511
Views
254
CrossRef citations to date
0
Altmetric
Original Article

Interleukin-4 and lnterleukin-13: Their Similarities and Discrepancies

&
Pages 1-52 | Received 30 Jun 1997, Published online: 10 Jul 2009

References

  • Howard M., Farrar J., Hilfiker M., Johnson B., Takatsu K., Hamaoka T., Paul W. E. Identification of a T-cell derived B cell growth factor distinct from interleukin-2. J. Exp. Med. 1982; 155: 914–921
  • Isacksson P. C., Pure E., Vitetta S., Krammer P. H. Effect on the isotype switch of murine B cells. J. Exp. Med. 1982; 155: 734–748
  • Yokota T., Otsuka T., Mosmann T., Banchereau J., Defrance T., Blanchard D., de Vries J. E., Lee F., Arai K. Isolation and characterization of a human inter-leukin cDNA clone, homologous to mouse B-cell stimulatory factor 1, that expresses B-cell-stimulatory activities. Proc. Natl. Acad. Sci. USA 1986; 83: 5894–5898
  • Brown K. D., Zurawski S. M., Mosmann T. R., Zurawski G. A family of small inducible proteins secreted by leukocytes are members of a new superfamily that includes leukocyte and fibroblast-derived inflammatory agents, growth factors, and indicators of various activation process. J. Immunol. 1989; 142: 679–687
  • McKenzie A. N.J., Culpepper J. A., de Waal Malefyt R., Brière F., Punnonen J., Aversa G., Sato A., Dang W., Cocks B. G., Menon S., de Vries J. E., Banchereau J., Zurawski G. Interleukin-13, a novel T cell-derived cytokine that regulates human monocyte and B cell function. Proc. Natl. Acad. Sci. USA 1993; 90: 3735–3739
  • Minty A., Chalon P., Derocq J. M., Dumont X., Guillemot J. C., Kaghad M., Labit C., Leplatois P., Liauzun P., Miloux B., Minty C., Casellas P., Loison G., Lupker J., Shire D., Ferrara P., Caput D. Interleukin-13 is a new human lymphokine regulating inflammatory and immune responses. Nature 1993; 362: 248–250
  • O'Garra A., Spits H. The immunobiology of interleukin 4. Res. Immunol. 1993; 144: 567–643
  • Brown M. A., Hural J. Functions of IL-4 and control of its expression. Crit. Rev. Immunol. 1997; 17: 1–32
  • Zurawski G., de Vries J. E. Interleukin 13, an interleukin 4-like cytokine that acts on monocytes and B cells, but not on T cells. Immunol. Today 1994; 15: 19–26
  • McKenzie A. N.J., Li X., Largaespada D. A., Sato A., Kaneda A., Zurawski S. M., Doyle E. L., Milatovich A., Francke V., Copeland N. G., Jenkins N. A., Zurawski G. Structural comparison and chromosomal localization of the human and mouse IL-13 genes. J. Immunol. 1993; 150: 5436–5444
  • Zurawski S. M., Vega F., Jr., Huyghe B., Zurawski G. Receptors for interleukin-13 and interleukin-4 are complex and share a novel component that functions in signal transduction. EMBO J. 1993; 12: 2663–2670
  • Sorg R. V., Enczmann J., Sorg U. R., Schneider E. M., Wernet P. Identification of an alternatively spliced transcript of human interleukin-4 lacking the sequence encoded by exon 2. Exp. Hematol. 1993; 21: 560–563
  • Atamas S. P., Choi J., Yurovsky V. V., White B. An alternative splice variant of human IL-4, IL-4 delta 2, inhibits IL-4-stimulated T cell proliferation. J. Immunol. 1996; 156: 435–441
  • Aversa G., Punnonen J., Cocks B. J., de Waal Malefyt R., Vega F., Zurawski S. M., Zurawski G., de Vries J. E. An interleukin 4 (IL-4) mutant protein inhibits both IL-4 or IL-13-induced human immunoglobulin G4 (IgG4) and IgE synthesis and B cell proliferation: support for a common component shared by IL-4 and IL-13 receptors. J. Exp. Med. 1993; 178: 2213–2218
  • Kruse N., Tony H. P., Sebald W. Conversion of human interleukin-4 into a high affinity antagonist by a single amino acid replacement. EMBO J. 1992; 11: 3237–3244
  • Windsor W. T., Syto R., Durkin J., Das P., Reichert P., Pramanik B., Tindall S., Le H. V., Labdon J., Nagabhushan T. L., Trotta P. P. Disulfide bond assignment of mammalian cell-derived recombinant human interleukin 4. Biophys. J. 1990; 57: 423
  • Minty A. Interleukin-13. Human Cytokines., Handbook for basic and clinical research, B. B. Aggarwal, J. U. Gutterman. Blackwells. 1996; Vol. 2
  • Walter M. R., Cook W. J., Zhao B. G., Cameron R. P., Ealick S. E., Walter R. L., Reichert P., Nagabhushan T. L., Trotta P. P., Bugg C. E. Crystal structure of recombinant human interleukin-4. J. Biol. Chem. 1992; 267: 20371–20376
  • Powers R., Garrett D. S., March C. J., Frieden E. A., Gronenborn A. M., Clore G. M. Three-dimensional solution structure of human interleukin-4 by multidimensional heteronuclear magnetic resonance spectroscopy. Science 1992; 256: 1673–1677
  • Morgan J. G., Dolganov G. M., Robbins S. E., Hinton L. M., Lovett M. The selective isolation of novel cDNAs encoded by the regions surrounding the human interleukin 4 and 5 genes. Nucleic Acids Res. 1992; 20: 5173–5179
  • Smirnov D. V., Smirnova M. G., Korobko V. G., Frolova E. I. Tandem arrangement of human genes for interleukin-4 and interleukin-13: resemblance in their organization. Gene 1995; 155: 277–281
  • Abe E., de Waal Malefyt R., Matsuda I., Arai K., Arai N. An 11-base-pair DNA sequence motif apparently unique to the human interleukin 4 gene confers responsiveness to T-cell activation signals. Proc. Natl. Acad. Sci. USA 1992; 89: 2864–2868
  • Szabo S. J., Gold J. S., Murphy T. L., Murphy K. M. Identification of cis-acting regulatory elements controlling interleukin-4 gene expression in T cells. Mol. Cell. Biol. 1993; 13: 4793–4805
  • Dolganov G., Bort S., Lovett M., Burr J., Schubert L., Short D., McGurn M., Gibson C., Lewis D. B. Coexpression of the interleukin-13 and interleukin-4 genes correlates with their physical linkage in the cytokine gene cluster on human chromosome 5q23–31. Blood 1996; 87: 3316–3326
  • Wenner C. A., Szabo S. J., Murphy K. M. Identification of IL-4 promoter elements conferring Th2-restricted expression during T helper cell subset development. J. Immunol. 1997; 158: 765–773
  • Hodge M. R., Ranger A. M., Charles de la Brousse F., Hoey T., Grusby M. J., Glimcher L. H. Hyperproliferation and dysregulation of IL-4 expression in NF- ATp-deficient mice. Immunity 1996; 4: 397–405
  • Li-Weber M., Krafft H., Krammer P. H. A novel enhancer element in the human IL-4 promoter is suppressed by a position-independent silencer. J. Immunol. 1993; 151: 1371–1382
  • Li-Weber M., Salgame P., Hu C., Davydov I. V., Krammer P. H. Differential interaction of nuclear factors with the PRE-I enhancer element of the human IL-4 promoter in different T cell subsets. J. Immunol. 1997; 158: 1194–1200
  • Rooney J. W., Hoey T., Glimcher L. H. Coordinate and cooperative roles for NF-AT and AP-1 in the regulation of the murine IL-4 gene. Immunity 1995; 2: 473–483
  • Song Z., Casolaro V., Chen R., Georas S. N., Monos D., Ono S. J. Polymorphic nucleotides within the human IL-4 promoter that mediate overexpression of the gene. J. Immunol. 1996; 156: 424–429
  • Li-Weber M., Davydov I. V., Krafft H., Krammer P. H. Role of NF-Y and IRF-2 in the regulation of human IL-4 gene expression. J. Immunol. 1994; 153: 4122–4133
  • Cabrillat H., Galizzi J. P., Djossou O., Arai N., Yokota T., Arai K., Banchereau J. High affinity binding of human interleukin 4 to cell lines. Biochem. Biophys. Res. Commun. 1987; 149: 995–1001
  • Park L. S., Friend D., Sassenfeld H. M., Urdal D. L. Characterization of the human B cell stimulatory factor 1 receptor. J. Exp. Med. 1987; 166: 476–488
  • Obiri N. I., Leland P., Murata T., Debinski W., Puri R. K. The IL-13 receptor structure differs on various cell types and may share more than one component with IL-4 receptor. J. Immunol. 1997; 158: 756–764
  • He Y. W., Malek T. R. The IL-2 receptor 7c chain does not function as a subunit shared by the IL-4 and IL-13 receptors. Implication for the structure of the IL-4 receptor. J. Immunol 1995; 155: 9–12
  • de Waal Malefyt R., Abrams J. S., Zurawski S. M., Lecron J. C., Mohan-Peterson S., Sannjanwala B., Bennett B., Silver J., de Vries J. E., Yssel H. Differential regulation of IL-13 and IL-4 production by human CD8+ and CD4+ Th0, Th1, and Th2 T cell clones and EBV-transformed B cells. Int. Immunol. 1995; 7: 1405–1416
  • Foxwell B. M.J., Woerly G., Ryffel B. Identification of interleukin-4 receptor-associated proteins and expression of both high and low affinity binding on human lymphoid cells. Eur. J. Immunol. 1989; 19: 1637–1641
  • Galizzi J. P., Castle B., Djossou O., Harada N., Cabrillat H., Ait Yahia S., Barrett R., Howard M., Banchereau J. Purification of a 130-kDa T cell glycoprotein that binds human interleukin 4 with high affinity. J. Biol. Chem. 1990; 265: 439–444
  • Garrone P., Djossou O., Galizzi J. P., Banchereau J. A recombinant extracellular domain of the human interleukin 4 receptor inhibits the biological effects of interleukin 4 on T and B lymphocytes. Eur. J. Immunol. 1991; 21: 1365–1369
  • Galizzi J. P., Zuber C. E., Harada N., Gorman D. M., Djossou O., Kastelein R., Banchereau J., Howard M., Miyajima A. Molecular cloning of a cDNA encoding the human interleukin-4 receptor. Int. Immunol. 1990; 2: 669–675
  • Idzerda R. L., March C. J., Mosley B., Lyman S. D., Vanden Bos T., Gimpel S. D., Din W. S., Grabstein K. H., Widmer M. B., Park L. S., Cosman D., Beckmann M. P. Human Interleukin 4 receptor confers biological responsiveness and defines a novel receptor superfamily. J. Exp. Med. 1990; 171: 861–873
  • Miyajima A., Kitamura T., Harada N., Yokota T., Arai K. Cytokine receptors and signal transduction. Ann. Rev. Immunol. 1992; 10: 295–331
  • Keegan A. D., Nelms K., White M., Wang L. M., Pierce J. H., Paul W. E. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell 1994; 76: 811–820
  • Noguchi M., Nakamura Y., Russel S. M., Ziegler S. F., Tsang M., Cao X., Leonard W. J. Interleukin-2 receptor γ chain: a functional component of the interleukin-7 receptor. Science 1993; 262: 1877–1880
  • Russel S. M., Keegan A. D., Harada N., Nakamura Y., Noguchi M., Leland P., Friedmann M. C., Miyajima A., Puri R. K., Paul W. E., Leonard W. J. Interleukin-2 receptor γ chain: a functional component of the interleukin-4 receptor. Science 1993; 262: 1880–1883
  • Noguchi M., Yi H., Rosenblatt H. M., Filipovich A. H., Adelstein S., Modi W. S., McBride O. W., Leonard W. J. Interleukin-2 receptor γ chain mutation results in X-linked severe combined immunodeficiency in humans. Cell 1993; 73: 147–157
  • Lin J. X., Migone T. S., Tsang M., Friedmann M., Weatherbee J. A., Zhou L., Yamauchi A., Bloom E. T., Mietz J., John S., Leonard W. J. The role of shared receptor motifs and common stat proteins in the generation of cytokine pleiotropy and redundancy by IL-2, IL-4, IL-7, IL-13 and IL-15. Immunity 1995; 2: 331–339
  • Zurawski S. M., Chomarat P., Djossou O., Bidaud C., McKenzie A. N.J., Miossec P., Banchereau J., Zurawski G. The primary binding subunit of the human Interleukin-4 receptor is also a component of the Interleukin-13 receptor. J. Biol. Chem. 1995; 270: 13869–13878
  • Obiri N. I., Debinski W., Leonard W. J., Puri R. K. Receptor for interleukin 13. Interaction with interleukin 4 by a mechanism that does not involve the common γ chain shared by receptors for Interleukins 2, 4, 7, 9 and 15. J. Biol. Chem. 1995; 270: 8797–8804
  • Vita N., Lefort S., Laurent P., Caput D., Ferrara P. Characterization and comparison of the Interleukin 13 receptor with the interleukin 4 receptor on several cell types. J. Biol. Chem. 1995; 270: 3512–3517
  • Matthews D. J., Clark P. A., Herbert J., Morgan G., Armitage R. J., Kinnon C., Minty A., Grabstein K. H., Caput D., Ferrara P., Callard R. Function of the Interleukin-2 (IL-2) receptor γ-chain in biologic responses of X-linked severe combined immunodeficient B cells to IL-2, IL-4, IL-13 and IL-15. Blood 1995; 85: 38–42
  • Smerz-Bertling C., Duschl A. Both interleukin 4 and interleukin 13 induce tyrosine phosphorylation of the 140-kDa subunit of the interleukin 4 receptor. J. Biol. Chem. 1995; 270: 966–970
  • Hilton D. J., Zhang J. G., Metcalf D., Alexander W. S., Nicola N. A., Willson T. A. Cloning and characterization of a binding subunit of the interleukin 13 receptor that is also a component of the interleukin 4 receptor. Proc. Natl. Acad. Sci. USA 1996; 93: 497–501
  • Aman M. J., Tayebi N., Obiri N., Puri R. K., Modi W. S., Leonard W. J. cDNA cloning and characterization of the human interleukin 13 receptor α chain. J. Biol. Chem. 1996; 271: 29265–29270
  • Gauchat J. F., Schlagenhauf E., Feng N. P., Moser R., Yamage M., Jeannnin P., Alouani S., Elson G., Notarangelo L. D., Wells T., Eugster H. P., Bonnefoy J. Y. A novel 4-kb interleukin-13 receptor α raRNA expressed in human B. T, and endothelial cells encoding an alternate type-II interleukin-4/interleukin-13 receptor. Eur. J. Immunol. 1997; 27: 971–978
  • Bochner B. S., Klunk D. A., Sterbinsky S. A., Coffman R. L., Schleimer R. P. IL-13 selectively induces vascular cell adhesion molecule-1 expression in human endothelial cells. J. Immunol. 1995; 154: 799–803
  • Schnyder B., Lugli S., Feng N., Etter H., Lutz R. A., Ryffel B., Sugamura K., Wunderli-Allenspach H., Moser R. Interleukin-4 (IL-4) and IL-13 bind to a shared heterodimeric complex on endothelial cells mediating vascular cell adhesion molecule-1 induction in the absence of the common gamma chain. Blood 1996; 87: 4286–4295
  • Caput D., Laurent P., Kaghad M., Lelias J. M., Lefort S., Vita N., Ferrara P. Cloning and characterization of a specific interleukin (IL)-13 binding protein structurally related to the IL-5 receptor α chain. J. Biol. Chem. 1996; 271: 16921–16926
  • Billard C., Caput D., Vita N., Ferrara P., Orrico M., Gaulard P., Boumsell L., Bensussan A., Farcet J. P. Interleukin-13 responsiveness and interleukin-13 receptor expression in non-Hodgkin's lymphoma and reactive lymph node B cells. Modulation by CD40 activation. Eur. Cytokine Netw. 1997; 8: 19–27
  • Fernandez-Botran R., Vitetta E. S. A soluble, high-affinity, interleukin-4 binding protein is present in the biological fluids of mice. Proc. Natl. Acad. Sci. USA 1990; 87: 4202–4206
  • Blum H., Wolf M., Enssle K., Rollinghoff M., Gessner A. Two distinct stimulus-dependent pathways lead to production of soluble murine interleukin-4 receptor. J. Immunol. 1996; 157: 1846–1853
  • Fernandez-Botran R., Vitetta E. S. Evidence that natural murine soluble interleukin 4 receptors may act as transport proteins. J. Exp. Med. 1991; 174: 673–681
  • Fanslow W. C., Clifford K. N., Park L. S., Rubin A. S., Voice R. F., Beckmann M. P., Widmer M. B. Regulation of alloreactivity in vivo, by IL-4 and the soluble IL-4 receptor. J. Immunol. 1991; 147: 535–540
  • Maliszewski C. R., Morrissey P. J., Fanslow W. C., Sato T. A., Willis C., Devison B. Delayed allograft rejection in mice transgenic for a soluble form of the IL-4 receptor. Cell. Immunol. 1992; 143: 434–448
  • Sato T. A., Widmer M. B., Finkelman F. D., Madani H., Jacobs C. A., Grabstein K. H., Maliszewski C. R. Recombinant soluble murine IL-4 receptor can inhibit or enhance IgE responses in vivo. J. Immunol. 1993; 150: 2717–2723
  • Zhang J. G., Hilton D. J., Willson T. A., McFarlane C., Roberts B. A., Moritz R. L., Simpson R. J., Alexander W. S., Metcalf D., Nicola N. A. Identification, purification and characterization of a soluble interleukin (IL)-13-binding protein. Evidence that it is distinct from the cloned il-13 receptor and il-4 receptor alpha-chains. J. Biol. Chem. 1997; 272: 9474–9480
  • Keegan A. D., Ryan J. J., Paul W. E. IL-4 regulates growth and differentiation by distinct mechanisms. The Immunologist 1996; 4: 194–198
  • Kawahara A., Minami Y., Taniguchi T. Evidence for a critical role for the cytoplasmic region of the interleukin-2 (IL-2) receptor γ chain in IL-2, IL-4, and IL-7 signalling. Mol. Cel. Biol. 1994; 14: 5433–5440
  • Izuhara K., Harada N. Interleukin-4 (IL-4) induces protein tyrosine phosphorylation of the IL-4 receptor and association of phosphatidylinositol 3-kinase to the IL-4 receptor in a mouse T cell line, HT2. J. Biol. Chem. 1993; 268: 13097–13102
  • Welham M. J., Learmonth L., Bone H., Schrader J. W. Interleukin-13 signal transduction in lymphohemopoietic cells. Similarities and differences in signal transduction with interleukin-4 and insulin. J. Biol. Chem. 1995; 270: 12286–12296
  • Witthuhn B. A., Silvennoinen O., Miura O., Lai K. S., Cwik C., Liu E. T., Ihle J. N. Involvement of the Jak-3 Janus kinase in signalling by interleukin 2 and 4 in lymphoid and myeloid cells. Nature 1994; 370: 153–157
  • Yin T., Tsang M. L.S., Yang Y. C. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes. J. Mol. Biol. 1994; 269: 26614–26617
  • Miyazaki T., Kawahara A., Fujii H., Nakagawa Y., Minami Y., Liu Z. J., Oishi I., Silvennnoinnen O., Witthuhn B. A., Ihle J. N., Taniguchi T. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 1994; 266: 1045–1047
  • Murata T., Noguchi P. D., Puri R. K. IL-13 induces phosphorylation and activation of JAK2 Janus kinase in human colon carcinoma cell lines: similarities between IL-4 and IL-13 signaling. J. Immunol. 1996; 156: 2972–2978
  • Wang H. Y., Zamorano J., Yoerkie J. L., Paul W. E., Keegan A. D. The IL-4- induced tyrosine phosphorylation of the insulin receptor substrate is dependent on JAK-1 expression in human fibrosarcoma cells. J. Immunol. 1997; 158: 1037–1040
  • Keegan A. D., Johnston J. A., Tortolani P. J., McReynolds L. J., Kinzer C., O'Shea J. J., Paul W. E. Similarities and differences in signal transduction by interleukin-4 and interleukin 13: analysis of Janus kinase activation. Proc Natl. Acad. Sci. USA 1995; 92: 7681–7685
  • Palmer-Crocker R. L., Hughes C. C., Pober J. S. IL-4 and IL-13 activate the JAK2 tyrosine kinase and Stat6 in cultured human vascular endothelial cells through a common pathway that does not involve the gamma c chain. J. Clin. Invest. 1996; 98: 604–609
  • Murata T., Puri R. K. Comparison of IL-13 and IL-4-induced signaling in EBV- immortalized human B cells. Cell. Immunol. 1997; 175: 33–40
  • Wang L. M., Keegan A. D., Paul W. E., Heidaran M. A., Gutkind J. S., Pierce J. H. IL-4 activates a distinct signal transduction cascade from IL-3 in factor-dependent myeloid cells. EMBO J. 1992; 11: 4899–4908
  • Wang L. M., Michieli P., Lie W. R., Liu F., Lee C. C., Minty A., Sun X. J., Levine A., White M. F., Pierce J. H. The insulin receptor substrate-1-related 4PS substrate but not the interleukin-2R gamma chain is involved in interleukin-13-mediated signal transduction. Blood 1995; 86: 4218–4227
  • Koettnitz K., Kalthoff F. S. Human interleukin-4 receptor signalling requires sequences contained within two cytoplasmic regions. Eur. J. Immunol. 1993; 23: 988–991
  • Schnyder B., Lahm H., Woerly G., Odartchenko N., Ryffel B., Car B. D. Growth inhibition signalled through the interleukin-4/interleukin-13 receptor complex is associated with tyrosine phosphorylation of insulin receptor substrate-1. Biochem. J. 1996; 315: 767–774
  • Harada N., Yang G., Miyajima A., Howard M. Identification of an essential region for growth signal transduction in the cytoplasmic domain of the human interleukin-4 receptor. J. Biol. Chem. 1992; 267: 22752–22758
  • Musso T., Varesio L., Zhang X., Rowe T. K., Ferrara P., Ortaldo J. R., O'Shea J. J., McVicar D. W. IL-4 and IL-13 induce Lsk, a Csk-like tyrosine kinase, in human monocytes. J. Exp. Med. 1994; 180: 2383–2388
  • Hou J., Schindler U., Henzel W. J., Ho T. C., Brasseur M., McKnight S. L. An interleukin-4-induced transcription factor: IL-4 stat. Science 1994; 265: 1701–1706
  • Quelle F. W., Shimoda K., Thierfelder W., Fischer C., Kim A., Ruben S. M., Cleveland J. L., Pierce J. H., Keegan A. D., Nelms K., Paul W. E., Ihle J. N. Cloning of murine Stat6 and human Stat6, Stat proteins that are tyrosine phosphorylated in responses to IL-4 and IL-3 but are not required for mitogenesis. Mol. Cell. Biol. 1995; 15: 3336–3343
  • Schindler U., Wu P., Rothe M., Brasseur M., McKnight S. L. Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 1995; 2: 689–697
  • Ohmori Y., Smith M. F., Hamilton T. A. IL-4-induced expression of the IL-1 receptor antagonist gene is mediated by STAT6. J. Immunol. 1996; 157: 2058–2065
  • Kaplan M. H., Schindler U., Smiley S. T., Grusby M. J. Stat6 is required for mediating responses to IL-4 and for the development of Th2 cells. Immunity 1996; 4: 313–319
  • Takeda K., Tanaka T., Shi W., Matsumoto M., Minami M. Essential role of Stat6 in IL-4 signalling. Nature 1996; 380: 627–630
  • Takeda K., Kamanaka M., Tanaka T., Kishimoto T., Akira S. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice. J. Immunol. 1996; 157: 3220–3222
  • Shimoda K., van Deursen J., Sangster M. Y., Sarawar S. R., Carson R. T., Tripp R. A., Chu C., Quelle F. W., Nosaka T., Vignali D. A.A., Doherty P. C., Grosveld G., Paul W. E., Ihle J. N. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 gene. Nature 1996; 380: 630–633
  • Lai S. Y., Molden J., Liu K. D., Puck J. M., White M. D., Goldsmith M. A. Interleukin-4-specific signal transduction events are driven by homotypic interactions of the interleukin-4 receptor alpha subunit. EMBO J. 1996; 15: 4506–4514
  • Izuhara K., Heike T., Otsuka T., Yamaoka K., Mayumi M., Imamura T., Niho Y., Harada N. Signal transduction pathway of interleukin-4 and interleukin-13 in human B cells derived from X-linked severe combined immunodeficiency patients. J. Biol. Chem. 1996; 271: 619–622
  • Kotanides H., Reich N. C. Requirement of tyrosine phosphorylation for rapid activation of a DNA binding factor by IL-4. Science 1993; 262: 1265–1267
  • Kohler I., Alliger P., Minty A., Caput D., Ferrara P., Holl-Neugebauer B., Rank G., Rieber E. P. Human interleukin-13 activates the interleukin-4-dependent transcription factor NF-IL-4 sharing a DNA binding motif with an interferon-gamma-induced nuclear binding factor. FEBS. Lett. 1994; 345: 187–192
  • Schindler C., Kashleva H., Pernis A., Pine R., Rothman P. STF-IL-4: a novel IL-4-induced signal transducing factor. EMBO J. 1994; 13: 1350–1356
  • Izuhara K., Feldman R. A., Greer P., Harada N. Interaction of the c-fes, proto-oncogene product with the interleukin-4 receptor. J. Biol. Chem. 1994; 269: 18623–18629
  • Izuhara K., Feldman R. A., Greer P., Harada N. Interleukin-4 induces association of c-fes, proto-oncogene product with phosphatidylinositol-3 kinase. Blood 1996; 88: 3910–3918
  • Finney M., Guy G. R., Michell R. H., Gordon J., Dugas B., Rigley K. P., Callard R. E. Interleukin 4 activates human B lymphocytes via transient inositol lipid hydrolysis and delayed cyclic adenosine monophosphate generation. Eur. J. Immunol. 1990; 20: 151–156
  • Sozzani P., Cambon C., Vita N., Seguelas M. H., Caput D., Ferrara P., Pipy B. Interleukin-13 inhibits protein kinase C-triggered respiratory burst in human monocytes. Role of calcium and cyclic AMP. J. Biol. Chem. 1995; 270: 5084–5088
  • Justement L., Chen Z. Z., Harris L. K., Ransom J. T., Sandoval V. S., Smith C., Rennick D., Roehm N., Cambier J. BSF-1 induces membrane protein phosphorylation but not phosphoinositide metabolism, Ca2+ mobilization, protein kinase C translocation, or membrane depolarization in resting murine B lymphocytes. J. Immunol. 1986; 137: 3664–3670
  • Arruda S., Ho J. L. IL-4 receptor signal transduction in human monocytes is associated with protein kinase C translocation. J. Immunol. 1992; 149: 1258–1264
  • Dokter W. H.A., Sierdsema S. J., Esselink M. T., Halie M. R., Vellenga E. Interleukin-4-mediated inhibition of c-fos, mRNA expression: Role of the lipoxygenase directed pathway. Leukemia 1994; 8: 1181–1184
  • McGarvie G. M., Cushley W. The effect of recombinant interleukin 4 upon protein kinase activities associated with murine and human B lymphocyte plasma membranes. Cell Signal 1989; 1: 447–460
  • Mire-Sluis A. R., Thorpe R. Interleukin-4 proliferative signal transduction involves the activation of a tyrosine-specific phosphatase and the dephosphorylation of an 80-kDa protein. J. Biol. Chem. 1991; 266: 18113–18118
  • Jung T., Wijdenes J., Neumann C., de Vries J. E., Yssel H. Interleukin-13 is produced by activated human CD45RA+ and CD45RO+ T cells: modulation by interleukin-4 and interleukin-12. Eur. J. Immunol. 1996; 26: 571–577
  • Minty A., Asselin S., Bensussan A., Shire D., Vita N., Vyakarnam A., Wijdenes J., Ferrara P., Caput D. The related cytokines IL-13 and IL-4 are distinguished by differential production and differential effects on T lymphocytes. Eur. Cytokine Netw. 1997, In press
  • Mosmann T. R., Coffman R. L. Th1 and Th2 cells: different patterns of lymphokine secretion lead to different functional properties. Ann. Rev. Immunol. 1989; 7: 145–173
  • Van Der Pouw Kraan T. C., Boeije L. C., Troon J. T., Rutschmann S. K., Wijdenes J., Aarden L. A. Human IL-13 production is negatively influenced by CD3 engagement. Enhancement of IL-13 production by cyclosporin A. J. Immunol. 1996; 156: 1818–1823
  • Alzona M., Jäck H. M., Fisher R. I., Ellis T. M. CD30 defines a subset of activated human T cells that produce IFN-γ and IL-5 and exhibit enhanced B cell helper activity. J. Immunol. 1994; 153: 2861–2867
  • Del Prete G., Maggi E., Pizzolo G., Romagnani S. CD30, Th2 cytokines and HIV infection: a complex and fascinating link. Immunol. Today 1995; 16: 76–80
  • Schandene L., Ferster A., Mascart-Lemone F., Crusiaux A., Gerard C., Marchant A., Lybin M., Velu T., Sariban E., Goldman M. T helper type 2-like cells and therapeutic effects of interferon–gamma in combined immunodeficiency with hypereosinophilia (Omenn's syndrome). Eur. J. Immunol. 1993; 23: 56–60
  • Sunder-Plassmann R., Majdiç O., Knapp W., Holler W. High IL-4 production is a stable phenotype of CD8neg CD45RAneg CD27neg T cells. Cell. Immunol. 1995; 160: 309–313
  • Autran B., Legac E., Blanc C., Debré P. A ThO/Th2-like function of CD4+CD7- T helper cells from normal donors and HIV-infected patients. J. Immunol. 1995; 154: 1408–1417
  • Rogge L., Barberis-Maino L., Biffi M., Passini N., Presky D. H., Gubler U., Sinigaglia F. Selective expression of an interleukin-12 receptor component by human T helper 1 cells. J. Exp. Med. 1997; 185: 825–831
  • Szabo S. J., Dighe A. S., Gubler U., Murphy K. M. Regulation of the interleukin (IL)-12R /V2 subunit expression in developing T helper 1 (Th1) and Th2 cells. J. Exp. Med. 1997; 185: 817–824
  • Gajewski T. F., Joyce J., Fitch F. W. Anti-proliferative effect of IFN-γ in immune regulation III. Differential selection of Th1 and Th2 murine helper T lymphocyte clones using recombinant IL-2 and recombinant IFN-γ. J. Immunol. 1989; 143: 15–22
  • Peleman R., Wu J., Fargeas C., Delespesse G. Recombinant interleukin-4 suppresses the production of interferon γ by human mononuclear cells. J. Exp. Med. 1989; 170: 1751–1756
  • Coffman R. L., Varkila K., Scott P., Chatelain R. Role of cytokines in the differentiation of CD4+ T cell subsets in vivo. Immunol. Rev. 1991; 123: 189–207
  • Okamura H., Tsutsui H., Komatsu T., Yutsudo M., Hakura A., Tanimoto T., Torigoe K., Okura T., Nukada Y., Hattori K., Akita K., Namba M., Tanabe F., Konishi K., Fukuda S., Kurimoto M. Cloning of a new cytokine that induces IFNγ production by T cells. Nature 1995; 378: 88–91
  • Coffman R. L., von der Weid T. Multiple pathways for the initiation of T helper 2 (Th2) responses. J. Exp. Med. 1997; 185: 373–375
  • Rincon M., Anguita J., Nakamura T., Fikrig E., Flavell R. A. IL-6 directs the differentiation of IL-4-producing CD4+ T cells. J. Exp. Med. 1997; 185: 461–469
  • Gause W. C., Halvorson M. J., Lu P., Greenwald R., Linsley P., Urban J. F., Finkelman F. D. The function of costimulatory molecules and the development of IL-4 producing T cells. Immunol. Today 1997; 18: 115–120
  • Kalinski P., Hilkens C. M.U., Wierenga E. A., Van der Pouw-Kraan T. C.T.M., Van Lier R. A.W., Bos J. D., Kapsenberg M. L., Snijdewint F. G.M. Functional maturation of human naive T helper cells in the absence of accessory cells. J. Immunol. 1995; 154: 3753–3760
  • Seder R. A., Le Gros G. G. The functional role of CD8+ T helper type 2 cells. J. Exp. Med. 1995; 181: 5–7
  • Erard F., Wild M. T., Garcia-Snaz J. A., Le Gros G. G. Switch of CD8 T cells to noncytolytic CD8- CD4+ cells that make Th2 cytokines and help B cells. Science 1993; 260: 1802–1805
  • Sad S., Marcotte R., Mosmann T. R. Cytokine-induced differentiation of precursor mouse CD8+ T cells into cytotoxic CD8+ T cells secreting Th1 or Th2 cytokines. Immunity 1995; 2: 271–279
  • Salgame P., Abrams J. S., Clayberger C., Goldstein H., Convit J., Modlin R. L., Bloom B. R. Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 1991; 254: 279–282
  • Paganelli R., Scala E., Ansotegui I. L., Ausiello C. M., Halapi E., Fanales- Belasio E., D'Offizi G., Mezzaroma I., Pandolfi F., Fiorilli M., Cassone A., Aiuti F. CD8+ T lymphocytes provide helper activity for IgE synthesis in human immunodeficiency virus-infected patients with hyper-IgE. J. Exp. Med. 1995; 181: 423–428
  • Uyemura K., Pirmez C., Sieling P. A., Kiene K., Paes-Oliveira M., Modlin R. L. CD4+ type 1 and CD8+ type 2 T cell subsets in human leishmaniasis have distinct T cell receptor. J. Immunol. 1993; 151: 7095–7104
  • Manetti R., Annunziato F., Biagiotti R., Giudizi M. G., Piccinni M. P., Giannarini L., Sampognaro S., Parronchi P., Vinante F., Pizzolo G., Maggi E., Romagnani S. CD30 expression by CD8+ T cells producing type 2 helper cytokines. Evidence for large numbers of CD8+ CD30+ T cell clones in human immunodeficiency virus infection. J. Exp. Med. 1994; 180: 2407–2411
  • Yoshimoto T., Paul W. E. CD4pos, NKl.lpos T cells promptly produce interleukin 4 in response to in vivo, challenge with anti-CD3. J. Exp. Med. 1994; 179: 1285–1295
  • Bendelac A. Mouse NK1 + T cells. Curr. Opinion. Immunol. 1995; 7: 367–374
  • Brunner T., Heusser C. H., Dahinden C. A. Human peripheral blood basophils primed by interleukin-3 (IL-3) produce IL-4 in response to immunoglobulin E receptor stimulation. J. Exp. Med. 1993; 177: 605–611
  • Li H., Sim T. C., Alam R. IL-13 released by and localized in human basophils. J. Immunol. 1996; 156: 4833–4838
  • Brown M. A., Pierce J. H., Watson C. J., Falco J., Ihle J. N., Paul W. E. B cell stimulatory factor-1/interIeukin-4 mRNA is expressed by normal and transformed mast cells. Cell 1987; 50: 809–818
  • Burd P. R., Thompson W. C., Max E. E., Mills F. C. Activated mast cells produce interleukin-13. J. Exp. Med. 1995; 181: 1373–1380
  • Bradding P., Feather I. H., Howarth P. H., Mueller R., Roberts J. A., Britten K., Bews J. P.A., Hunt T. G., Okayama Y., Heusser C. H. Interleukin 4 is localized to and released by human mast cells. J. Exp. Med. 1992; 176: 1381–1386
  • Pawankar R., Okuda M., Yssel H., Okumura K., Ra C. Nasal mast cells in perennial allergic rhinitics exhibit increased expression of the Fc epsilonRl, CD40L, IL-4, and IL-13, and can induce IgE synthesis in B cells. J. Clin. Invest. 1997; 99: 1492–1499
  • Moqbel R., Ying S., Barkins J., Newman T. M., Kimmit P., Wakelin M., Taborda-Barata L., Meng Q., Corrigan C. J., Durham S. R., Kay A. B. Identification of messenger RNA for IL-4 in human eosinophils with granule localization and release of the translated product. J. Immunol. 1995; 155: 4939–4947
  • Kindler V., Matthes T., Jeannin P., Zubler R. H. Interleukin-2 secretion by human B lymphocytes occurs as a late event and requires additional stimulation after CD40 cross-linking. Eur. J. Immunol. 1995; 25: 1239–1243
  • Fior R., Vita N., Raphael M., Minty A., Maillot M. C., Crevon M. C., Caput D., Biberfeld P., Ferrara P., Galanaud P., Emilie D. Interleukin-13 gene expression by malignant and EBV-transformed human B lymphocytes. Eur. Cytokine Netw. 1994; 5: 593–600
  • Defrance T., Aubry J. P., Rousset F., Vanbervliet B., Bonnefoy J. Y., Arai N., Takebe Y., Yokota T., Lee F., Arai K., De Vries J., Banchereau J. Human recombinant interleukin 4 induces Fee receptors (CD23) on normal human B lymphocytes. J. Exp. Med. 1987; 165: 1459–1467
  • Punnonen J., Aversa G., Cocks B. G., McKenzie A. N.J., Menon S., Zurawski G., de Waal Malefyt R., de Vries J. E. Interleukin-13 induces interleukin-4-independent IgG4 and IgE synthesis and CD23 expression by human B cells. Proc. Natl. Acad. Sci. USA 1993; 90: 3730–3734
  • Chaouchi N., Wallon C., Goujard C., Tertian G., Rudent A., Caput D., Ferrera P., Minty A., Vazquez A., Delfraissy J. F. Interleukin-13 inhibits interleukin-2-induced proliferation and protects chronic lymphocytic leukemia B cells from in vitro, apoptosis. Blood 1996; 87: 1022–1029
  • Shields J. G., Armitage R., Jamieson B. N., Beverley P. C.L., Callard R. E. Increased expression of surface IgM but not IgD or IgG on human B cells in response to IL-4. Immunol. 1989; 66: 224–227
  • Vallé A., Aubry J. P., Durand I., Banchereau J. IL-4 and IL-2 upregulate the expression of antigen B7, the B cell counterstructure to T cell CD28: an amplification mechanism forT-B cell interactions. Int. Immunol. 1991; 3: 229–235
  • Banchereau J., Bazan F., Blanchard D., Brière F., Galizzi J. P., van Kooten C., Liu Y. J., Rousset F., Saeland S. The CD40 antigen and its Ligand. Ann. Rev. Immunol. 1994; 12: 881–922
  • Van Kooten C., Banchereau J. CD40-CD40 ligand, a multifunctional receptor-ligand pair. Adv. Immunol. 1995; 61: 1–77
  • Smeland E. B., Blomhoff H. K., Funderud S., Shalaby M. R., Espevik T. Interleukin 4 induces selective production of Interleukin 6 from normal human B lymphocytes. J. Exp. Med. 1989; 170: 1463–1468
  • Defrance T., Vanbervliet B., Aubry J. P., Takebe Y., Arai N., Miyajima A., Yokota T., Lee T., Arai K., de Vries J. E., Banchereau J. B cell growth-promoting activity of recombinant human interleukin-4. J. Immunol. 1987; 139: 1135–1141
  • Cocks B. C., de Waal Malefyt R., Galizzi J. P., de Vries J. E., Aversa G. IL-13 induces proliferation and differentiation of human B cells activated by the CD40 ligand. Int. Immunol. 1993; 5: 657–663
  • Banchereau J., de Paoli P., Valle A., Garcia E., Rousset F. Long term human B cell lines dependent on interleukin 4 and antibody to CD40. Science 1991; 251: 70–72
  • Defrance T., Vanbervliet B., Aubry J. P., Banchereau J. Interleukin 4 inhibits the proliferation but not the differentiation of activated human B cells in response to interleukin 2. J. Exp. Med. 1988; 168: 1321–1337
  • Defrance T., Carayon P., Billian G., Guillemot J. C., Minty A., Caput D., Ferrara P. Interleukin 13 is a B cell stimulating factor. J. Exp. Med. 1994; 179: 135–143
  • Karray S., Dautry-Varsat A., Tsudo M., Merle-Beral H., Debré P., Galanaud P. IL-4 inhibits the expression of high affinity IL-2 receptors on monoclonal human B cells. J. Immunol. 1990; 145: 1152–1158
  • Fluckiger A. C., Briere F., Zurawski G., Bridon J. M., Banchereau J. IL-13 has only a subset of IL-4 like activities on B chronic lymphocytic leukemia cells. Immunology 1994; 83: 397–403
  • Coffman R. L., Ohara J., Bond M. W., Carty J., Zlotnick A., Paul W. E. B cell stimulatory factor-1 enhances the lgE response of lipopolysaccharide-activated B cells. J. Immunol. 1986; 136: 4538–4541
  • Rousset F., Garcia E., Banchereau J. Cytokine-induced proliferation and immunoglobulin production of human B lymphocytes triggered through their CD40 antigen. J. Exp. Med. 1991; 173: 705–710
  • Punnonen J., Cocks B. G., de Vries J. E. IL-4 induces germ-line IgE heavy chain gene transcription in human fetal pre-B cells. Evidence for differential expression of functional IL-4 and IL-13 receptors during B cell ontogeny. J. Immunol. 1995; 155: 4248–42254
  • Ezernieks J., Schnarr B., Metz K., Duschl A. The human lgE germline promoter is regulated by interleukin-4, interleukin-13, interferon-alpha and interferon-gamma via an interferon-gamma-activated site and its flanking regions. Eur. J. Biochem. 1996; 240: 667–673
  • Jabara H. H., Loh R., Ramesh K., Vercelli D., Geha R. S. Sequential switching from u to epsilon via gamma4 in human B cells stimulated with IL-4 and hydrocortisone. J. Immunol. 1993; 151: 4528
  • Shapira S. K., Vercelli D., Jabara H. H., Fu S. M., Geha R. S. Molecular analysis of the induction of immunoglobulin E synthesis in human B cells by interleukin 4 and engagement of CD40 antigen. J. Exp. Med. 1992; 175: 289–292
  • Gascan H., Gauchat J. F., Roncarolo M. G., Yssel H., Spits H., de Vries J. E. Human B cell clones can be induced to proliferate and to switch to IgE and IgG4 synthesis by interleukin 4 and a signal provided by activated CD4+ T cell clones. J. Exp. Med. 1991; 173: 747–750
  • Kühn R., Rajewsky K., Müller W. Generation and analysis of interleukin-4 deficient mice. Science 1991; 254: 707–710
  • Tepper R. I., Levinson D. A., Stanger B. Z., Campos-Torres J., Abbas A. K., Leder P. IL-4 induces allergic-like inflammatory disease and alters T cell development in transgenic mice. Cell. 1990; 62: 457–467
  • Carballido J. M., Schols D., Namikawa R., Zurawski S., Zurawski G., Roncarolo M. G., de Vries J. E. IL-4 induces human B cell maturation and lgE synthesis in SCID-hu mice. Inhibition of ongoing IgE production by in vivo, treatment with an IL-4/IL-13 receptor antagonist. J. Immunol. 1995; 155: 4162–4170
  • Mosmann T. R., Bond M. W., Coffman R. L., Ohara J., Paul W. E. T-cell and mast cell lines respond to B-cell stimulatory factor 1. Proc. Natl. Acad. Sci. USA 1986; 83: 5654–5658
  • Hu-Li J., Shevach E. M., Mizuguchi J., Ohara J., Mosmann T., Paul W. E. B cell stimulatory factor 1/interleukin 4 is a potent costimulant for normal resting T lymphocytes. J. Exp. Med. 1987; 165: 157–172
  • Harel-Bellan A., Durum S., Muegge K., Abbas A. K., Farrar W. L. Specific inhibition of lymphokine biosynthesis and autocrine growth using antisense oligonucleotides in Th1 and Th2 helper T cell clones. J. Exp. Med. 1988; 168: 2309–2318
  • Gaya A., Alsinet E., Martorell J., Places L., De La Calle O., Yagüe J., Vives J. Inhibitory effect of IL-4 on the sepharose-CD3-induced proliferation of the CD4CD45RO human T cell subset. Int. Immunol. 1990; 2: 685–689
  • Spits H., Yssel H., Paliard X., Kastelein R., Figdor D., de Vries J. E. Interleukin-4 inhibits interleukin-2 mediated induction of human lymphokine activated killer cells, but not the generation of antigen specific cytotoxic T lymphocytes in mixed leucocyte cultures. J. Immunol. 1988; 141: 29–36
  • Horohov D. W., Crim J. A., Smith P. L., Siegel J. P. IL-4 (B cell-stimulatory factor 1) regulates multiple aspects of influenza virus-specific cell-mediated immunity. J. Immunol. 1988; 141: 4217–4223
  • Kawakami Y., Custer M. C., Rosenberg S. A., Lotze M. T. IL-4 regulates IL-2 induction of lymphokine-activated killer activity from human lymphocytes. J. Immunol. 1989; 142: 3452–3461
  • Warren H. S., Kinnear B. F., Phillips J. H., Lanier L. L. Production of IL-5 by human NK cells and regulation of IL-5 secretion by IL-4, IL-10, and IL-12. J. Immunol. 1995; 154: 5144–5152
  • Banchereau J., Sealand S. Interleukin-4. Growth factors and cytokines in health and disease. 1997; 2A: 85–142
  • Vellenga E., Dokter W., Halie R. M. Interleukin-4 and its receptor; Modulating effects on immature and mature hematopoietic cells. Leukemia 1993; 7: 1131–1141
  • Sonoda Y., Kuzuyama Y., Tanaka S., Yokota S., Maekawa T., Clark S. C., Abe T. Human interleukin-4 inhibits proliferation of megakaryocyte progenitor cells in culture. Blood 1993; 81: 624–630
  • Xi X., Schlegel N., Caen J. P., Minty A., Fournier S., Caput D., Ferrera P., Han Z. C. Differential effects of recombinant human interleukin-13 on the in vitro, growth of human haemopoietic progenitor cells. Br. J. Haematol. 1995; 90: 921–927
  • Lai Y. H., Heslan J. M., Poppema S., Elliot J. F., Mosmann T. R. Continuous administration of IL-13 to mice induces extramedullary hemopoiesis and monocytosis. J. Immunol. 1996; 156: 3166–3173
  • Sakamoto O., Hashiyama M., Minty A., Ando M., Suda T. Interleukin-13 selectively suppresses the growth of human macrophage progenitors at the late stage. Blood 1995; 85: 3487–3493
  • Jacobsen S. E., Okkenhaug C., Veiby O. P., Caput D., Ferrara P., Minty A. Interleukin-13: novel role in direct regulation of proliferation and differentiation of primitive hematopoietic progenitor cells. J. Exp. Med. 1994; 180: 75–82
  • de Waal Malefyt R., Figdor C., Huijbens R., Mohan-Peterson S., Bennett B., Culpepper J., Dang W., Zurawski G., de Vries J. E. Effects of IL-13 on pheno-type, cytokine production, and cytotoxic function of human monocytes. Comparison with IL-4 and modulation by 1FNγ or IL-10. J. Immunol. 1993; 151: 6370–6381
  • Te Velde A. A., Rousset F., Péronne C., de Vries J. E., Figdor C. IL-4 induced expression of Fc,RIIb and soluble Fc,RIIb release from human monocytes is downregulated by IFNα and IFNγ. J. Immunol. 1990; 144: 3052–3059
  • Romani N., Gruner S., Brang D., Kämpgen E., Lenz A., Trockenbacher B., Konwalinka G., Fritsch P. O., Steinman R. M., Schuler G. Proliferating dendritic cell progenitors in human blood. J. Exp. Med. 1994; 180: 83–93
  • Sallusto F., Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J. Exp. Med. 1994; 179: 1109–1118
  • Piemonti L., Bernasconi S., Luini W., Trobonjaca Z., Minty A., Allavena P., Mantovani A. IL-13 supports differentiation of dendritic cells from circulating precursors in concert with GM-CSF. Eur. Cytokine Netw. 1995; 6: 245–252
  • Zhou L. J., Tedder T. F. CD 14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. USA 1996; 93: 2588–2592
  • Pickl W. F., Majdic O., Kohl P., Stockl J., Riedl E., Scheinecker C., Bello-Fernandez C., Knapp W. Molecular and functional characteristics of dendritic cells generated from highly purified CD14+ peripheral blood monocytes. J. Immunol. 1996; 157: 3850–3859
  • Defife K. M., Jenney C. R., McNally A. K., Colton E., Anderson J. M. Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J. Immunol. 1997; 158: 3385–3390
  • Hart P. H., Vitti G. F., Burgess D. R., Whitty G. A., Piccoli D. S., Hamilton J. A. Potential anti-inflammatory effects of interleukin 4: suppression of human monocyte tumor necrosis factor α, interleukin 1, and prostaglandin E2. Proc. Natl. Acad. Sci. USA 1989; 86: 3803–3807
  • D'Andrea A., Ma X., Aste-Amezaga M., Paganin C., Trinchieri G. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor alpha production. J. Exp. Med. 1995; 181: 537–546
  • Vannier E., de Waal Malefyt R., Salazar-Montes A., de Vries J. E., Dinarello C. A. Interleukin-13 (IL-13) induces IL-1 receptor antagonist gene expression and protein synthesis in peripheral blood mononuclear cells: inhibition by an IL-4 mutant protein. Blood 1996; 87: 3307–3315
  • Kambayashi T., Jacob C. O., Strassmann G. IL-4 and IL-13 modulate IL-10 release in endotoxin-stimulated murine peritoneal mononuclear phagocytes. Cell. Immunol. 1996; 171: 153–158
  • Sebire G., Delfraissy J. F., Demotes-Mainard J., Oteifeh A., Emilie D., Tardieu M. Interleukin-13 and interleukin-4 act as inducers in human microglial cells. Cytokine 1996; 8: 636–641
  • Corcoran M. L., Stetler-Stevenson W. G., Brown P. D., Wahl L. M. Interleukin 4 inhibition of prostaglandin E2 synthesis blocks interstitial collagenase and 92-kDa type IV collagenase/gelatinase production by human monocytes. J. Biol. Chem. 1992; 267: 515–519
  • Abramson S. L., Gallin J. I. IL-4 inhibits superoxide production by human mononuclear phagocytes. J. Immunol. 1990; 144: 625–63
  • Endo T., Ogushi F., Sone S. LPS-dependent cyclooxygenase-2 induction in human monocytes is down-regulated by IL-13, but not by IFN-gamma. J. Immunol. 1996; 156: 2240–2246
  • Yano S., Sone S., Nishioka Y., Mukaida N., Matsushima K., Ogura T. Differential effects of anti-inflammatory cytokines (IL-4, IL-10 and IL-13) on tumoricidal and chemotactic properties of human monocytes induced by monocyte chemoractic and activating factor. J. Leukoc. Biol. 1995; 57: 303–309
  • Weiss G., Bodgan C., Hentze M. W. Pathways for the regulation of macrophage iron metabolism by the anti-inflammatory cytokines IL-4 and IL-13. J. Immunol. 1997; 158: 420–425
  • Deng W., Ohmori Y., Hamilton T. A. Mechanisms of IL-4-mediated suppression of IP-gene expression in murine macrophages. J. Immunol. 1994; 153: 2130–2136
  • Vasse M., Paysant I., Soria J., Mirshahi S. S., Vannier J. P., Soria C. Down-regulation of fibrinogen biosynthesis by IL-4, IL-10 and IL-13. Br. J. Haematol. 1996; 93: 955–9961
  • Gautam S. C., Chikkala N. F., Hamilton T. A. Anti-inflammatory action of IL-4. J. Immunol. 1992; 148: 1411–1415
  • Muchamuel T., Menon S., Pisacane P., Howard M. C., Cockayne D. A. IL-13 protects mice from lipopolysaccharide-induced lethal endotoxemia. J. Immunol. 1997; 158: 2898–2903
  • Riemann D., Kehlen A., Langner J. Stimulation of the expression and the enzyme activity of aminopeptidase N/CD13 and dipeptidylpeptidase IV/CD26 on human renal cell carcinoma cells and renal tubular epithelial cells by T cell-derived cytokines, such as IL-4 and IL-13. Clin. Exp. Immunol. 1995; 100: 277–283
  • Van Hal P. T.W., Hopstaken-Broos J. P.M., Prins A., Favaloro E. J., Huijbens R. J.F., Hilvering C., Figdor C. G., Hoogsteden H. C. Potential indirect antiinflammatory effects of IL-4. Stimulation of human monocytes, macrophages, and endothelial cells by IL-4 increases aminopeptidase-N activity (CD13; EC 3.4.11.2). J. Immunol. 1994; 153: 2718–2728
  • Nassar G. M., Morrow J. D., Roberts L. J., Lakkis F. G., Badr K. F. Induction of 15-lipoxygenase by interleukin-13 in human blood monocytes. J. Biol. Chem. 1994; 269: 27631–27634
  • Lehn M., Weiser W. Y., Engelhorn S., Gillis S., Remold H. G. IL-4 inhibits H2O2 production and antileishmanial capacity of human cultured monocytes mediated by IFN-γ. J. Immunol. 1989; 143: 3020–3024
  • Kumaratilake L. M., Ferrante A. IL-4 inhibits macrophage-mediated killing of Plasmodium Falciparum in vitro. J. Immunol. 1992; 149: 194–199
  • Montanier L. J., Doyle A. G., Collin M., Herbein G., Illei P., James W., Minty A., Caput D., Ferrara P., Gordon S. Interleukin 13 inhibits human immunodeficiency virus type 1 production in primary blood-derived human macrophages in vitro. J. Exp. Med. 1993; 178: 743–747
  • Mikovits J. A., Meyers A. M., Ortaldo J. R., Minty A., Caput D., Ferrara P., Ruscetti F. W. IL-4 and IL-13 have overlapping but distinct effects on HIV production in monocytes. J. Leukoc. Biol. 1994; 56: 340–346
  • Baskar P., Silberstein D. S., Pincus S. H. Inhibition of IgG-triggered human eosinophil function by IL-4. J. Immunol. 1990; 144: 2321–2326
  • Luttmann W., Knoechel B., Foerster M., Matthys H., Virchow J. C., Kroegel C. Activation of human eosinophils by IL-13. Induction of CD69 surface antigen, its relationship to messenger RNA expression, and promotion of cellular viability. J. Immunol. 1996; 157: 1678–1683
  • Bober L. A., Waters T. A., Pugliese-Sivo C. C., Sullivan L. M., Narula S. K., Grace M. J. IL-4 induces neutrophilic maturation of HL-60 cells and activation of human peripheral blood neutrophils. Clin. Exp. Immunol. 1995; 99: 129–136
  • Wertheim W. A., Kunkel S. L., Standiford T. J., Burdick M. D., Becker F. S., Wilke C. A., Gilbert A. R., Strieter R. M. Regulation of neutrophil-derived IL-8: the role of prostaglandin E2, dexamethasone, and IL-4. J. Immunol. 1993; 151: 2166–2175
  • Girard D., Paquin R., Naccache P. H., Beaulieu A. D. Effects on interleukin-13 on human neutrophil functions. J. Leukoc. Biol. 1996; 59: 412–419
  • Colotta F., Re F., Muzio M., Bertini R., Polentarutti N., Sironi M., Giri J. G., Dower S. K., Sims J. E., Mantovani A. Interleukin-1 Type II receptor: as a decoy target for IL-1 that is regulated by IL-4. Science 1993; 261: 472–475
  • Colotta F., Re F., Muzio M., Polentarutti N., Minty A., Caput D., Ferrara P., Mantovani A. Interleukin-13 induces expression and release of interleukin-1 decoy receptor in human polymorphonuclear cells. J. Biol Chem. 1994; 269: 12403–12406
  • Nilsson G., Nilsson K. Effects of interleukin (IL)-13 on immediate-early response gene expression, phenotype and differentiation of human mast cells. Comparison with IL-4. Eur. J. Immunol. 1995; 25: 870–873
  • Postlethwaite A. E., Seyer J. M. Fibroblast chemotaxis induction by human recombinant interleukin-4. Identification by synthetic peptide analysis of two chemotactic domains residing in amino acid sequences 70–88 and 89–122. J. Clin. Invest. 1991; 87: 2147–2152
  • Gillery P., Fertin C., Nicolas J. F., Chastang F., Kalis B., Banchereau J., Maquart F. X. Interleukin-4 stimulates collagen gene expression in human fibroblast monolayer cultures. FEBS Lett. 1992; 302: 231–234
  • Postlethwaite A. E., Holness M. A., Katai H., Raghow R. Human fibroblasts synthetize elevated levels of extracellular matrix proteins in response to interleukin 4. J. Clin. Invest. 1992; 90: 1479–1485
  • Wegrowski Y., Paltot V., Gillery P., Kalis B., Randoux A., Maquart F. X. Stimulation of sulphated glycosaminoglycan and decorin production in adult dermal fibroblasts by recombinant human interleukin-4. Biochem. J. 1995; 307: 673–678
  • Katz Y., Stav D., Barr J., Passwell J. H. IL-13 results in differential regulation of the complement proteins C3 and factor B in tumor necrosis factor (TNF)-stimulated fibroblasts. Clin. Exp. Immunol. 1995; 101: 150–156
  • Dechanet J., Briolay J., Rissoan M. C., Chomarat P., Galizzi J. P., Banchereau J., Miossec P. Interleukin 4 inhibits growth factor-stimulated rheumatoid synoviocyte proliferation by blocking the early phases of the cell cycle. J. Immunol. 1993; 151: 4908–4917
  • Dechanet J., Taupin J. L., Chomarat P., Rissoan M. C., Moreau J. F., Banchereau J., Miossec P. Interleukin-4 but not interleukin-10 inhibits the production of leukemia inhibitory factor by rheumatoid synovium and synoviocytes. Eur. J. Immunol. 1994; 24: 3222–3228
  • Schlaak J. F., Schwarting A., Knolle P., Meyer zum Buschenfelde K. H., Mayet W. Effects of Th1 and Th2 cytokines on cytokine production and 1CAM-1 expression on synovial fibroblasts. Ann. Rheum. Dis. 1995; 54: 560–565
  • Tushinski R. J., Larsen A., Park L. S., Spoor E. Interleukin 4 alone or in combination with interleukin 1 stimulates 3T3 fibroblasts to produce colony-stimulating factors. Exp. Hematol. 1991; 19: 238–244
  • Seitz M., Loetscher P., Dewald B., Towbin H., Baggiolini M. Opposite effects of interleukin-13 and interleukin-12 on the release of inflammatory cytokines, cytokine inhibitors and prostaglandin E from synovial fibroblasts and blood mononuclear cells. Eur. J. Immunol. 1996; 26: 2198–2202
  • Piela-Smith T. H., Broketa G., Hand A., Korn J. H. Regulation of ICAM-1 expression and function in human dermal fibroblasts by IL-4. J. Immunol. 1992; 148: 1375–1381
  • Toi M., Bicknell R., Harris A. L. Inhibition of colon and breast carcinoma cell growth by Interleukin-4. Cancer Res. 1992; 52: 275–279
  • Thornhill M. H., Wellicome S. M., Mahiouz D. L., Lanchbury J. S.S., Kyan-Aung U., Haskard D. O. Tumor necrosis factor combines with IL-4 or IFN-γ to selectively enhance endothelial cell adhesiveness for T cells. The contribution of vascular cell adhesion molecule-1-dependent and-independent binding mechanisms. J. Immunol. 1991; 146: 592–598
  • Palmer-Crocker R. L., Pober J. S. IL-4 induction of VCAM-1 on endothelial cells involves activation of a protein tyrosine kinase. J. Immunol. 1995; 154: 2838–2845
  • Lugli S. M., Feng N., Heim M. H., Adam M., Schnyder B., Etter H., Yamage M., Eugster H. P., Lutz R. A., Zurawski G., Moser R. Tumor necrosis factor α enhances the expression of the interleukin (IL)-4 receptor α-chain on endothelial cells increasing IL-4 or IL-13-induced Stat6 activation. J. Biol Chem. 1997; 272: 5487–5494
  • Moser R., Fehr J., Bruijnzeel P. L.B. IL-4 controls the selective endothelium-driven transmigration of eosinophils from allergic individuals. J. Immunol. 1992; 149: 1432–1438
  • Valent P., Bevec D., Maurer D., Besemer J., Di Padova F., Butterfield J. H., Speiser W., Majdic O., Lechner K., Bettelheim P. Interleukin 4 promotes expression of mast cell ICAM-1 antigen. Immunol. 1991; 88: 3339–3342
  • Thornhill M. H., Kaskard D. O. IL-4 regulates endothelial cell activation by IL-1, tumor necrosis factor, or IFN-γ. J. Immunol. 1990; 145: 865–872
  • Kotowicz K., Callard R. E., Friedrich K., Matthews D. J., Klein N. Biological activity of IL-4 and IL-13 on human endothelial cells: functional evidence that both cytokines act through the same receptor. Int. Immunol. 1996; 8: 1915–1925
  • Klein N. J., Rigley K. P., Callard R. E. IL-4 regulates the morphology, cytoskeleton, and proliferation of human umbilical vein endothelial cells: relationship between vimentin and CD23. Int. Immunol. 1993; 5: 293–301
  • Iademarco M. F., Barks J. L., Dean D. C. Regulation of vascular cell adhesion molecule-1 expression by IL-4 and TNF-alpha in cultured endothelial cells. J. Clin. Invest. 1995; 95: 264–271
  • Briscoe D. M., Cotran R. S., Pober J. S. Effects of tumor necrosis factor, lipopolysaccharide, and IL-4 on the expression of vascular cell adhesion molecule-1 in vivo., Correlation with CD3+ T cell infiltration. J. Immunol. 1992; 149: 2954–2960
  • Sironi M., Sciacca F. L., Matteuci C., Conni M., Vecchi A., Bernasconi S., Minty A., Caput D., Ferrara P., Colotta F., Mantovani A. Regulation of endothelial and mesothelial cell function by interleukin-13: selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood 1994; 84: 1913–1921
  • Howells G., Pham P., Taylor D., Foxwell B., Feldman M. Interleukin 4 induces interleukin 6 production by endothelial cells: synergy with interferon-γ. Eur. J. Immunol. 1991; 21: 97–101
  • Marfaing-Koka A., Devergne O., Gorgone G., Portier A., Schall T. J., Galanaud P., Emilie D. Regulation of the production of the RANTES chemokine by endothelial cells. Synergistic induction by IFN-gamma plus TNF-alpha and inhibition by IL-4 and IL-13. J. Immunol. 1995; 154: 1870–1878
  • Herbert J. M., Savi P., Laplace M. C., Lale A., Dol F., Dumas A., Labit C., Minty A. IL-4 and IL-13 exhibit comparable abilities to reduce pyrogen-induced expression of procoagulant activity in endothelial cells and monocytes. FEBS Lett. 1993; 328: 268–270
  • Rousselet G., Busson P., Billaud M., Guillon J. M., Scamps C., Wakasugi H., Lenoir G., Tursz T. Structure and regulation of the Blast-2/CD23 antigen in epithelial cells from nasopharyngeal carcinoma. Int. Immunol. 1990; 2: 1159–1166
  • Phillips J. O., Everson M. P., Moldoveanu Z., Lue C., Mestecky J. Synergistic effect of IL-4 and IFN-γ on the expression of polymeric Ig receptor (secretory component) and IgA binding by human epithelial cells. J. Immunol. 1990; 145: 1740–1744
  • Galy A. H., Spits H. IL-1, IL-4, and IFN-γ differentially regulate cytokine production and cell surface molecule expression in cultured human thymic epithelial cells. J. Immunol. 1991; 147: 3823–3830
  • Kolios G., Robertson D. A., Jordan N. J., Minty A., Caput D., Ferrara P., Westwick J. Interleukin-8 production by the human colon epithelial cell line HT-29: modulation by interleukin-13. Br. J. Immunol. 1996; 119: 351–359
  • Berkman N. Inhibition of inducible nitric oxide synthase expression by interleukin-4 and interleukin-13 in human epithelial cells. Immunology 1996; 89: 363–367
  • Berkman N., Robichaud A., Krishnan V. L., Roesems G., Robbins R., Jose P. J., Barnes P. J., Chung K. F. Expression of RANTES in human airway epithelial cells: effect of corticosteroids and interleukin-4, -10,-13. Immunology 1996; 87: 599–603
  • Zund G., Madara J. L., Dzus A. L., Awtrey C. S., Colgan S. P. Interleukin-4 and interleukin-13 differentially regulate epithelial chloride secretion. J. Biol. Chem. 1996; 271: 7460–7464
  • Loyer P., Ilyin G., Razzak Z. A., Dézier J. F., Banchereau J., Campion J. P., Guguen-Guillouzo C., Guillouzo A. IL-4 modulates production of acute phase proteins in adult human hepatocytes. FEBS Lett. 1993; 336: 215–220
  • Grunfeld C., Soued M., Adi S., Moser A. H., Fiers W., Dinarello C. A., Feingold K. R. Interleukin-4 inhibits stimulation of hepatic lipogenesis by tumor necrosis factor, interleukin-1 and interleukin-6 but not interferon-α. Cancer Res. 1991; 51: 2803–2807
  • Razzak Z. A., Loyer P., Fautrel A., Gautier J. C., Corcos L., Turlin B., Beaune P., Guillouzo A. Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol. Pharmacol. 1993; 44: 707–715
  • Parronchi P., De Carli M., Manetti R., Simonelli C., Piccini M. P., Macchia D., Maggi E., Del Prete G., Ricci M., Romagnani S. Aberrant interleukin (IL)4 and IL5 production in vitro, by CD4+ helper T cells from atopic subjects. Eur. J. Immunol. 1992; 87: 58–69
  • Lester M. R., Hofer M. F., Gately M., Trumble A., Leung D. Y.M. Down-regulating effects of IL-4 and IL-10 on the IFN-γ response in atopic dermatitis. J. Immunol. 1995; 154: 6174–6181
  • Rousset F., Robert J., Andary M., Bonnin J. P., Souillet G., Chretien I., Briere F., Pene J., de Vries J. E. Shifts in interleukin-4 and interferon-γ production by T cells of patients with elevated serum IgE levels and the modulatory effects of these lymphokines on spontaneous IgE synthesis. J. Allergy Clin. Immunol. 1991; 87: 58–69
  • Jutel M., Pichler W. J., Skrbic D., Urwyler A., Dahinden C., Müller U. R. Bee venom immunotherapy results in decrease of IL-4 and IL-5 and increase of IFN-γ secretion in specific allergen-stimulated T cell cultures. J. Immunol. 1995; 154: 4187–4194
  • Secrist H., Chelen C. J., Wen Y., Marshall J. D., Umetsu D. T. Allergen immunotherapy decreases interleukin 4 production in CD4+ T cells from allergic individuals. J. Exp. Med. 1993; 178: 2123–2130
  • Vollenweider S., Saurat J. H., Rocken M., Hauser C. Evidence suggesting involvement of interleukin-4 (IL-4) production in spontaneous in vitro, IgE synthesis in patients with atopic dermatitis. J. Allergy Clin. Immunol. 1991; 87: 1088–1095
  • Levy F., Kristofic C., Heusser C., Brinkmann V. Role of IL-13 in CD4 T cell-dependent IgE production in atopy. Int. Arch. Allergy. Immunol. 1997; 112: 49–58
  • Reddy M. M., Weissman A. M., Mazza D. S., Meriney D. K., Johns M., Carrabis S., Grieco M. H. Circulating elevated levels of soluble CD23, interleukin 4, and CD20+ CD23+ lymphocytes in atopic subjects with elevated serum IgE concentrations. Ann. Allergy 1992; 69: 131–134
  • Kapsenberg M. L., Wierenga E. A., Van Der Heijden F. L., Bos J. D. Atopic dermatitis and CD4+ atopen-specific Th2 lymphocytes. Eur. J. Dermatol. 1992; 8: 601–607
  • Parronchi P., Macchia D., Piccini M. P., Biswas P., Simonelli C., Maggi E., Ricci M., Ansari A. A., Romagnani S. Allergen- and bacterial antigen-specific T-cell clones established from atopic donors show a different profile of cytokine production. Proc. Natl. Acad. Sci. USA 1991; 88: 4538–4542
  • Secrist H., DeKruyff R. H., Umetsur D. T. Interleukin 4 production by CD4+ T cells from allergic individuals is modulated by antigen concentration and antigen-presenting cell type. J. Exp. Med. 1995; 181: 1081–1089
  • Marsh D. G., Neely J. D., Breazeale D. R., Ghosh B., Freidhoff L. R., Ehrlich-Kautzky E., Schou C., Krishnaswamy G., Beaty T. H. Linkage analysis of 1L4 and other chromosome 5q31–1 markers and total serum immunoglobulin E concentrations. Science 1994; 264: 1152–1156
  • Tepper R. I., Pattengale P. K., Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989; 57: 503–512
  • Tepper R. I., Coffman R. L., Leder P. An eosinophil-dependent mechanism for the antitumor effect of interleukin-4. Science 1992; 257: 548–551
  • Bosco M. C., Giovarelli M., Forni M., Modesti A., Scarpa G., Masuelli L., Forni G. Low doses of interleukin 4 injected perilymphatically in tumor-bearing mice inhibit the growth of poorly and apparently nonimmunogenic tumors and induce a tumor-specific immune memory. J. Immunol. 1990; 145: 3136–3143
  • Golumbek P. T., Lazenby A. J., Levitsky H. I., Jaffee L. M., Karasuyama H., Baker M., Pardoll D. M. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991; 254: 713–716
  • Lebel-Binay S., Laguerre B., Quintin-Colonna F., Conjeaud H., Magazin M., Miloux B., Pecceu F., Caput D., Ferrara P., Fradelizi D. Experimental gene therapy of cancer using tumor cells engineered to secrete interleukin-13. Eur. J. Immunol. 1995; 25: 2340–2348
  • Pandrau D., Saeland S., Duvert V., Durand I., Manel A. M., Zabot M X, Philippe N., Banchereau J. Interleukin-4 inhibits in vitro, proliferation of leukemic and normal human B cell precursors. J. Clin. Invest. 1992; 90: 1697–1706
  • Akashi K., Shibuya T., Harada M., Takamatsu Y., Uike N., Eto T., Niho Y. Interleukin 4 suppresses the spontaneous growth of chronic myelomonocytic leukemia cells. J. Clin. Invest. 1991; 88: 223–230
  • Obiri N. I., Hillman G. G., Haas G. P., Sud S., Puri R. K. Expression of high affinity interleukin-4 receptors on human renal cell carcinoma cells and inhibition of tumor cell growth in vitro, by interleukin-4. J. Clin. Invest. 1993; 91: 88–93
  • Renard N., Duvert V., Banchereau J., Saeland S. Interleukin-13 inhibits the proliferation of normal and leukemic human B-cell precursors. Blood 1994; 84: 2253–2260
  • Bruserud O. Effects of interleukin-13 on cytokine secretion by human acute myelogenous leukemia blasts. Leukemia 1996; 10: 1497–1503
  • Topp M. S., Koenigsmann M., Mire-Sluis A., Oberberg D., Eitelbach F., Von Marschall Z., Notter M., Reufi B., Stein H., Thiel E., Berdel W. E. Recombinant human interleukin-4 inhibits growth of some human lung tumor cell lines in vitro, and in vivo. Blood 1993; 82: 2837–2844
  • Topp M. S., Papadimitriou C. A., Eitelbach F., Koenigsmann M., Oelmann E., Koehler B., Oberberg D., Reufi B., Stein H., Thiel E., et al. Recombinant human interleukin-4 has antiproliferative activity on human tumor cell lines derived from epithelial and nonepithelial histologies. Cancer Res. 1995; 55: 2173–2176
  • Serve H., Oelmann E., Herweg A., Oberberg D., Serve S., Reufi B., Mucke C., Minty A., Thiel E., Berdel W. E. Inhibition of proliferation and clonal growth of human breast cancer cells by interleukin 13. Cancer Res. 1996; 56: 3583–3588
  • Puri R. K., Leland P., Obiri N. I., Husain S. R., Kreitman R. J., Haas G. P., Pastan I., Debinski W. Targeting of interleukin-13 receptor on human renal cell carcinoma cells by a recombinant chimeric protein composed of interleukin-13 and a truncated form of Pseudomonas exotoxin A (PE38QQR). Blood 1996; 87: 4333–4339
  • Hurford R. K., Dranoff G., Mulligan R. C., Tepper R. I. Gene therapy of metastatic cancer by in vivo, retroviral gene targeting. Nature Genetics 1995; 10: 430–435
  • Miossec P., Briolay J., Dechanet J., Wijdenes J., Martinez-Valdez H., Banchereau J. Inhibition of the production of proinflammatory cytokines and immunoglobulins by interleukin-4 in an ex vivo, model of rheumatoid synovitis. Arthritis Rheum. 1992; 35: 874–883
  • Hart P. H., Ahernn M. J., Smith M. D., Finlay-Jones J. J. Regulatory effects of IL-13 on synovial fluid macrophages and blood monocytes from patients with inflammatory arthritis. Clin. Exp. Immunol. 1995; 99: 331–337
  • Chomarat P., Banchereau J., Miossec P. Differential effects of interleukins 10 and 4 on the production of interleukin-6 by blood and synovium monocytes in rheumatoid arthritis. Arthritis Rheum. 1995; 38: 1046–1054
  • Kucharzik T., Lügering N., Weigelt H., Adolf M., Domschke W., Stoll R. Immunoregulatory properties of IL-13 in patients with inflammatory bowel disease; comparison with IL-4 and IL-10. Clin. Exp. Immunol. 1996; 104: 483–490
  • Isomaki P., Luukkainen R., Toivanen P., Punnonen J. The presence of interleukin-13 in rheumatoid synovium and its antiinflammatory effects on synovial fluid macrophages from patients with rheumatoid arthritis. Arthritis Rheum. 1996; 39: 1693–1702
  • Miossec P., Chomarat P., Dechanet J., Moreau J. F., Roux J. P., Delmas P., Banchereau J. Interleukin 4 inhibits bone resorption through an effect on osteoclasts and proinflammatory cytokines in an ex vivo, model of bone resorption in rheumatoid arthritis. Arthritis Rheum. 1994; 37: 1715–1722
  • Lacey D. L., Erdmann J. M., Teitelbaum S. L., Tan H. L., Ohara J., Shioi A. Interleukin-4, interferon-gamma, and prostaglandin E impact the osteoclastic cell-forming potential of murine bone marrow macrophages. Endocrinology 1995; 136: 2367–2376
  • Onoe Y., Miyaura C., Kaminakayashiki T., Nagai Y., Noguchi K., Chen Q. R., Seo H., Ohta H., Nozawa S., Kudo I., Suda T. IL-13 and IL-4 inhibit bone resorption by suppressing cyclooxygenase-2-dependent prostaglandin synthesis in osteoblasts. J. Immunol. 1996; 156: 758–764
  • Lind M., Deleuran B., Yssel H., Fink-Eriksen E., Thestrup-Pedersen K. IL-4 and IL-13, but not IL-10, are chemotactic factors for human osteoblasts. Cytokine 1995; 7: 78–82
  • Racke M. K., Burnett D., Pak S. H., Albert P. S., Cannella B., Raine C. S., McFarlin D. E., Scott D. E. Retinoid treatment of experimental allergic encephalomyelitis. IL-4 production correlates with improved disease course. J. Immunol. 1995; 154: 450–458
  • Shaw M. K., Lorens J. B., Dhawan A., DalCanto R., Tse H. Y., Tran A. B., Bonpane C., Eswaran S. L., Brocke S., Sarvetnick N., Steinman L., Nolan G. P., Fathman C. G. Local delivery of interleukin-4 by retrovirus-transduced T lymphocytes ameliorates experimental autoimmune encephalomyelitis. J. Exp. Med. 1997; 185: 1711–1714
  • Cash E., Minty A., Ferrara P., Caput D., Fradelizi D., Rott O. Macrophage-inactivating IL-13 suppresses experimental autoimmune encephalomyelitis in rats. J. Immunol. 1994; 153: 4258–4267
  • Katz J. D., Benoist C., Mathis D. T helper cell subsets in insulin-dependent diabetes. Science 1995; 268: 1185–1188
  • Allen J. B., Wong H. L., Costa G. L., Bienkowski M. J., Wahl S. M. Suppression of monocyte function and differential regulation of IL-1 and IL-1ra by IL-4 contribute to resolution of experimental arthritis. J. Immunol. 1993; 151: 4344–4351
  • Bessis N., Boissier M. C., Ferrara P., Blankenstein T., Fradelizi D., Fournier C. Attenuation of collagen-induced arthritis in mice by treatment with vector cells engineered to secrete interleukin-13. Eur. J. Immunol. 1996; 26: 2399–2403
  • Mulligan M. S., Jones M. L., Vaporciyan A. A., Howard M. C., Ward P. A. Protective effects of IL-4 and IL-10 against immune complex-induced lung injury. J. Immunol. 1993; 151: 5666–5674
  • Rapoport M. J., Jaramillo A., Zipris D., Lazarus A. H., Serreze D. V., Leiter E. H., Cyopick P., Dnaska J. S., Deloviqtch T. L. Interleukin 4 reverses T cell proliferative unresponsiveness and prevents the onset of diabetes in nonobese diabetic mice. J. Exp. Med. 1993; 178: 87–99

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.