1,257
Views
66
CrossRef citations to date
0
Altmetric
Research Article

The Effect of Probiotics and Gut Microbiota on Th17 Cells

Pages 511-525 | Accepted 25 Aug 2013, Published online: 04 Oct 2013

REFERENCES

  • Macpherson AJ, Slack E, Geuking MB, The mucosal firewalls against commensal intestinal microbes. Semin Immunopathol 2009;31:145–149.
  • Gribar SC, Anand RJ, Sodhi CP, The role of epithelial Toll-like receptor signaling in the pathogenesis of intestinal inflammation. J Leukoc Biol 2008;83:493–498.
  • Furrie E, Macfarlane S, Thomson G, Toll-like receptors-2, -3 and -4 expression patterns on human colon and their regulation by mucosal-associated bacteria. Immunology 2005;115:565–574.
  • Wells JM, Rossi O, Meijerink M, Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 2011;108:4607–4614.
  • Lee J, Mo JH, Katakura K, Maintenance of colonic homeostasis by distinctive apical TLR9 signalling in intestinal epithelial cells. Nat Cell Biol 2006;8:1327–1336.
  • Cario E, Gerken G, Podolsky DK. Toll-like receptor 2 controls mucosal inflammation by regulating epithelial barrier function. Gastroenterology 2007;132:1359–1374.
  • Miyauchi E, Morita H, Okuda J, Cell wall fraction of Enterococcus hirae ameliorates TNF-alpha-induced barrier impairment in the human epithelial tight junction. Lett Appl Microbiol 2008;46:469–476.
  • D'Arienzo R, Maurano F, Lavermicocca P, Modulation of the immune response by probiotic strains in a mouse model of gluten sensitivity. Cytokine 2009;48:254–259.
  • Schuijt TJ, van der Poll T, de Vos WM, The intestinal microbiota and host immune interactions in the critically ill. Trends Microbiol 2013;21:221–229.
  • Khor B, Gardet A, Xavier RJ, Genetics and pathogenesis of inflammatory bowel disease. Nature 2011;474:307–317.
  • Sarra M, Pallone F, Macdonald TT, IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 2010;16:1808–1813.
  • Barkhordari E, Rezaei N, Mahmoudi M, T-helper 1, T-helper 2, and T-regulatory cytokines gene polymorphisms in irritable bowel syndrome. Inflammation 2010;33:281–286.
  • Prisciandaro L, Geier M, Butler R, Probiotics and their derivatives as treatments for inflammatory bowel disease. Inflamm Bowel Dis 2009;15:1906–1914.
  • Hedin C, Whelan K, Lindsay JO. Evidence for the use of probiotics and prebiotics in inflammatory bowel disease: a review of clinical trials. Proc Nutr Soc 2007;66:307–315.
  • Sanders ME, Guarner F, Guerrant R, An update on the use and investigation of probiotics in health and disease. Gut 2013;62:787–796.
  • Gogineni VK, Morrow LE, Malesker MA. Probiotics: mechanisms of action and clinical applications. J Prob Health 2013;1:101.
  • Kruis W, Fric P, Pokrotnieks J, Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 2004;53:1617–1623.
  • Kruis W, Chrubasik S, Boehm S, A double-blind placebo-controlled trial to study therapeutic effects of probiotic Escherichia coli Nissle 1917 in subgroups of patients with irritable bowel syndrome. Int J Colorectal Dis 2012;27:467–474.
  • Bibiloni R, Fedorak RN, Tannock GW, VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 2005;100:1539–1546.
  • Tursi A, Brandimarte G, Papa A, Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2010;105:2218–2227.
  • Wall GC, Schirmer LL, Anliker LE, Pharmacotherapy for acute pouchitis. Ann Pharmacother 2011;45:1127–1137.
  • Guandalini S, Magazzù G, Chiaro A, VSL#3 improves symptoms in children with irritable bowel syndrome: a multicenter, randomized, placebo-controlled, double-blind, crossover study. J Pediatr Gastroenterol Nutr 2010;51:24–30.
  • Francavilla R, Miniello V, Magistà AM, A randomized controlled trial of Lactobacillus GG in children with functional abdominal pain. Pediatrics 2010;126:e1445–e1452.
  • Kato K, Mizuno S, Umesaki Y, Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 2004;20: 1133–1141.
  • Ishikawa H, Matsumoto S, Ohashi Y, Beneficial effects of probiotic bifidobacterium and galacto-oligosaccharide in patients with ulcerative colitis: a randomized controlled study. Digestion 2011;84:128–133.
  • Dotterud CK, Storrø O, Johnsen R, Probiotics in pregnant women to prevent allergic disease: a randomized, double-blind trial. Br J Dermatol 2010;163:616–623.
  • Gad M, Ravn P, Søborg DA, Regulation of the IL-10/IL-12 axis in human dendritic cells with probiotic bacteria. FEMS Immunol Med Microbiol 2011;63:93–107.
  • Shida K, Nanno M, Nagata S. Flexible cytokine production by macrophages and T cells in response to probiotic bacteria. Gut Microbes 2011;2:109–114.
  • You J, Yaqoob P. Evidence of immunomodulatory effects of a novel probiotic, Bifidobacterium longum bv. infantis CCUG 52486. FEMS Immunol Med Microbiol 2012;66:353–362.
  • Latvala S, Miettinen M, Kekkonen RA, Lactobacillus rhamnosus GG and Streptococcus thermophilus induce suppressor of cytokine signalling 3 (SOCS3) gene expression directly and indirectly via interleukin-10 in human primary macrophages. Clin Exp Immunol 2011;165:94–103.
  • Lopez P, Gueimonde M, Margolles A, Distinct Bifidobacterium strains drive different immune responses in vitro. Int J Food Microbiol 2010;138:157–165.
  • Hart AL, Lammers K, Brigidi P, Modulation of human dendritic cell phenotype and function by probiotic bacteria. Gut 2004;53:1602–1609.
  • Tanabe S, Kinuta Y, Saito Y. Bifidobacterium infantis suppresses proinflammatory interleukin-17 production in murine splenocytes and dextran sodium sulfate-induced intestinal inflammation. Int J Mol Med 2008;22:181–185.
  • Miyauchi E, Ogita T, Miyamoto J, Bifidobacterium longum alleviates dextran sulfate sodium-induced colitis by suppressing IL-17A response: involvement of intestinal epithelial costimulatory molecules. PLoS One 2013; in press.
  • Ogita T, Tanii Y, Morita H, Suppression of Th17 response by Streptococcus thermophilus ST28 through induction of IFN-γ. Int J Mol Med 2011;28:817–822.
  • Ogita T, Nakashima M, Morita H, Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells. J Biomed Biotechnol 2011;2011:378417.
  • Jan RL, Yeh KC, Hsieh MH, Lactobacillus gasseri suppresses Th17 pro-inflammatory response and attenuates allergen-induced airway inflammation in a mouse model of allergic asthma. Br J Nutr 2012;108:130–139.
  • Gaffen SL. Recent advances in the IL-17 cytokine family. Curr Opin Immunol 2011;23:613– 619.
  • Miranda LN, van der Heijden IM, Costa SF, Candida colonisation as a source for candidaemia. J Hosp Infect 2009;72:9–16.
  • Conti H, Shen F, Nayyar N, Th17 cells and IL-17 receptor signaling are essential for mucosal host defense against oral candidiasis. J Exp Med 2009;206:299–311.
  • Puel A, Cypowyj S, Bustamante J, Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity. Science 2011;332:65–68.
  • Drummond RA, Brown GD. The role of Dectin-1 in the host defence against fungal infections. Curr Opin Microbiol 2011;14:392–399.
  • Griffin AJ, McSorley SJ. Development of protective immunity to Salmonella, a mucosal pathogen with a systemic agenda. Mucosal Immunol 2011;4:371–382.
  • Ravindran R, Foley J, Stoklasek T, Expression of T-bet by CD4 T cells is essential for resistance to Salmonella infection. J Immunol 2005;175:4603–4610.
  • Raffatellu M, Santos RL, Verhoeven DE, Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 2008;14:421–428.
  • Daniel MD, Desrosiers RC, Letvin NL, Simian models for AIDS. Cancer Detect Prev Suppl 1987;1:501–507.
  • Lee SJ, McLachlan JB, Kurtz JR, Temporal expression of bacterial proteins instructs host CD4 T cell expansion and Th17 development. PLoS Pathog 2012;8:e1002499.
  • Cao AT, Yao S, Gong B, Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol 2012;189:4666–4673.
  • Cerutti A, Rescigno M. The biology of intestinal immunoglobulin A responses. Immunity 2008;28:740–750.
  • Talham GL, Jiang HQ, Bos NA, Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 1999;67:1992–2000.
  • Klaasen HL, Van der Heijden PJ, Stok W, Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun 1993;61:303–306.
  • Jaffar Z, Ferrini ME, Herritt LA, Lung mucosal Th17-mediated responses induce polymeric Ig receptor expression by the airway epithelium and elevate secretory IgA levels. J Immunol 2009;182:4507–4511.
  • Ivanov II, Frutos Rde L, Manel N, Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 2008;4:337– 349.
  • Hall JA, Bouladoux N, Sun CM, Commensal DNA limits regulatory T cell conversion and is a natural adjuvant of intestinal immune responses. Immunity 2008;29:637–649.
  • Atarashi K, Nishimura J, Shima T, ATP drives lamina propria T(H)17 cell differentiation. Nature 2008;455:808–812.
  • Atarashi K, Tanoue T, Honda K. Induction of lamina propria Th17 cells by intestinal commensal bacteria. Vaccine 2010;28:8036–8038.
  • Ivanov II, Atarashi K, Manel N, Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485–498.
  • Davis CP, Savage DC. Habitat, succession, attachment, and morphology of segmented, filamentous microbes indigenous to the murine gastrointestinal tract. Infect Immun 1974;10:948–956.
  • Klaasen HL, Koopman JP, Poelma FG, Intestinal, segmented, filamentous bacteria. FEMS Microbiol 1992;8:165–180.
  • Umesaki Y, Okada Y, Matsumoto S, Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol 1995;39:555–562.
  • Heczko U, Abe A, Finlay BB. Segmented filamentous bacteria prevent colonization of enteropathogenic Escherichia coli O103 in rabbits. J Infect Dis 2000;181:1027–1033.
  • Prakash T, Oshima K, Morita H, Complete genome sequences of rat and mouse segmented filamentous bacteria, a potent inducer of Th17 cell differentiation. Cell Host Microbe 2011;10:273–284.
  • Gaboriau-Routhiau V, Rakotobe S, Lécuyer E, The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31:677–689.
  • McGeachy MJ, McSorley SJ. Microbial-induced Th17: superhero or supervillain? J Immunol 2012;189:3285–3291.
  • Kinnebrew MA, Buffie CG, Diehl GE, Interleukin 23 production by intestinal CD103(+) CD11b(+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012;36:276–287.
  • Snel J, Heinen PP, Blok HJ, Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus” Int J Syst Bacteriol 1995;45:780–782.
  • Sczesnak A, Segata N, Qin X, The genome of Th17 cell-inducing segmented filamentous bacteria reveals extensive auxotrophy and adaptations to the intestinal environment. Cell Host Microbe 2011;10:260–272.
  • Atarashi K, Tanoue T, Shima T, Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331:337–341.
  • Atarashi K, Tanoue T, Oshima T, Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500:232–236.
  • Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 2010;107:12204–12209.
  • Round JL, Lee SM, Li J, The Toll-like receptor 2 pathway establishes colonization by a commensal of the human microbiota. Science 2011;332:974–977.
  • Nutsch KM, Hsieh CS. T cell tolerance and immunity to commensal bacteria. Curr Opin Immunol 2012;24:385–391.
  • Kamada N, Núñez G. Role of the gut microbiota in the development and function of lymphoid cells. J Immunol 2013;190:1389–1395.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.