schnapp A. Comparison of the anti-allergic activity of Syk inhibitors with optimized Syk siRNAs in FcepsilonRI-activated RBL-2H3 basophilic cells. Cell Immunol 2010;262:28–34.
  • Matsubara S, Koya T, Takeda K, Syk activation in dendritic cells is essential for airway hyperresponsiveness and inflammation. Am J Respir Cell Mol Biol 2006;34:426–433.
  • Matsubara S, Li G, Takeda K, Inhibition of spleen tyrosine kinase prevents mast cell activation and airway hyperresponsiveness. Am J Respir Crit Care Med 2006;173:56–63.
  • Kuno Y, Abe A, Emi N, Constitutive kinase activation of the TEL-Syk fusion gene in myelodysplastic syndrome with t(9;12)(q22;p12). Blood. 2001;97:1050–1055.
  • Streubel B, Vinatzer U, Willheim M, Raderer M, Chott A. Novel t(5;9)(q33;q22) fuses ITK to SYK in unspecified peripheral T-cell lymphoma. Leukemia: official journal of the Leukemia Society of America, Leukemia Research Fund, UK 2006;20:313–318.
  • Chiorazzi N, Ferrarini M. B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003;21:841–894.
  • Kipps TJ. The B-cell receptor and ZAP-70 in chronic lymphocytic leukemia. Best Pract Res 2007;20:415–424.
  • Stevenson FK, Caligaris-Cappio F. Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004;103:4389–4395.
  • Tauzin S, Ding H, Burdevet D, Borisch B, Hoessli DC. Membrane-associated signaling in human B-lymphoma lines. Exp Cell Res 2011;317:151–162.
  • Gobessi S, Laurenti L, Longo PG, Inhibition of constitutive and BCR-induced Syk activation downregulates Mcl-1 and induces apoptosis in chronic lymphocytic leukemia B cells. Leukemia 2009;23:686–697.
  • Suljagic M, Longo PG, Bennardo S, The Syk inhibitor fostamatinib disodium (R788) inhibits tumor growth in the Emu- TCL1 transgenic mouse model of CLL by blocking antigen-dependent B-cell receptor signaling. Blood 2010;116:4894–4905.
  • Young RM, Hardy IR, Clarke RL, Mouse models of non-Hodgkin lymphoma reveal Syk as an important therapeutic target. Blood 2009;113:2508–2516.
  • Genovese MC, Kavanaugh A, Weinblatt ME, An oral Syk kinase inhibitor in the treatment of rheumatoid arthritis: a three-month randomized, placebo-controlled, phase II study in patients with active rheumatoid arthritis that did not respond to biologic agents. Arthritis Rheum 2011;63:337–345.
  • Scott DL. Role of spleen tyrosine kinase inhibitors in the management of rheumatoid arthritis. Drugs 2011;71:1121–1132.
  • Weinblatt ME, Kavanaugh A, Burgos-Vargas R, Treatment of rheumatoid arthritis with a Syk kinase inhibitor: a twelve-week, randomized, placebo-controlled trial. Arthritis Rheum 2008;58:3309–3318.
  • Weinblatt ME, Kavanaugh A, Genovese MC, Musser TK, Grossbard EB, Magilavy DB. An oral spleen tyrosine kinase (Syk) inhibitor for rheumatoid arthritis. N Engl J Med 2010;363:1303–1312.
  • Meltzer EO, Berkowitz RB, Grossbard EB. An intranasal Syk-kinase inhibitor (R112) improves the symptoms of seasonal allergic rhinitis in a park environment. J Allergy Clin Immunol 2005;115:791–796.
  • Friedberg JW, Sharman J, Sweetenham J, Inhibition of Syk with fostamatinib disodium has significant clinical activity in non-Hodgkin lymphoma and chronic lymphocytic leukemia. Blood 2010;115:2578–2585.
  • Baluom M, Samara E, Grossbard EB, Lau DT. Fostamatinib, a Syk-kinase inhibitor, does not affect methotrexate pharmacokinetics in patients with rheumatoid arthritis. J Clin Pharmacol 2011;51:1310–1318.
  • Tsukada S, Saffran DC, Rawlings DJ, Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993;72:279–290.
  • Mohamed AJ, Nore BF, Christensson B, Smith CI. Signalling of Bruton's tyrosine kinase, Btk. Scand J Immunol 1999;49:113–118.
  • Baraldi E, Djinovic C.arugo K Hyvonen M, Structure of the PH domain from Bruton's tyrosine kinase in complex with inositol 1,3,4,5-tetrakisphosphate. Structure 1999;7:449–460.
  • Hyvonen M, Saraste M. Structure of the PH domain and Btk motif from Bruton's tyrosine kinase: molecular explanations for X-linked agammaglobulinaemia. The EMBO J 1997;16:3396–3404.
  • Murayama K, Kato-Murayama M, Mishima C, Crystal structure of the Bruton's tyrosine kinase PH domain with phosphatidylinositol. Biochem Biophys Res Commun 2008;377:23–28.
  • Li T, Tsukada S, Satterthwaite A, Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity 1995;2:451–460.
  • Wahl MI, Fluckiger AC, Kato RM, Phosphorylation of two regulatory tyrosine residues in the activation of Bruton's tyrosine kinase via alternative receptors. Proceedings of the National Academy of Sciences of the United States of America. 1997;94:11526–11533.
  • Mao C, Zhou M, Uckun FM. Crystal structure of Bruton's tyrosine kinase domain suggests a novel pathway for activation and provides insights into the molecular basis of X-linked agammaglobulinemia. J Biol Chem 2001;276:41435–41443.
  • Park H, Wahl MI, Afar DE, Regulation of Btk function by a major autophosphorylation site within the SH3 domain. Immunity 1996;4:515–525.
  • Mohamed AJ, Yu L, Backesjo CM, Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009;228:58–73.
  • Bajpai UD, Zhang K, Teutsch M, Sen R, Wortis HH. Bruton's tyrosine kinase links the B cell receptor to nuclear factor kappaB activation. J Exp Med 2000;191:1735–1744.
  • Yao L, Suzuki H, Ozawa K, Interactions between protein kinase C and pleckstrin homology domains. Inhibition by phosphatidylinositol 4,5-bisphosphate and phorbol 12-myristate 13-acetate. J Biol Chem 1997;272:13033–13039.
  • Venkataraman C, Chen XC, Na S, Lee L, Neote K, Tan SL. Selective role of PKCbeta enzymatic function in regulating cell survival mediated by B cell antigen receptor cross-linking. Immunol Lett 2006;105:83–89.
  • Yu L, Mohamed AJ, Vargas L, Regulation of Bruton tyrosine kinase by the peptidylprolyl isomerase Pin1. J Biol Chem 2006;281:18201–18207.
  • Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine 1996;75:287–299.
  • Rawlings DJ, Saffran DC, Tsukada S, Mutation of unique region of Bruton's tyrosine kinase in immunodeficient XID mice. Science 1993;261:358–361.
  • Satoh M, Mizutani A, Behney KM, X-linked immunodeficient mice spontaneously produce lupus-related anti-RNA helicase A autoantibodies, but are resistant to pristane-induced lupus. Int Immunol 2003;15:1117–1124.
  • Currie KS. Targeting B-cells in Inflammatory Disease. Annu Rep Med Chem 2010;45:175–190.
  • Di Paolo JA, Huang T, Balazs M, Specific Btk inhibition suppresses B cell- and myeloid cell-mediated arthritis. Nat Chem Biol 2011;7:41–50.
  • Liu L, Di Paolo J, Barbosa J, Antiarthritis effect of a novel Bruton's tyrosine kinase (BTK) inhibitor in rat collagen-induced arthritis and mechanism-based pharmacokinetic/ pharmacodynamic modeling: relationships between inhibition of BTK phosphorylation and efficacy. J Pharmacol Exp Ther 2011;338:154–163.
  • Xu D, Kim Y, Postelnek J, RN486, a selective Bruton's tyrosine kinase inhibitor, abrogates immune hypersensitivity responses and arthritis in rodents. J Pharmacol Exp Ther 2012;341:90–103.
  • Honigberg LA, Smith AM, Sirisawad M, The Bruton tyrosine kinase inhibitor PCI-32765 blocks B-cell activation and is efficacious in models of autoimmune disease and B-cell malignancy. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:13075–13080.
  • Samuels J, Ng YS, Coupillaud C, Paget D, Meffre E. Human B cell tolerance and its failure in rheumatoid arthritis. Ann N Y Acad Sci. 2005;1062:116–126.
  • Chang BY, Huang MM, Francesco M, The Bruton tyrosine kinase inhibitor PCI-32765 ameliorates autoimmune arthritis by inhibition of multiple effector cells. Arthritis Res Ther 2011;13:R115.
  • Jumaa H, Hendriks RW, Reth M. B cell signaling and tumorigenesis. Annu Rev Immunol 2005;23:415–445.
  • Herman SE, Gordon AL, Hertlein E, Bruton tyrosine kinase represents a promising therapeutic target for treatment of chronic lymphocytic leukemia and is effectively targeted by PCI-32765. Blood 2011;117:6287–6296.
  • Advani RH, Buggy JJ, Sharman JP, Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J Clin Oncol 2013;31:88–94.
  • Wiestner A. Emerging role of kinase-targeted strategies in chronic lymphocytic leukemia. Blood 2012;120:4684–4691.
  • Brown JR. Ibrutinib (PCI-32765), the first BTK (Bruton's tyrosine kinase) inhibitor in clinical trials. Curr Hematol Malignancy Rep 2013;8:1–6.
  • Brown JR, Sharman JP, Harb WA, Phase Ib trial of AVL-292, a covalent inhibitor of Bruton's tyrosine kinase (Btk), in chronic lymphocytic leukemia (CLL) and B-non-Hodgkin lymphoma (B-NHL). J Clin Oncol 2012;30.
  • Jaglowski SM, Jones JA, Flynn JM, A phase Ib/II study evaluating activity and tolerability of BTK inhibitor PCI-32765 and ofatumumab in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma (CLL/SLL) and related diseases. J Clin Oncol 2012;30.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.