231
Views
3
CrossRef citations to date
0
Altmetric
REVIEWS

Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis

, , , , , , , , , , , , & show all
Pages 188-199 | Accepted 09 Feb 2015, Published online: 22 Apr 2015

REFERENCES

  • Dean M. Cancer stem cells: implications for cancer causation and therapy resistance. Discov Med 2005;5:278–282.
  • Campbell LL, Polyak K. Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 2007;6:2332–2338.
  • Brabletz T, Jung A, Spaderna S, et al. Opinion: migrating cancer stem cells –an integrated concept of malignant tumour progression. Nat Rev Cancer 2005;5:744–749.
  • Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol 2011;8:97–106.
  • Yamada R, Takahashi A, Torigoe T, et al. Preferential expression of cancer/testis genes in cancer stem-like cells: proposal of a novel sub-category, cancer/testis/stem gene. Tissue Antigens 2013;81:428–434.
  • Colombo M, Mirandola L, Platonova N, et al. Notch-directed microenvironment reprogramming in myeloma: a single path to multiple outcomes. Leukemia 2013;27:1009–1018.
  • Yin L, Velazquez OC, Liu ZJ. Notch signaling: emerging molecular targets for cancer therapy. Biochem Pharmacol 2010;80:690–701.
  • Mumm JS, Kopan R. Notch signaling: from the outside in. Dev Biol 2000;228:151–165.
  • Kopan R, Ilagan MX. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 2009;137:216–233.
  • Tagami S, Okochi M, Yanagida K, et al. Regulation of Notch signaling by dynamic changes in the precision of S3 cleavage of Notch-1. Mol Cell Biol 2008;28:165–176.
  • Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. Embo J 2001;20:3427–3436.
  • Mirandola L, Apicella L, Colombo M, et al. Anti-Notch treatment prevents multiple myeloma cells localization to the bone marrow via the chemokine system CXCR4/SDF-1. Leukemia 2013;27:1558–1566.
  • Mirandola L, Chiriva-Internati M, Montagna D, et al. Notch1 regulates chemotaxis and proliferation by controlling the CC-chemokine receptors 5 and 9 in T cell acute lymphoblastic leukaemia. J Pathol 2012;226:713–722.
  • Koch U, Lehal R, Radtke F. Stem cells living with a Notch. Development 2013;140:689–704.
  • Pannuti A, Foreman K, Rizzo P, et al. Targeting Notch to target cancer stem cells. Clin Cancer Res 2010;16:3141–3152.
  • Espinoza I, Pochampally R, Xing F, et al. Notch signaling: targeting cancer stem cells and epithelial-to-mesenchymal transition. Onco Targets Ther 2013;6:1249–1259.
  • Lutolf S, Radtke F, Aguet M, et al. Notch1 is required for neuronal and glial differentiation in the cerebellum. Development 2002;129:373–385.
  • Wang J, Wakeman TP, Lathia JD, et al. Notch promotes radioresistance of glioma stem cells. Stem Cells 2010;28:17–28.
  • Shiras A, Chettiar ST, Shepal V, et al. Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 2007;25:1478–1489.
  • Fre S, Huyghe M, Mourikis P, et al. Notch signals control the fate of immature progenitor cells in the intestine. Nature 2005;435:964–968.
  • Akiyoshi T, Nakamura M, Yanai K, et al. Gamma-secretase inhibitors enhance taxane-induced mitotic arrest and apoptosis in colon cancer cells. Gastroenterology 2008;134:131–144.
  • Miyamoto S, Rosenberg DW. Role of Notch signaling in colon homeostasis and carcinogenesis. Cancer Sci. 2011;102:1938–1942.
  • van Es JH, van Gijn ME, Riccio O, et al. Notch/gamma-secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 2005;435:959–963.
  • Farnie G, Clarke RB. Mammary stem cells and breast cancer –role of Notch signalling. Stem Cell Rev 2007;3:169–175.
  • Stylianou S, Clarke RB, Brennan K. Aberrant activation of Notch signaling in human breast cancer. Cancer Res 2006;66:1517–1525.
  • Izrailit J, Reedijk M. Developmental pathways in breast cancer and breast tumor-initiating cells: therapeutic implications. Cancer Lett 2012;317:115–126.
  • Rahman MT, Nakayama K, Rahman M, et al. Notch3 overexpression as potential therapeutic target in advanced stage chemoresistant ovarian cancer. Am J Clin Pathol 2012;138:535–544.
  • Jung SG, Kwon YD, Song JA, et al. Prognostic significance of Notch 3 gene expression in ovarian serous carcinoma. Cancer Sci 2010;101:1977–1983.
  • McAuliffe SM, Morgan SL, Wyant GA, et al. Targeting Notch, a key pathway for ovarian cancer stem cells, sensitizes tumors to platinum therapy. Proc Natl Acad Sci U S A 2012;109:E2939–E2948.
  • Bigas A, Espinosa L. Hematopoietic stem cells: to be or Notch to be. Blood 2012;119:3226–3235.
  • Liu N, Zhang J, Ji C. The emerging roles of Notch signaling in leukemia and stem cells. Biomarker Res 2013;1:23.
  • van der Bruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 1991;254:1643–1647.
  • Chiriva-Internati M. Sperm protein 17: clinical relevance of a cancer/testis antigen, from contraception to cancer immunotherapy, and beyond. Int Rev Immunol 2011;30:138–149.
  • Chiriva-Internati M, Ferrari R, Yu Y, et al. AKAP-4: a novel cancer testis antigen for multiple myeloma. Br J Haematol 2008;140(4):465–468. doi:10.1111/j.1365-2141.2007.06940.x.
  • Chiriva-Internati M, Mirandola L, Kast WM, et al. Understanding the cross-talk between ovarian tumors and immune cells: mechanisms for effective immunotherapies. Int Rev Immunol 2011;30:71–86.
  • Chiriva-Internati M, Pandey A, Saba R, et al. Cancer testis antigens: a novel target in lung cancer. Int Rev Immunol 2012;31:321–343.
  • Chiriva-Internati M, Wang Z, Salati E, et al. Sperm protein 17 (Sp17) is a suitable target for immunotherapy of multiple myeloma. Blood 2002;100:961–965.
  • Chiriva-Internati M, Wang Z, Salati E, et al. Successful generation of sperm protein 17 (Sp17)-specific cytotoxic T lymphocytes from normal donors: implication for tumour-specific adoptive immunotherapy following allogeneic stem cell transplantation for Sp17-positive multiple myeloma. Scand J Immunol 2002;56:429–433.
  • Chiriva-Internati M, Weidanz JA, Yu Y, et al. Sperm protein 17 is a suitable target for adoptive T-cell-based immunotherapy in human ovarian cancer. J Immunother 2008;31:693–703.
  • Chiriva-Internati M, Yu Y, Mirandola L, et al. Identification of AKAP-4 as a new cancer/testis antigen for detection and immunotherapy of prostate cancer. Prostate 2012;72:12-23.
  • Chiriva-Internati M, Yu Y, Mirandola L, et al. Cancer testis antigen vaccination affords long-term protection in a murine model of ovarian cancer. PLoS One 2010;5:0010471.
  • Mirandola L, Yu Y, Jenkins MR, et al. Tracking human multiple myeloma xenografts in NOD-Rag-1/IL-2 receptor gamma chain-null mice with the novel biomarker AKAP-4. BMC Cancer 2011;11:1471–2407.
  • Pandey A, Kurup A, Shrivastava A, et al. Cancer testes antigens in breast cancer: biological role, regulation, and therapeutic applicability. Int Rev Immunol 2012;31:302–320.
  • Sigalotti L, Fratta E, Coral S, et al. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylation-regulated and functionally reverted by 5-aza-2′-deoxycytidine. Cancer Res 2004;64(24):9167–9171.
  • Simpson AJ, Caballero OL, Jungbluth A, et al. Cancer/testis antigens, gametogenesis and cancer. Nat Rev Cancer 2005;5:615–625.
  • Ait-Tahar K, Liggins AP, Collins GP, et al. Cytolytic T-cell response to the PASD1 cancer testis antigen in patients with diffuse large B-cell lymphoma. Br J Haematol 2009;146:396–407.
  • Caballero OL, Chen Y-T. Cancer/testis (CT) antigens: potential targets for immunotherapy. Cancer Sc. 2009;100:2014–2021.
  • Hunder M, Herschel W, Jianhong C, et al. Treatment of metastatic melanoma with autologous CD4+ T cells against NY-ESO-1. NEJM 2008;358:2698–2703.
  • Sadanaga N, Hideki N, Kohjiro M, et al. Dendritic cell vaccination with MAGE peptide is a novel therapeutic approach for gastrointestinal carcinomas. Clin Cancer Res 2001;7:2277–2284.
  • Chiriva-Internati M, Cobos E, Kast WM. Advances in immunotherapy of multiple myeloma: from the discovery of tumor-associated antigens to clinical trials. Int Rev Immunol 2007;26:197–222.
  • Chiriva-Internati M, Gagliano N, Donetti E, . Sperm protein 17 is expressed in the sperm fibrous sheath. J Transl Med 2009;7:1479–5876.
  • Chiriva-Internati M, Mirandola L, Yu Y, et al. Cancer testis antigen, ropporin, is a potential target for multiple myeloma immunotherapy. J Immunother 2011;34:490–499.
  • Dadabayev AR, Wang Z, Zhang Y, et al. Cancer immunotherapy targeting Sp17: when should the laboratory findings be translated to the clinics? Am J Hematol 2005;80:6–11.
  • Costa FF, Le Blanc K, Brodin B. Concise review: cancer/testis antigens, stem cells, and cancer. Stem Cells 2007;25:707–711.
  • Cronwright G, Le Blanc K, Gotherstrom C, Darcy P, Ehnman M, Brodin B. Cancer/testis antigen expression in human mesenchymal stem cells: down-regulation of SSX impairs cell migration and matrix metalloproteinase 2 expression. Cancer Res 2005;65:2207–2015.
  • Serakinci N, Guldberg P, Burns JS, Abdallah B, Schrodder H, Jensen T, Kassem M. Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene 2004;23: 5095–5098.
  • Gjerstorff M, Burns JS, Nielsen O, et al. Epigenetic modulation of cancer-germline antigen gene expression in tumorigenic human mesenchymal stem cells: implications for cancer therapy. Am J Pathol 2009;175:314–323.
  • Beier D, Hau P, Proescholdt M, et al. CD133+ and CD133− glioblastoma-derived cancer stem cells show differential growth characteristics and molecular profiles. Cancer Res 2007;67(9):4010–4015.
  • Yawata T, Nakai E, Park KC, et al. Enhanced expression of cancer testis antigen genes in glioma stem cells. Mol Carcinog 2010;49:532–544.
  • Atanackovic D, Hildebrandt Y, Jadczak A, et al. Cancer-testis antigens MAGE-C1/CT7 and MAGE-A3 promote the survival of multiple myeloma cells. Haematologica 2010;95:785–793.
  • Scanlan MJ, Simpson AJ, Old LJ. The cancer/testis genes: review, standardization, and commentary. Cancer Immun 2004;4:1.
  • Old LJ. Cancer/testis (CT) antigens –a new link between gametogenesis and cancer: Cancer Immun. 2001;1:1.
  • Gurchot C. The trophoblast theory of cancer (John Beard, 1857–1924) revisited. Oncology 1975;31:310–333.
  • Andrade VC, Vettore AL, Felix RS, et al. Prognostic impact of cancer/testis antigen expression in advanced stage multiple myeloma patients. Cancer Immun 2008;8:2.
  • Atanackovic D, Luetkens T, Hildebrandt Y, et al. Longitudinal analysis and prognostic effect of cancer-testis antigen expression in multiple myeloma. Clin Cancer Res 2009;15:1343–1352.
  • Condomines M, Hose D, Reme T, et al. Gene expression profiling and real-time PCR analyses identify novel potential cancer-testis antigens in multiple myeloma. J Immunol 2009;183:832–840.
  • Pabst C, Zustin J, Jacobsen F, et al. Expression and prognostic relevance of MAGE-C1/CT7 and MAGE-C2/CT10 in osteolytic lesions of patients with multiple myeloma. Exp Mol Pathol 2010.
  • Jungbluth, AA., Ely S, DiLiberto M, et al. The cancer-testis antigens CT7 (MAGE-C1) and MAGE-A3/6 are commonly expressed in multiple myeloma and correlate with plasma-cell proliferation. Blood 2005;106(1):167–174.
  • Dhodapkar, MV., Osman K, Teruya-Feldstein J, et al. Expression of cancer/testis (CT) antigens MAGE-A1, MAGE-A3, MAGE-A4, CT-7, and NY-ESO-1 in malignant gammopathies is heterogeneous and correlates with site, stage and risk status of disease. Cancer Immun 2003;3(9):9.
  • Jundt F, Probsting KS, Anagnostopoulos I, et al. Jagged1-induced Notch signaling drives proliferation of multiple myeloma cells. Blood 2004;103:3511–3515.
  • Schwarzer R, Kaiser M, Acikgoez O, et al. Notch inhibition blocks multiple myeloma cell-induced osteoclast activation. Leukemia 2008;22:2273–2277.
  • Chen-Kiang S. Cell-cycle control of plasma cell differentiation and tumorigenesis. Immunol Rev 2003;194:39–47.
  • Nefedova Y, Cheng P, Alsina M, et al. Involvement of Notch-1 signaling in bone marrow stroma-mediated de novo drug resistance of myeloma and other malignant lymphoid cell lines. Blood 2004;103:3503–3510.
  • Wen Y, Richardson RT, Widgren EE, O'Rand MG. Characterization of Sp17: a ubiquitous three domain protein that binds heparin. Biochem J 2001;357:25–31.
  • Newell AE, Fiedler SE, Ruan JM, et al. Protein kinase A RII-like (R2D2) proteins exhibit differential localization and AKAP interaction. Cell Motil Cytoskeleton 2008;65:539–552.
  • Wen Y, Richardson RT, O'Rand MG. Processing of the sperm protein Sp17 during the acrosome reaction and characterization as a calmodulin binding protein. Dev Biol 1999;206:113–122.
  • Lea IA, Widgren EE, O'Rand MG. Association of sperm protein 17 with A-kinase anchoring protein 3 in flagella. Reprod Biol Endocrinol England 2004. 57–64.
  • Hedrick ED, Agarwal E, Leiphrakpam PD, et al. Differential PKA activation and AKAP association determines cell fate in cancer cells. J Mol Signal 2013;8:10.
  • Weber JM, Forsythe SR, Christianson CA, et al. Parathyroid hormone stimulates expression of the Notch ligand Jagged1 in osteoblastic cells. Bone 2006;39:485–493.
  • Yurugi-Kobayashi T, Itoh H, Schroeder T, et al. Adrenomedullin/cyclic AMP pathway induces Notch activation and differentiation of arterial endothelial cells from vascular progenitors. Arterioscler Thromb Vasc Biol 2006;26:1977–1984.
  • Huangfu D, Liu A, Rakeman AS, et al. Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 2003. 83–87.
  • Lacy HM, and Sanderson RD. Sperm protein 17 is expressed on normal and malignant lymphocytes and promotes heparan sulfate-mediated cell–cell adhesion. Blood 2001;98(7):2160–2165.
  • Li F-Q, Han Y-L, Liu Q, et al. Overexpression of human sperm protein 17 increases migration and decreases the chemosensitivity of human epithelial ovarian cancer cells. BMC cancer 2009;9(1):323–332.
  • Ruben JM, Visser LL, Bontkes HJ, et al. Targeting the acute myeloid leukemic stem cell compartment by enhancing tumor cell-based vaccines. Immunotherapy. 2013;5:859–868.
  • Jin L, Hope KJ, Zhai Q, et al. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med 2006;12:1167–1174.
  • Rao M, Chinnasamy N, Hong JA, et al. Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res 2011;71:4192–4204.
  • James SR, Cedeno CD, Sharma A, et al. DNA methylation and nucleosome occupancy regulate the cancer germline antigen gene MAGEA11. Epigenetics 2013;8:849–863.
  • Kim KM, Song MH, Kim MJ, et al. A novel cancer/testis antigen KP-OVA-52 identified by SEREX in human ovarian cancer is regulated by DNA methylation. Int J Oncol 2012;41:1139–1147.
  • Kim R, Kulkarni P, Hannenhalli S. Derepression of Cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013;13:1471–2407.
  • Dominguez M. Interplay between Notch signaling and epigenetic silencers in cancer. Cancer Res. 2006;66:8931–8934.
  • Hu W, Lu C, Dong HH, et al. Biological roles of the Delta family Notch ligand Dll4 in tumor and endothelial cells in ovarian cancer. Cancer Res 2011;71:6030–6039.
  • Strosberg JR, Yeatman T, Weber J, et al. A phase II study of RO4929097 in metastatic colorectal cancer. Eur J Cancer 2012;48:997–1003.
  • Wong GT, Manfra D, Poulet FM, et al. Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation. J Biol Chem 2004;279:12876–12882.
  • Wu Y, Cain-Hom C, Choy L, et al. Therapeutic antibody targeting of individual Notch receptors. Nature 2010;464:1052–1057.
  • Aste-Amezaga M, Zhang N, Lineberger JE, et al. Characterization of Notch1 antibodies that inhibit signaling of both normal and mutated Notch1 receptors. PLoS One 2010;5.
  • Akers SN, Odunsi K, Karpf AR. Regulation of cancer germline antigen gene expression: implications for cancer immunotherapy. Future Oncol 2010;6:717–732.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.