760
Views
37
CrossRef citations to date
0
Altmetric
Reviews

Vagal Modulation of the Inflammatory Response in Sepsis

, &
Pages 415-433 | Accepted 20 Oct 2015, Published online: 29 Apr 2016

REFERENCES

  • Tracey KJ. The inflammatory reflex. Nature 2002;420:853–859.
  • Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov. 2005;4:673–684.
  • Angus DC, van der Poll T. Severe sepsis and septic shock. N Engl J Med 2013;369:840–851.
  • Abraham E, Anzueto A, Gutierrez G, Double-blind randomised controlled trial of monoclonal antibody to human tumour necrosis factor in treatment of septic shock. NORASEPT II Study Group. Lancet 1998;351:929–933.
  • Huston JM. The vagus nerve and the inflammatory reflex: wandering on a new treatment paradigm for systemic inflammation and sepsis. Surg Infect (Larchmt) 2012;13:187–193.
  • Huang J, Wang Y, Jiang D, The sympathetic-vagal balance against endotoxemia. J Neural Transm 2010;117:729–735.
  • Fleshner M, Goehler LE, Schwartz BA, Thermogenic and corticosterone responses to intravenous cytokines (IL-1beta and TNF-alpha) are attenuated by subdiaphragmatic vagotomy. J Neuroimmunol 1998;86:134–141.
  • Ek M, Kurosawa M, Lundeberg T, Activation of vagal afferents after intravenous injection of interleukin-1beta: role of endogenous prostaglandins. J Neurosci. 1998;18:9471–9479.
  • Hosoi T, Okuma Y, Matsuda T, Novel pathway for LPS-induced afferent vagus nerve activation: possible role of nodose ganglion. Auton Neurosci 2005;120:104–107.
  • Elmquist JK, Ackermann MR, Register KB, Induction of Fos-like immunoreactivity in the rat brain following Pasteurella multocida endotoxin administration. Endocrinology 1993;133:3054–3057.
  • Goehler LE, Gaykema RP, Hammack SE, Interleukin-1 induces c-Fos immunoreactivity in primary afferent neurons of the vagus nerve. Brain Res 1998;804:306–310.
  • Fairchild KD, Srinivasan V, Moorman JR, Pathogen-induced heart rate changes associated with cholinergic nervous system activation. Am J Physiol Regul Integr Comp Physiol 2011;300:R330–R339.
  • Bonham AC, Hasser EM. Area postrema and aortic or vagal afferents converge to excite cells in nucleus tractus solitarius. Am J Physiol 1993;264:H1674–H1685.
  • Hosoi T, Okuma Y, Nomura Y. Electrical stimulation of afferent vagus nerve induces IL-1beta expression in the brain and activates HPA axis. Am J Physiol Regul Integr Comp Physiol 2000;279:R141–R147.
  • Borovikova LV, Ivanova S, Zhang M, Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000;405:458–462.
  • Wang H, Yu M, Ochani M, Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003;421:384–388.
  • Kessler W, Diedrich S, Menges P, The role of the vagus nerve: modulation of the inflammatory reaction in murine polymicrobial sepsis. Mediators Inflamm 2012;2012:467620.
  • Wang L, Li JG, Jia BH, Protective effects of electric stimulation of vagus nerve on acute lung injury in rat with sepsis. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue 2007;19:593–595.
  • Zhang R, Wugeti N, Sun J, Effects of vagus nerve stimulation via cholinergic anti-inflammatory pathway activation on myocardial ischemia/reperfusion injury in canine. Int J Clin Exp Med 2014;7:2615–2623.
  • Levy G, Fishman JE, Xu D, Parasympathetic stimulation via the vagus nerve prevents systemic organ dysfunction by abrogating gut injury and lymph toxicity in trauma and hemorrhagic shock. Shock 2013;39:39–44.
  • Meregnani J, Clarençon D, Vivier M, Anti-inflammatory effect of vagus nerve stimulation in a rat model of inflammatory bowel disease. Auton Neurosci 2011;160:82–89.
  • The FO, Boeckxstaens GE, Snoek SA, Activation of the cholinergic anti-inflammatory pathway ameliorates postoperative ileus in mice. Gastroenterology 2007;133:1219–1228.
  • van Westerloo DJ, Giebelen IA, Florquin S, The vagus nerve and nicotinic receptors modulate experimental pancreatitis severity in mice. Gastroenterology 2006;130:1822–1830.
  • Li Y, Xu Z, Yu Y, The vagus nerve attenuates fulminant hepatitis by activating the Src kinase in Kuppfer cells. Scand J Immunol 2014;79:105–112.
  • Miner JR, Lewis LM, Mosnaim GS, Feasibility of percutaneous vagus nerve stimulation for the treatment of acute asthma exacerbations. Acad Emerg Med 2012;19:421–429.
  • Wang S, Zhai X, Li S, Transcutaneous vagus nerve stimulation induces tidal melatonin secretion and has an antidiabetic effect in zucker Fatty rats. PLoS One 2015;10:e0124195.
  • Li T, Zuo X, Zhou Y, The vagus nerve and nicotinic receptors involve inhibition of HMGB1 release and early pro-inflammatory cytokines function in collagen-induced arthritis. J Clin Immunol 2010;30:213–220.
  • Yamamoto T, Kodama T, Lee J, Anti-allergic role of cholinergic neuronal pathway via α7 nicotinic ACh receptors on mucosal mast cells in a murine food allergy model. PLoS One 2014;9:e85888.
  • The F, Cailotto C, van der Vliet J, Central activation of the cholinergic anti-inflammatory pathway reduces surgical inflammation in experimental post-operative ileus. Br J Pharmacol 2011;163:1007–1016.
  • Ji H, Rabbi MF, Labis B, Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol 2014;7:335–347.
  • Lubbers T, de Haan JJ, Luyer MD, Cholecystokinin/Cholecystokinin-1 receptor-mediated peripheral activation of the afferent vagus by enteral nutrients attenuates inflammation in rats. Ann Surg 2010;252:376–382.
  • Wang YH, Hu H, Wang SP, Exercise benefits cardiovascular health in hyperlipidemia rats correlating with changes of the cardiac vagus nerve. Eur J Appl Physiol 2010;108:459–468.
  • Pontet J, Contreras P, Curbelo A, Heart rate variability as early marker of multiple organ dysfunction syndrome in septic patients. J Crit Care 2003;18:156–163.
  • Marsland AL, Gianaros PJ, Prather AA, Stimulated production of proinflammatory cytokines covaries inversely with heart rate variability. Psychosom Med 2007;69:709–716.
  • Marrero MB, Bencherif M, Lippiello PM, Application of alpha7 nicotinic acetylcholine receptor agonists in inflammatory diseases: an overview. Pharm Res 2011;28:413–416.
  • Zhao YX, He W, Jing XH, Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evid Based Complement Alternat Med 2012;2012:627023.
  • Olofsson PS, Katz DA, Rosas-Ballina M, α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol Med 2012;18:539–543.
  • Cedillo JL, Arnalich F, Martín-Sánchez C, Usefulness of α7 nicotinic receptor messenger RNA levels in peripheral blood mononuclear cells as a marker for cholinergic antiinflammatory pathway activity in septic patients: results of a pilot study. J Infect Dis 2015;211:146–155.
  • Drisdel RC, Green WN. Neuronal alpha-bungarotoxin receptors are alpha7 subunit homomers. J Neurosci 2000;20:133–139.
  • de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Brit J Pharmacol 2007;151:915–929.
  • Bencherif M, Lippiello PM, Lucas R, Alpha7 nicotinic receptors as novel therapeutic targets for inflammation-based diseases. Cell Mol Life Sci 2011;68:931–949.
  • Charpantier E, Wiesner A, Huh KH, Alpha7 neuronal nicotinic acetylcholine receptors are negatively regulated by tyrosine phosphorylation and Src-family kinases. J Neurosci 2005;25:9836–9849.
  • Wang H, Liao H, Ochani M, Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nat Med 2004;10:1216–1221.
  • Saeed RW, Varma S, Peng-Nemeroff T, Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J Exp Med 2005;201:1113–1123.
  • de Jonge WJ, van der Zanden EP, The FO, Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nat Immunol 2005;6: 844–851.
  • Ulloa L. The cholinergic anti-inflammatory pathway meets microRNA. Cell Res. 2013: 1249–1250.
  • Hamano R, Takahashi HK, Iwagaki H, Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 2006;26:358–364.
  • Huston JM, Ochani M, Rosas-Ballina M, Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. J Exp Med 2006;203:1623–1628.
  • Rosas-Ballina M, Ochani M, Parrish WR, Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proc Natl Acad Sci U S A 2008;105:11008–11013.
  • Kees MG, Pongratz G, Kees F, Via beta-adrenoceptors, stimulation of extrasplenic sympathetic nerve fibers inhibits lipopolysaccharide-induced TNF secretion in perfused rat spleen. J Neuroimmunol 2003;145:77–85.
  • Vida G, Peña G, Kanashiro A, β2-Adrenoreceptors of regulatory lymphocytes are essential for vagal neuromodulation of the innate immune system. FASEB J 2011;25:4476–4485.
  • Rosas-Ballina M, Olofsson PS, Ochani M, Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science 2011;334:98–101.
  • Peña G, Cai B, Ramos L, Cholinergic regulatory lymphocytes re-establish neuromodulation of innate immune responses in sepsis. J Immunol 2011;187:718–725.
  • Mina-Osorio P, Rosas-Ballina M, Valdes-Ferrer SI, Neural signaling in the spleen controls B-cell responses to blood-borne antigen. Mol Med 2012;18:618–627.
  • Buijs RM, van der Vliet J, Garidou ML, Spleen vagal denervation inhibits the production of antibodies to circulating antigens. PLoS One 2008;3:e3152.
  • Cailotto C, Costes LM, van der Vliet J, Neuroanatomical evidence demonstrating the existence of the vagal anti-inflammatory reflex in the intestine. Neurogastroenterol Motil 2012;24:191–200, e93.
  • Ji H, Rabbi MF, Labis B, Central cholinergic activation of a vagus nerve-to-spleen circuit alleviates experimental colitis. Mucosal Immunol 2014;7:335–347.
  • Sun P, Zhou K, Wang S, Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One 2013;8:e69424.
  • Matteoli G, Gomez-Pinilla PJ, Nemethova A, A distinct vagal anti-inflammatory pathway modulates intestinal muscularis resident macrophages independent of the spleen. Gut 2014;63:938–948.
  • Du MH, Luo HM, Hu S, Electroacupuncture improves gut barrier dysfunction in prolonged hemorrhagic shock rats through vagus anti-inflammatory mechanism. World J Gastroenterol 2013;19:5988–5999.
  • Ghia JE, Blennerhassett P, Collins SM. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J Clin Invest 2008;118:2209–2218.
  • Cailotto C, Gomez-Pinilla PJ, Costes LM, Neuro-anatomical evidence indicating indirect modulation of macrophages by vagal efferents in the intestine but not in the spleen. PLoS One 2014;9:e87785.
  • Cailotto C, Gomez Pinilla PJ, van der Vliet J, Boeckxstaens. Immunohistochemical study evaluating the vagal innervation of intestinal resident macrophages [abstract]. Gastroenterology 2012;140 (Suppl 1):S370.
  • Chen JK, Zhao T, Ni M, Downregulation of alpha7 nicotinic acetylcholine receptor in two-kidney one-clip hypertensive rats. BMC Cardiovasc Disord 2012;12:38.
  • Li DJ, Evans RG, Yang ZW, Dysfunction of the cholinergic anti-inflammatory pathway mediates organ damage in hypertension. Hypertension 2011;57:298–307.
  • Ottani A, Giuliani D, Galantucci M, Melanocortins counteract inflammatory and apoptotic responses to prolonged myocardial ischemia/reperfusion through a vagus nerve-mediated mechanism. Eur J Pharmacol 2010;637:124–130.
  • Ottani A, Galantucci M, Ardimento E, Modulation of the JAK/ERK/STAT signaling in melanocortin-induced inhibition of local and systemic responses to myocardial ischemia/reperfusion. Pharmacol Res 2013;72:1–8.
  • Zhao M, He X, Bi XY, Vagal stimulation triggers peripheral vascular protection through the cholinergic anti-inflammatory pathway in a rat model of myocardial ischemia/reperfusion. Basic Res Cardiol 2013;108:345.
  • Arias HR, Richards VE, Ng D, Role of non-neuronal nicotinic acetylcholine receptors in angiogenesis. Int J Biochem Cell Biol 2009;41:1441–1451.
  • Yu JG, Song SW, Shu H, Baroreflex deficiency hampers angiogenesis after myocardial infarction via acetylcholine-α7-nicotinic ACh receptor in rats. Eur Heart J 2013;34:2412–2420.
  • Brown KC, Lau JK, Dom AM, MG624, an α7-nAChR antagonist, inhibits angiogenesis via the Egr-1/FGF2 pathway. Angiogenesis 2012;15:99–114.
  • dos Santos CC, Shan Y, Akram A, Neuroimmune regulation of ventilator-induced lung injury. Am J Respir Crit Care Med 2011;183:471–482.
  • Santos CD, Shan Y, Akram A, Peng C, Slutsky AS, Haitsma J. Stimulation of the efferent vagus nerve mitigates acute lung injury and ventilator induced lung injury. FASEB J Meeting Abstracts 2010; 24: 623.10.
  • Brégeon F, Xeridat F, Andreotti N, Activation of nicotinic cholinergic receptors prevents ventilator-induced lung injury in rats. PLoS One 2011;6:e22386.
  • Kox M, Pompe JC, Peters E, α7 nicotinic acetylcholine receptor agonist GTS-21 attenuates ventilator-induced tumour necrosis factor-α production and lung injury. Br J Anaesth 2011;107:559–566.
  • Huston JM, Rosas-Ballina M, Xue X, Cholinergic neural signals to the spleen down-regulate leukocyte trafficking via CD11b. J Immunol 2009; 183:552–559.
  • Zhang QH, Sheng ZY, Yao YM. Septic encephalopathy: when cytokines interact with acetylcholine in the brain. Mil Med Res 2014;1:20.
  • Clodi M, Vila G, Geyeregger R, Oxytocin alleviates the neuroendocrine and cytokine response to bacterial endotoxin in healthy men. Am J Physiol Endocrinol Metab 2008;295:E686–E691.
  • Wu R, Dong W, Qiang X, Orexigenic hormone ghrelin ameliorates gut barrier dysfunction in sepsis in rats. Crit Care Med 2009;37:2421–2426.
  • Bernik TR, Friedman SG, Ochani M, Pharmacological stimulation of the cholinergic antiinflammatory pathway. J Exp Med 2002;195:781–788.
  • Pavlov VA, Ochani M, Gallowitsch-Puerta M, Central muscarinic cholinergic regulation of the systemic inflammatory response during endotoxemia. Proc Natl Acad Sci U S A 2006;103:5219–5223.
  • Pavlov VA, Parrish WR, Rosas-Ballina M, Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav Immun 2009;23:41–45.
  • Shaked I, Meerson A, Wolf Y, MicroRNA-132 potentiates cholinergic anti-inflammatory signaling by targeting acetylcholinesterase. Immunity 2009;31:965–973.
  • Hofer S, Eisenbach C, Lukic IK, Pharmacologic cholinesterase inhibition improves survival in experimental sepsis. Crit Care Med 2008;36:404–408.
  • Zhou J, Pavlovic D, Rüb J, Physostigmine reverses disturbances of the intestinal microcirculation during experimental endotoxemia. Clin Hemorheol Microcirc 2014;56:273–284.
  • Setoguchi D, Yatsuki H, Sadahiro T, Effects of a peripheral cholinesterase inhibitor on cytokine production and autonomic nervous activity in a rat model of sepsis. Cytokine 2012;57:238–244.
  • Song XM, Li JG, Wang YL, The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock 2008;30:468–472.
  • Zhou H, Liang H, Li ZF, Vagus nerve stimulation attenuates intestinal epithelial tight junctions disruption in endotoxemic mice through α7 nicotinic acetylcholine receptors. Shock 2013;40:144–151.
  • Chen C, Zhang Y, Du Z, Vagal efferent fiber stimulation ameliorates pulmonary microvascular endothelial cell injury by downregulating inflammatory responses. Inflammation 2013;36:1567–1575.
  • Kox M, Vaneker M, van der Hoeven JG, Effects of vagus nerve stimulation and vagotomy on systemic and pulmonary inflammation in a two-hit model in rats. PLoS One 2012;7:e34431.
  • Schulte A, Lichtenstern C, Henrich M, Loss of vagal tone aggravates systemic inflammation and cardiac impairment in endotoxemic rats. J Surg Res 2014;188:480–488.
  • van Westerloo DJ, Giebelen IA, Meijers JC, Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. J Thromb Haemost 2006;4:1997–2002.
  • Huston JM, Gallowitsch-Puerta M, Ochani M, Transcutaneous vagus nerve stimulation reduces serum high mobility group box 1 levels and improves survival in murine sepsis. Crit Care Med 2007;35:2762–2768.
  • Villegas-Bastida A, Torres-Rosas R, Arriaga-Pizano LA, Electrical stimulation at the ST36 acupoint protects against sepsis lethality and reduces serum TNF levels through vagus nerve- and catecholamine-dependent mechanisms. Evid Based Complement Alternat Med 2014;2014:451674.
  • Torres-Rosas R, Yehia G, Peña G, Dopamine mediates vagal modulation of the immune system by electroacupuncture. Nat Med 2014;20:291–295.
  • Lubbers T, De Haan JJ, Hadfoune M, Lipid-enriched enteral nutrition controls the inflammatory response in murine Gram-negative sepsis. Crit Care Med 2010;38:1996–2002.
  • Xiang H, Hu B, Li Z, Dexmedetomidine controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Inflammation 2014;37:1763–1770.
  • Wu R, Dong W, Cui X, Ghrelin down-regulates proinflammatory cytokines in sepsis through activation of the vagus nerve. Ann Surg 2007;245:480–486.
  • Maldifassi MC, Atienza G, Arnalich F, A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 2014;9:e108397.
  • Kim TH, Kim SJ, Lee SM. Stimulation of the α7 nicotinic acetylcholine receptor protects against sepsis by inhibiting Toll-like receptor via phosphoinositide 3-kinase activation. J Infect Dis 2014;209:1668–1677.
  • Wittebole X, Hahm S, Coyle SM, Nicotine exposure alters in vivo human responses to endotoxin. Clin Exp Immunol 2007;147:28–34.
  • Rehani K, Scott DA, Renaud D, Cotinine-induced convergence of the cholinergic and PI3 kinase-dependent anti-inflammatory pathways in innate immune cells. Biochim Biophys Acta 2008;1783:375–382.
  • Rosas-Ballina M, Goldstein RS, Gallowitsch-Puerta M, The Selective α7 Agonist GTS-21 Attenuates Cytokine Production in Human Whole Blood and Human Monocytes Activated by Ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Mol Med 2009;15:195–202.
  • Pavlov VA, Ochani M, Yang LH, Selective alpha7-nicotinic acetylcholine receptor agonist GTS-21 improves survival in murine endotoxemia and severe sepsis. Crit Care Med 2007;35:1139–1144.
  • Giebelen IA, van Westerloo DJ, LaRosa GJ, Stimulation of alpha 7 cholinergic receptors inhibits lipopolysaccharide-induced neutrophil recruitment by a tumor necrosis factor alpha-independent mechanism. Shock 2007;27:443–447.
  • Giebelen IA, van Westerloo DJ, LaRosa GJ, Local stimulation of alpha7 cholinergic receptors inhibits LPS-induced TNF-alpha release in the mouse lung. Shock 2007;28:700–703.
  • Kox M, Pompe JC, Gordinou de Gouberville MC, Effects of the α7 nicotinic acetylcholine receptor agonist GTS-21 on the innate immune response in humans. Shock 2011;36:5–11.
  • Li J, Mathieu SL, Harris R, Role of α7 nicotinic acetylcholine receptors in regulating tumor necrosis factor-α (TNF-α) as revealed by subtype selective agonists. J Neuroimmunol 2011;239:37–43.
  • Su X, Matthay MA, Malik AB. Requisite role of the cholinergic alpha7 nicotinic acetylcholine receptor pathway in suppressing Gram-negative sepsis-induced acute lung inflammatory injury. J Immunol 2010;184:401–410.
  • Parrish WR, Rosas-Ballina M, Gallowitsch-Puerta M, Modulation of TNF release by choline requires alpha7 subunit nicotinic acetylcholine receptor-mediated signaling. Mol Med 2008;14:567–574.
  • van Westerloo DJ, Giebelen IA, Florquin S, The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. J Infect Dis 2005;191:2138–2148.
  • Giebelen IA, Leendertse M, Florquin S, Stimulation of acetylcholine receptors impairs host defence during pneumococcal pneumonia. Eur Respir J 2009;33:375–381.
  • Boland C, Collet V, Laterre E, Electrical vagus nerve stimulation and nicotine effects in peritonitis-induced acute lung injury in rats. Inflammation 2011;34:29–35.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.