50
Views
19
CrossRef citations to date
0
Altmetric
Original Article

Signal TransductionThrough Cytokine Receptors

&
Pages 75-102 | Published online: 10 Jul 2009

References

  • Hirano T., Nakajima K., Hibi M. Cytokine & Growth Factor Reviews. Signaling mechanisms through gp130: a model of the cytokine system. 1997, in press
  • Bazan J. F. Haematopoietic receptors and helical cytokines. Immunol. Today 1990; 11: 350–354
  • Miyajima A., Kitamura T., Harada N., Yokota T., Arai K. Cytokine receptors and signal transduction. Annu. Rev. Immunol. 1992; 10: 295–331
  • Ihle J. N., Kerr I. M. Jaks and Stats in signaling by the cytokine receptor superfamily. Trends. Genet. 1995; 11: 99–74
  • Ihle J. N. Cytokine receptor signalling. Nature 1995; 377: 591–594
  • Darnell J. E.J., Kerr I. M., Stark G. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science 1994; 264: 1415–1421
  • Schindler C., Darnell J. E.J. Transcriptional responses to polypeptide ligands: the Jak-STAT pathway. Annu. Rev. Biochem. 1995; 64: 621–651
  • Ihle J. N. STATs: signal transducers and activators of transcription. Cell 1996; 84: 331–334
  • Hiton D. J., Watowich S. S., Kats L., Lodish H. F. Saturation mutagenesis of the WSXWS motif of the erythropoietin receptor. J. Biol. Chem. 1996; 271: 4699–4708
  • Murakami M., Narazaki M., Hibi M., Yawata H., Yasukawa K., Hamaguchi M., Taga T., Kishimoto T. Critical cytoplasmic region of the interleukin 6 signal transducer gp130 is conserved in the cytokine receptor family. Proc. Natl. Acad. Sci. USA 1991; 88: 11349–11353
  • Fukunaga R., Ishizaka-Ikeda E., Pan C. X., Seto Y., Nagata S. Functional domains of the granulocyte colony-stimulating factor receptor. EMBO J. 1991; 10: 2855–2865
  • Narazaki M., Witthuhn B. A., Yoshida K., Silvennoinen O., Yasukawa K., Ihle J. N., Kishimoto T., Kishimoto T. Activation of JAK2 kinase mediated by the interleukin 6 signal transducer gp130. Proc. Natl. Acad. Sci. USA 1994; 91: 2285–2289
  • Lebrun J. J., Ali S., Ullrich A., Kelly P. A. Proline-rich sequence-mediated JAK2 association to the prolactin receptor is required but not sufficient for signal transduction. J. Biol. Chem. 1995; 270: 10664–10670
  • Wang Y. D., Wood W. I. Amino acids of the human growth hormone receptor that are required for proliferation and Jak-STAT signaling. Mol. Endocrinol. 1995; 9: 303–311
  • Avalos B. R., Hunter M. G., Parker J. M., Ceselaki S. K., Drunker B. J., Corey S. J., Mehta V. B. Point mutations in the conserved boxl region inactivate the human granulocyte-colony stimulating factor receptor for growth signal transduction and tyrosine phosphorylation of p75 c-rel. Blood 1995; 85: 3117–3126
  • Tanner J. W., Chen W., Woung R. L., Lonmore G. D., Shaw A. S. The conserved boxl motif of cytokine receptor is required for association with JAK kinases. J. Biol. Chem. 1995; 270: 6523–6530
  • Mehler M. F., Kessler J. A. Hematolymphopoietic and inflammatory cytokines in neural development. Trends Neurosci. 1997; 20: 357–365
  • Hirano T., Matsuda T., Nakajima K. Signal transduction through gp130 that is shared among receptors for the interleukin 6 related cytokine subfamily. Stem Cell Dayt. 1994; 12: 262–277
  • Taga T., Kishimoto T. Signaling mechanisms through cytokine receptors that share signal transducing receptor components. Curr. Opin. Immunol. 1995; 7: 17–23
  • Hibi M., Nakajima K., Hirano T. IL-6 cytokine family and signal transduction: a model of cytokine system. J. Mol. Med. 1990; 74: 1–12
  • Boulay J. L., Paul W. E. The interleukin-4 family lymphokines. Curr. Opin. Immunol. 1992; 4: 294–298
  • Sugamura K., Asao H., Kondo M., Tanaka N., Ishii N., Nakamura M., Takeshita T. The common gamma-chain for multiple cytokine receptors. Adv. Immunol. 1995; 59: 225–277
  • Murakami M., Hibi M., Nakagawa N., Nakagawa T., Yasukawa K., Yamanishi K., Taga T., Kishimoto T. IL-6-induced homodimerization of gp130 and associated activation of a tyrosine kinase. Science 1993; 260: 1808–1810
  • Davis S., Aldrich T. H., Stahl N., Pan L., Taga T., Kishimoto T., Ip N. Y., Yancopoulos G. D. LIFR beta and gp130 as heterodimerizing signal transducers of the tripartite CNTF receptor. Science 1993; 260: 1805–1808
  • Neddermann P., Graziani R., Ciliberto G., Paonessa G. Functional expression of soluble human interleukin-11 (IL-11) receptor alpha and stoichiometry of in vitro, IL-11 receptor complexes with gp130. J. Biol. Chem. 1996; 271: 30986–30991
  • Kawahara A., Minami Y., Miyazaki T., Ihle J. N., Taniguchi T. Critical role of the interleukin 2 (IL-2) receptor gamma-chain-associated Jak3 in the IL-2-induced c-fos and c-myc, but not bcl-2, gene induction. Proc. Natl. Acad. Sci. USA 1995; 92: 8724–8728
  • Kumanogo A., Marukawa S., Kumanogo T., Hirota H., Yoshida K., Lee I. S., Yasui T., Yoshida K., Taga T., Kishimoto T. Impairment of antigen-specific antibody production in transgenic mice expressing a dominant-negative form of gp130. Proc. Natl. Acad. Sci. USA 1997; 94: 2478–2482
  • Watowich S. S., Yoshimura A., Longmore G. D., Hilton D. J., Yoshimura Y., Lodish H. F. Homodimerization and constitutive activation of the erythropoietin receptor. Proc. Natl. Acad. Sci. USA 1992; 89: 2140–2144
  • Heldin C. H. Dimerization of cell surface receptors in signal transduction. Cell 1995; 80: 213–223
  • Noguchi M., Yi H., Rosenblatt H. M., Filipovich A. H., Adelstein S., Modi W. S., McBride O. W., Leonard W. J. InterIeukin-2 receptor gamma chain mutation results in X-linked severe combined immunodeficiency in human. Cell 1993; 73: 147–157
  • Macchi P., Villa A., Gillani S., Sacco M. G., Frattini A., Porta F., Ugazio A. G., Johnston J. A., Candotti F., O'Shea J. J., et al. Mutations of Jak-3 gene in patients with autosomal severe combined immune deficiency (SCID). Nature 1995; 377: 65–68
  • Russell S. M., Taybei N., Nakajima H., Riedy M. C., Roberts J. L., Aman M. J., Migone T. S., Noguchi M., Markert M. L., Buckley R. H., et al. Mutation of Jak3 in a patient with SCID: essential role of Jak3 in lymphoid development. Science 1995; 270: 797–800
  • Marrero M. B., Schieffer B., Paxton W. G., Heerdt L., Berk B. C., Delafontaine P., Bernstein K. E. Direct stimulation of Jak/STAT pathway by the angiotensin II ATI receptor. Nature 1995; 375: 247–250
  • Danial N. N., Pernis A., Rothman P. B. Jak-STAT signaling induced by the v-abl oncogene. Science 1995; 269: 1875–1877
  • Wilks A. F., Harpur A. G., Kurban R. R., Ralph S. J., Zurcher G., Ziemiecki A. Two novel protein-tyrosine kinases, each with a second phosphotransferase-related catalytic domain, define a new class of protein kinase. Mol. Cell. Biol. 1991; 11: 2057–2065
  • Velazquez L., Mogensen K. E., Barbieri G., Fellous M., Uzé G., Pellegrini S. Distinct domains of the protein-tyrosine kinase Tyk2 required for binding of interferon-alpha/beta and for signal transduction. J. Biol. Chem. 1995; 270: 3327–3334
  • Fujitani Y., Hibi M., Fukada T., Takahashi-Tezuka M., Yoshida H., Yamaguchi T., Sugiyama K., Yamanaka Y., Nakajima K., Hirano T. An alternative pathway for STAT activation that is mediated by the direct interaction between Jak and STAT. Oncogene 1997; 14: 751–761
  • Frank S. J., Gilliland G., Kraft A. S., Arnold C. S. Interaction of the growth hormone receptor cytoplasmic domain with Jak2 tyrosine kinase. Endocrinology 1994; 135: 2228–2239
  • Zhao Y., Wagner F., Frank S. J., Kraft A. S. The amino-terminal portion of the JAK2 protein kinase is necessary for binding and phosphorylation of the granulocyte-macrophage colony-stimulating factor receptor beta c chain. J. Biol. Chem. 1995; 270: 13814–13818
  • Kohlhuber F., Rogers N. C., Watling D., Feng J., Guschin D., Briscoe J., Witthuhn B. A., Kotenko S. V., Pestka S., Stark G. R., et al. A JAK1/JAK2 chimera can sustain alpha and gamma interferon responses. Mol. Cell. Biol. 1997; 17: 695–706
  • Chen M., Cheng A., Chen Y. Q., Hymel A., Hanson E. P., Kimmel L., Minami Y., Taniguchi T., Changelian P. S., O'Shear J. J. The amino terminus of JAK3 is necessary and sufficient for binding to the common G chain and confers the ability to transmit interleukin 2-mediated signals. Proc. Natl. Acad. Sci. USA 1997; 94: 6910–6915
  • Gauzzi M. C., Velazquez L., McKendry R., Mogensen K. E., Fellous M., Pellegrini S. Interferon-alpha-dependent activation of Tyk2 requires phosphorylation of positive regulatory tyrosines by another kinase. J. Biol. Chem. 1996; 271: 20494–20500
  • Feng J., Witthuhn B. A., Matsuda T., Kohlhuber F., Kerr I. M., Ihle J. N. Activation of Jak2 catalytic activity requires phosphorylation of Y1007 in the kinase activation loop. Mol. Cell. Biol. 1997; 17: 2497–2501
  • Mohammadi M., Schlessinger J., Hubbard S. R. Structure of the FGF receptor tyrosine kinase domain reveals a novel autoinhibitory mechanism. Cell 1996; 86: 577–587
  • Harrison D. A., Binari R., Nahreini T. S., Gilman M., Perrimon N. Activation of a Drosophila Janus kinase (Jak) causes hematopoietic neoplasia and developmental defects. EMBO J. 1995; 14: 2857–2865
  • Luo H., Hanratty W. P., Dearolf C. R. An amino acid substitution in the Drosophila hopTum-1 Jak kinase causes leukemia-like hematopoietic defects. EMBO J. 1995; 14: 1412–1420
  • Luo H., Rose P., Barber D., Hanratty W. P., Lee S., Roberts T. M., D'Andrea A. D., Dearolf C. R. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak-STAT pathways. Mol. Cell. Biol. 1997; 17: 1562–1571
  • Hou X. S., Melnick M. B., Perrimon N. Marelle acts downstream of the Drosophila HOP/Jak kinase and encodes a protein similar to the mammalian STATs. Cell 1996; 84: 411–419
  • Hou X. S., Perrimon N. The Jak-STAT pathway in Drosophila. Trends Genet. 1997; 13: 105–110
  • Yan R., Small S., Desplan C., Dearolf C. R., Darnell J. E.J. Identification of a Stat gene that functions in Drosophila development. Cell 1996; 84: 421–430
  • Yan R., Luo H., Darnell J. E.J, Dearolf C. R. A JAK-STAT pathway regulates wing vein formation in Drosophila. Proc. Natl. Acad. Sci. USA 1996; 93: 5842–5847
  • Kawata T., Shevchenko A., Fukuzawa M., Jermyn K. A., Totty N. F., Zhukovskaya N. V., Sterling A. E., Mann M., Williams J. G. SH2 signaling in a lower eukaryote: a STAT protein that regulates stalk cell differentiation in Dictyostelium. Cell 1997; 898: 909–916
  • Greenlund A. C., Morales M. O., Viviano B. L., Yan H., Krolewski J., Schindler R. D. Stat recruitment by tyrosine-phosphorylated cytokine receptors: an ordered reversible affinity-driven process. Immunity 1995; 2: 677–687
  • Stahl N., Farruggella T. J., Boulton T. G., Zhong Z., Darnell J. E.J, Yancopoulos G. D. Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors. Science 1995; 267: 1349–1353
  • Yamanaka Y., Nakajima K., Nakae H., Kojima H., Kiuchi N., Ichiba M., Kitaoka T., Fukada T., Hibi M., Hirano T. Differentiation and growth arrest signals generate through the cytoplasmic region of gp130 that is essential for Stat3 activation. EMBO J. 1996; 15: 1557–1565
  • Fujii H., Nakagawa Y., Schindler U., Kawahara A., Mori H., Gouilleux F., Groner B., Ihle J. N., Minami Y., Miyazaki T., Taniguchi T. Activation of StatS by interleukin 2 requires a carboxyl-terminal region of the interleukin 2 receptor β chain but is not essential for the proliferative signal transmission. Proc. Natl. Acad. Sci. USA 1995; 92: 5482–5486
  • Ascherman D. P., Migone T. S., Friedmann M. C., Leonard W. J. lnterleukin-2 (IL-2)-mediated induction of the IL-2 receptor alpha chain gene. Critical role of two functionally redundant tyrosine residues in the IL-2 receptor beta chain cytoplasmic domain and suggestion that these residues mediate more than Stat5 activation. J. Biol. Chem. 1997; 272: 8704–8709
  • Schindler U., Wu P., Rothe M., Brasseur M., McKnight S. L. Components of a Stat recognition code: evidence for two layers of molecular selectivity. Immunity 1995; 6: 689–697
  • Ryan J. J., McReynolds L. J., Keegan A., Wang L. H., Garfein E., Rothman P., Nelms K., Paue W. E. Growth and gene expression are predominantly controlled by distinct regions of the human IL-4 receptor. Immunity 1996; 4: 123–132
  • Choi K. Y., Satterberg B., Lyons D. M., Elion E. A. Ste5 tethers multiple protein kinase the MAP kinase cascade required for mating in S. cerevisiae. Cell 1994; 78: 499–512
  • Shuai K., Stark G., Kerr I. M., Darnell J. E.J. A single phosphotyrosine residue of Stat91 required for gene activation by interferon gamma. Science 1993; 261: 1744–1746
  • Zhong Z., Wen Z., Darnell J. E.J. Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science 1994; 164: 95–98
  • Akira S., Nishio Y., Inoue M., Wang X. J., Wei S., Matsusaka T., Yoshida K., Sudo T., Naruto M., Kishimoto T. Molecular cloning of APRF, a novel IFN-stimulated gene factor 3 p91-related transcription factor involved in the gp130- mediated signaling pathway. Cell 1994; 77: 63–71
  • Nakajima K., Matsuda T., Fujitani Y., Kojima H., Yamanaka Y., Nakae K., Takeda T., Hirano T. Signal transduction through IL-6 receptor: involvement of multiple protein kinases, stat factors, and a novel H7-sensitive pathway. Ann. N. Y. Acad. Sci. 1995; 762: 55–70
  • Lin J. X., Mietz J., Modi W. S., John S., Leonard W. J. Cloning of human Stat5B. Reconstitution of interleukin-2-induced Stat5A and Stat5B DNA binding activity in COS-7 cells
  • Kojima H., Nakajima K., Hirano T. IL-6-inducible complexes on an IL-6 response element of the junB promoter contain Stat3 and 36kDa CRE-like site binding protein(s). Oncogene 1996; 12: 547–554
  • Xu X., Sun Y. L., Hoey T. Cooperative DNA binding and sequence-selective recognition conferred by the STAT amino-terminal domain. Science 1996; 273: 794–797
  • Sotiropoulos A., Moutoussamy S., Renaudie F., Clauss M., Kayser C., Gouilleuz F., Kelly P. A., Finidori J. Differential activation of Stat3 and Stat5 by distinct regions of the growth hormone receptor. Mol. Endocrinol. 1997; 10: 998–1009
  • Yoshikawa A., Murakami H., Nagata S. Distinct signal transduction through the tyrosine-containing domains of the granulocyte colony-stimulating factor receptor. EMBO J. 1995; 14: 5288–5296
  • Li Z., Leung S., Kerr I. M., Stark G. R. Functional subdomains of STAT2 required for preassociation with the alpha interferon receptor and for signaling. Mol Cell. Biol. 1997; 17: 2048–2056
  • Sadowski H. B., Oilman M. Z. Cell-free activation of a DNA-binding protein by epidermal growth factor. Nature 1993; 362: 79–83
  • Yu C. L., Meyer D. J., Campbell G. S., Larner A. C., Carter-Su C., Schwartz J., Jove R. Enhanced DNA-binding activity of a Stat3-related protein in cells transformed by the Src oncoprotein. Science 1995; 269: 81–83
  • Cao X., Tay A., Guy G. R., Tan Y. H. Activation and association of Stat3 with Src in v-Src-transformed cell lines. Mol. Cell. Biol. 1996; 16: 1595–1603
  • Wen Z., Zhong Z., Darnell J. E.J. Maximal activation of transcription by Statl and Stat3 requires both tyrosine and serine phosphorylation. Cell 1995; 82: 241–250
  • David M., Petricoin E. R., Benjamin C., Pine R., Weber M. J., Lamer A. C. Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science 1995; 269: 1721–1723
  • Boulton T. G., Zhong Z., Wen Z., Darnell J. E.J., Stahl N., Yancopoulos G. D. STAT3 activation by cytokines utilizing gp 130 and related transducers involves a secondary modification requiring an H7-sensitive kinase. Proc. Natl. Acad. Sci. USA 1995; 92: 6915–6919
  • Schindler C., Fu X. Y., Improta T., Aebersold R., Darnell J. E.J. Proteins of transcription factor ISGF-3: one gene encodes the 91- and 84-kDa ISGF-3 proteins that are activated by interferon alpha. Proc. Natl. Acad. Sci. USA 1992; 89: 7836–7839
  • Wang D., Stravopodis D., Teglund S., Kitazawa J., Ihle J. N. Naturally occurring dominant negative variants of Stat5. Mol. Cell. Biol. 1997; 16: 6141–6148
  • Cardenhoven E., Vandijk T. B., Solar R., Armstrong J., Raaijmakers J. A.M., Lammers J. W.J., Koenderman L., DeGroot R. P. STAT3 beta, a splicing variant of transcription factor STAT3, is a dominant negative regulator of transcription. J. Biol. Chem. 1996; 271: 13221–13227
  • Schaefer T. S., Sanders L. K., Nathans D. Cooperative transcriptional activity of Jun and Stat3β, a short form of Stat3. Proc. Natl. Acad. Sci. USA 1995; 89: 7836–7839
  • Sasse J., Hemmann U., Schwartz C., Schniertshauer U., Heesel B., Landgraf C., Schneider-Mergener J., Heinrich P. C., Horn F. Mutational analysis of acute-phase response factor/Stat3 activation and dimerization. Mol. Cell. Biol. 1997; 17: 4677–4686
  • Bhattacharya S., Eckner R., Grossman S., Oldread E., Arany Z., D'Andrea A., Livingston D. M. Cooperation of Stat2 and p300/CBP in signalling induced by interferon-alpha. Nature 1996; 383: 344–347
  • Horvai A. E., Xu L., Korzus E., Brard G., Kalafus D., Mullen T. M., Rose D. W., Rosenfeld M. G., Glass C. K. Nuclear integration of JAK/STAT and Ras/AP-1 signaling by CBP and p300. Proc. Natl. Acad. USA 1997; 94: 1074–1079
  • Zhang J. J., Vinkemeier U., Gu W., Charkravarti D., Horvath C. M., Darnell J. E.J. Two contact regions between Stat 1 and CBP/p300 in interferon gamma signaling. Proc. Natl. Acad. Sci. USA 1996; 93: 15092–15096
  • Sato N., Sakamaki K., Terada N., Arai K., Miyajima A. Signal transduction by the high-affinity GM-CSF receptor: two distinct cytoplasmic regions of the common beta subunit responsible for different signaling. EMBO J. 1993; 12: 4181–4189
  • Kumar G., Gupta S., Wang S., Nel A. E. Involvement of Janus kinases, p52shc, Raf-1, and MEK-1 in the IL-6-induced mitogen-activated protein kinase cascade of a growth-responsive B cell line. J. Immunol. 1994; 153: 4436–4447
  • Friedmann M. C., Migone T. S., Russel S. M., Leonard W. J. Different interleukin 2 receptor β-chain tyrosines couple to at least two signaling pathways and synergistically mediate interleukin 2-induced proliferation. Proc. Natl. Acad. Sci. USA 1996; 89: 11239–11243
  • Wery S., Letourneur M., Bertoglio J., Pierre J. Interleukin-4 induces activation of mitogen-activated protein kinase and phosphorylation of she in human keratinocytes. J. Biol. Chem. 1996; 271: 8529–8532
  • Gurney A. L., Wong S. C., Henzel W. J., de-Sauvage F. J. Distinct regions of c-Mpl cytoplasmic domain are coupled to the JAK-STAT signal transduction pathway and She phosphorylation. Proc. Natl. Acad. Sci. USA 1995; 92: 5292–5296
  • Fukada T., Hibi M., Yamanaka Y., Takahashi-Tezuka M., Fujitani Y., Yamaguchi T., Nakajima K., Hirano T. Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 1996; 5: 449–460
  • Watanabe S., Itoh T., Arai K. Roles of JAK kinases in human GM-CSF receptor signal transduction. J. Allergv Clin. Immunol. 1996; 98: S183–191
  • Bennett A. M., Housdorff S. F., O'Reilly A. M., Freeman R. O., Jr., Neel B. G. Multiple requirements for SHPTP2 in epidermal growth factor-mediated cell cycle progression. Mol. Cell. Biol. 1996; 16: 1189–1202
  • Noguchi T., Matozaki T., Horita K., Fujioka Y., Kasuga M. Role of SH-PTP2, a protein-tyrosine phosphatase with Src homology 2 domains, in insulin-stimulated Ras activation. Mol. Cell. Biol. 1994; 14: 6674–6682
  • Tang T. L., Freeman R. M., Jr., O'Reilly A. M., Neel B. G., Sokol S. Y. The SH2-containing protein-tyrosine phosphatase SH-PTP2 is required upstream of MAP kinase for early Xenopus development. Cell 1995; 80: 473–483
  • Perkins L. A., Larsen I., Perrimon N. Corkscrew encodes a putative protein tyrosine phosphatase that functions to transduce the terminal signal from the receptor tyrosine kinase torso. Cell 1992; 70: 225–236
  • Perkins L. A., Johnson M. R., Melnick M. B., Perrimon N. The nonreceptor protein tyrosine phosphatase corkscrew functions in multiple receptor tyrosine kinase pathway in Drosophila. Dev. Biol. 1996; 180: 63–81
  • Songyang Z., Shoelson S. E., Chaudhuri M., Gish G., Pawson T., Haser W. G., King F., Roberts T., Ratnofsky S., Lechleider R. J., et al. SH2 domains recognize specific phosphopeptide sequences. Cell 1993; 72: 767–778
  • Bennett A. M., Tang T. L., Sugimoto S., Walsh C. T., Neel B. G. Protein-tyrosine-phosphatase SHPTP2 couples platelet-derived growth factor receptor beta to Ras. Proc. Natl. Acad. Sci. USA 1994; 91: 7335–7339
  • Adachi M., Ishino M., Torigoe T., Minami Y., Matozaki T., Miyazaki T., Taniguchi T., Hinoda Y., Imai K. Interleukin-2 induces tyrosine phosphorylation of SHP-2 through IL-2 receptor beta chain. Oncogene 1996; 14: 1629–1633
  • Yin T., Shen R., Feng G. S., Yang Y. C. Molecular characterization of specific interactions between SHP-2 phosphatase and JAK. tyrosine kinases. J. Biol. Chem. 1997; 212: 1032–1037
  • Herbst R., Carroll R. M., Allard J. D., Schilling J., Raabe T., Simon M. A. Daughter of Sevenless is a substrate of the phosphotyrosine phosphatase Corkscrew and functions during Sevenless signaling. Cell 1996; 85: 899–909
  • Raabe T., Riesgo-Escovar J., Liu X., Bausenwein B. S., Deak P., Maroy P., Hafen H. DOS, a novel pleckstrin homology domain-containing protein required for signal transduction between Sevenless and Rasl in Drosophila. Cell 1996; 85: 911–920
  • Johnston J. A., Wang L. M., Hanson E. P., Sun X. J., White M. F., Oakes S. A., Pierce J. H., O'Shea J. J. Interleukin 2, 4, 7, and 15 stimulate tyrosine phosphorylation of insulin receptor substrates 1 and 2 in T cells. Potential role of JAK kinases. J. Biol. Chem. 1995; 270: 28527–28530
  • Burfoot M. S., Rogers N. C., Watling D., Smith J. M., Pons S., Ciliberto G., Pellegrini S., White M. F., Kerr I. M. Janus kinase-dependent activation of insulin receptor substrate-1 in response to interleukin-4, oncostatin M and the interferons. J. Biol. Chem. 1997; 272: 24183–24190
  • Holgado-Madruga M., Emlet D. R., Mosacatello D. K., Godwin A. K., Wang A. J. Grb2-associated docking protein in EGF- and insulin-receptor signalling. Nature 1996; 319: 560–564
  • Weidner K. M., Di-Cesare S., Sachs M., Brinkmann V., Behrens J., Birchmeier W. Interaction between Gab1 and c-Met receptor tyrosine kinase is responsible for epithelial morphogenesis. Nature 1997; 384: 173–176
  • Takahashi-Tezuka M., Yoshida Y., Fukada T., Yamaguchi T., Yamanaka Y., Nakajima K., Hibi M., Hirano T., submitted
  • Wang L. M., Keegan A., Frankel M., Paul W. E., Pierce J. H. Signal transduction through the IL-4 and insulin receptor families. Stem Cells Dayt. 1995; 13: 360–8
  • Keegan A. D., Nelms K., White M., Wang L. M., Pierce J. H., Paul W. E. An IL-4 receptor region containing an insulin receptor motif is important for IL-4-mediated IRS-1 phosphorylation and cell growth. Cell 1994; 76: 811–820
  • Damen J. E., Cutler R. L., Jiao H., Yi T., Krystal G. Phosphorylation of tyrosine 503 in the erythropoietin receptor (EpR) is essential for binding the P85 subunit of phosphatidylinositol (PI) 3-kinase and for EpR-associated PI 3-kinase activity. J. Biol. Chem. 1995; 270: 23402–23408
  • Miura O., Nakamura N., Ihle J. N., Aoki N. Erythropoietin- dependent association of phosphatidylinositol 3-kinase with tyrosine-phosphory- lated erythropoietin receptor. J. Biol. Chem. 1994; 269: 614–620
  • Sharfe N., Dadi H. K., Roifman C M. JAK3 protein tyrosine kinase mediates interleukin-7-induced activation of phosphatidylinositol-3′ kinase. Blood 1995; 86: 2077–2085
  • Takahashi-Tezuka M., Hibi M., Fujitani Y., Fukada T., Yamaguchi T., Hirano T. Tec tyrosine kinase links the cytokine receptors to PI-3 kinase probably through JAK. Oncogene 1997; 14: 2273–2282
  • Pfeffer L. M., Mullersman J. E., Pfeffer S. R., Murti A., Shi W., Yang C. H. STAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science 1997; 276: 1418–1420
  • Matsuda T., Yamanaka Y., Hirano T. Interleukin-6-induced tyrosine phosphorylation of multiple proteins in murine hematopoietic lineage cells. Biochem. Biophys. Res. Commun. 1995; 200: 821–828
  • Machide M., Mano H., Todokoro K. Interleukin 3 and erythropoietin induce association of Vav with Tec kinase through Tec homology domain. Oncogene 1995; 11: 619–625
  • Crespo P., Schuebel K. E., Ostrom A. A., Gutkind J. S., Bustelo X. R. Phosphotyrosine-dependent activation of Rac-1 GDP/GTP exchange by the vav proto-oncogene product. Nature 1997; 385: 169–172
  • Raush O., Marshall C. J. Tyrosine 763 of the murine granulocyte colony-stimulating factor receptor mediates Ras dependent activation the JNK/SAPK mitogen-activated protein kinase pathway. Mol. Cell. Biol. 1997; 17: 1170–1179
  • Takeshita T., Arita T., Higuchi M., Asao H., Endo K., Kuroda H., Tanaka N., Marata K., Ishii N., Sugamura K. STAT, signal transducing adapter molecule, is associated with janus kinases and involved in signaling for cell growth and c-myc induction. Immunity 1997; 6: 449–457
  • Klingmuller U., Lorenz U., Cantley L. C., Neel B. G., Lodish H. F. Specific recruitment of SH-PTP1 to the erythropoietin receptor causes inactivation of JAK2 and termination of proliferative signals. Cell 1995; 80: 729–738
  • Starr R., Willson T. A., Viney E. M., Murray L. J., Rayner J. R., Jenkins B. J., Gonda T. J., Alexander W. S., Metcalf D., Nicola N. A., Hilton D. A family of cytokine inducible inhibitors of signaling. Nature 1997; 387: 917–921
  • Endo T. A., Masuhara M., Yokouchi M., Suzuki R., Sakamoto H., Mitsui K., Matusmoto A., et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924
  • Naka T., Narazaki M., Hirata M., Matsumoto T., Minamoto S., Aono A., Nishimoto N., Kajita T., et al. Structure and function of a new STAT- induced STAT inhibitor. Nature 1997; 387: 924–929
  • Durbin J. E., Hackenmiller R., Simon M. C., Levy D. E. Targeted disruption of the mouse Stat 1 gene results in compromised innate immunity to viral disease. Cell 1996; 84: 443–450
  • Meraz M. A., White J. M., Sheehan K. C., Bach E. A., Rodig S. J., Dighe A. S., Kaplan D. H., Riley J. K., Greenlund A. C., Campbell D., et al. Targeted disruption of the Statl gene in mice reveals unexpected physiologic specificity in the Jak-STAT signaling pathway. Cell 1996; 84: 431–442
  • Chin Y. E., Kitagawa M., Su W. C., You Z. H., Iwamoto Y., Fu X. Y. Cell growth arrest and induction of cyclin-dependent kinase inhibitor p21 WAF/CIP mediated by STAT1. Science 1996; 272: 719–722
  • Chin Y. E., Kitagawa M., Kuida K., Flavell R. A., Fu X. Y. Activation of STAT signaling pathway can cause expression of caspase 1 and apoptosis. Mol. Cell. Biol. 1997; 17: 5328–5337
  • Takeda K., Noguchi K., Shi W., Tanaka T., Matsumoto M., Yoshida N., Kishimoto T., Akira S. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc. Natl. Acad. Sci. USA 1997; 94: 3801–3804
  • Nakajima K., Yamanaka Y., Nakae K., Kojima H., Ichiba M., Kiuchi N., Kitaoka T., Fukada T., Hibi M., Hirano T. A central role for Stat3 in IL-6-induced regulation of growth and differentiation in M1 leukemia cells. EMBO J. 1996; 15: 3651–3658
  • Minami M., Inoue M., Wei S., et al. STAT3 activation is a critical step in gp130-mediated terminal differentiation and growth arrest of a myeloid cell line. Proc. Natl. Acad. Sci. USA 1996; 93: 3963–3966
  • Shimozaki K., Nakajima K., Hirano T., Nagata S. Involvement of STAT3 in the granulocyte colony stimulating factor-induced differentiation of myeloid cells. J. Biol. Chem. 1997; 272: 25184–25189
  • Boeuf H., Hauss C., De Graeve F., Baran N., Kedinger C. Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J. Cell. Biology 1997; 138: 1207–1217
  • Morese L., Chen D., Franklin D., Xiong Y., Chen-Kiang S. Induction of cell cycle arrest and B cell terminal differentiation by CDK inhibitor p18INK4c and IL-6. Immunity 1997; 6: 47–56
  • Narimatsu M., Nakajima K., Ichiba M., Hirano T. Association of Stat3-dependent transcriptional activation of p19INK4D with the IL-6-induced growth arrest. Biochem. Biophys. Res. Comm. 1997; 238: 764–768
  • Kaplan M. H., Sun Y. L., Hoey T., Grusby M. J. Impaired IL-12 responses and enhanced development of Th2 cells in Stat4-deficient mice. Nature 1996; 382: 174–177
  • Thierfelder W. E., van Deursen J. M., Yamamoto K., Tripp R. A., Sarawar S. R., Carson R. T., Sangster M. Y., Vignali D. A., Doherty P. C., Grosveld G. C., Ihle J. N. Requirement for Stat4 in interleukin-12-mediated responses of natural killer and T cells. Nature 1996; 382: 171–174
  • Liu X., Robinson G. W., Wagner K. U., Garrett L., Wynshaw-Boris A., Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997; 11: 179–186
  • Udy G. B., Towers R. P., Snell R. G., Wilkins R. J., Park S.-H., Ram P. A., Waxman D. J., Davey H. W. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl. Acad. Sci. USA 1997; 94: 7239–7244
  • Gobert S., Chretien S., Gouilleux F., Muller O., Pallard C., Dusanter-Fourt I., Groner B., Lacombe C., Gisselbrecht S., Mayeux P. Identification of tyrosine residues within the intracellular domain of the erythropoietin receptor crucial for STAT5 activation. EMBO J. 1996; 15: 2334–2341
  • Quelle F. W., Wang D., Nosaka T., Thierfelder W. E., Stravopodis D., Weinstein Y., Ihle J. N. Erythropoietin induces activation of Stat5 through association with specific tyrosines on the receptor that are not required for a mitogenic response. Mol. Cell. Biol., 16: 1622–1631
  • Muli A. L., Wakao H., Kinoshita T., Kitamura T., Miyajima A. Suppression of interleukin-3-induced gene expression by a C-terminal truncated Stat5: role of Stat5 in proliferation. EMBO J. 1996; 15: 2425–2433
  • Kaplan M. H., Schindler U., Smiley S. T., Grusby M. J. Stat6 is required for mediating responses to IL-4 and for development of Th2 cells. Immunity 1996; 4: 313–319
  • Shimoda K., van Deursen J., Sangster M. Y., Sarawar S. R., Carson R. T., Trpp R. A., Chu C., Quelle F. W., Nosaka T., Vignali D. A., et al. Lack of IL-4-induced Th2 response and IgE class switching in mice with disrupted Stat6 genes. Nature 1996; 380: 630–633
  • Takeda K., Tanaka T., Shi W., Matsumoto M., Minami M., Kashiwamura S., Nakanishi K., Yoshida N., Kishimoto T., Akira S. Essential role of Stat6 in IL-4 signaling. Nature 1996; 380: L627–630
  • Binari R., Perrimon N. Stripe-specific regulation of pair-rule genes by hopscotch, a putative Jak family tyrosine kinase in Drosophila. Genes Dev. 1994; 8: 300–312
  • Kinoshita T., Yokota T., Arai K., Miyajima A. Suppression of apoptotic death in hematopoietic cells by signalling through the IL-3/GM-CSF receptors. EMBO J. 1995; 14: 266–275
  • Ihara S., Nakajima K., Fukada T., et al. Dual control of neurite outgrowth by STAT3 and MAP kinase in PC 12 cells stimulated with interleukin-6. EMBO J. 1997; 17: 5345–5352
  • Nosaka T., van Deursen J. M., Tripp R. A., Thierfelder W. E., Witthuhn B. A., McMickle A. P., Doherty P. C., Grosveld G. C., Ihle J. N. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802
  • Park S. Y., Saijo K., Takahashi T., Osawa M., Arase H., Hirayama N., Miyake K., Nakauchi H., Shirasawa T., Saito T. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995; 3: 771–782
  • Coneway G, Margoliath A., Wong-Madden S., Roberts R. J., Gilbert W. Jakl kinase is required for cell migrations and anterior specification in zebrafish embryos. Proc. Natl. Acad. Sci. USA 1997; 94: 3082–3087

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.