289
Views
6
CrossRef citations to date
0
Altmetric
REVIEW

Prospects and Challenges of Reprogrammed Cells in Hematology and Oncology

, , , &
Pages 507-528 | Received 29 Jun 2012, Accepted 30 Jun 2012, Published online: 02 Aug 2012

REFERENCES

  • Reeves RH, Irving NG, Moran TH, et al. A mouse model for Down syndrome exhibits learning and behaviour deficits. Nat Genet. 1995;11:177–184, doi:10.1038/ng1095-177.
  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282:1145–1147.
  • Islam MS, Ni Z, Kaufman DS. Use of human embryonic stem cells to understand hematopoiesis and hematopoietic stem cell niche. Curr Stem Cell Res Ther. 2010;5:245–250.
  • Itskovitz-Eldor J, Schuldiner M, Karsenti D, et al. Differentiation of human embryonic stem cells into embryoid bodies compromising the three embryonic germ layers. Mol Med. 2000;6:88–95.
  • Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell. 2007;131:861–872, doi:10.1016/j.cell.2007.11.019.
  • Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676, doi:10.1016/j.cell.2006.07.024.
  • Wu GM, Liu N, Rittelmeyer I, et al. Generation of healthy mice from gene-corrected disease-specific induced pluripotent stem cells. PLoS Biol. 2011;9:e1001099, doi:10.1371/journal.pbio.1001099.
  • Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation. Nature. 2009;461:86–90, doi:10.1038/Nature08267.
  • Huangfu D, Osafune K, Maehr R, et al. Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol. 2008;26:1269–1275, doi:10.1038/nbt.1502.
  • Li W, Zhou H, Abujarour R, et al. Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells. 2009;27:2992–3000, doi:10.1002/stem.240.
  • Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 2007;318:1917–1920, doi:10.1126/science.1151526.
  • Hester ME, Song SW, Miranda CJ, et al. Two factor reprogramming of human neural stem cells into pluripotency. PLoS ONE. 2009;4:e7044, doi:10.1371/journal.pone.0007044.
  • Theunissen TW, van Oosten AL, Castelo-Branco G, et al. Nanog overcomes reprogramming barriers and induces pluripotency in minimal conditions. Curr Biol. 2011;21:65–71, doi:10.1016/j.cub.2010.11.074.
  • Kim JB, Greber B, Arauzo-Bravo MJ, et al. Direct reprogramming of human neural stem cells by OCT4. Nature. 2009;461:649–653, doi:10.1038/nature08436.
  • Thomson M, Liu SJ, Zou L-N, et al. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell. 2011;145:875–889, doi:10.1016/j.cell.2011.05.017.
  • Rodda DJ, Chew JL, Lim LH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–24737, doi:10.1074/jbc.M502573200.
  • Pan GJ, Chang ZY, Scholer HR, Pei D. Stem cell pluripotency and transcription factor Oct4. Cell Res. 2002;12:321–329, doi:10.1038/sj.cr.7290134.
  • Yamanaka S, Li J, Kania G, et al. Pluripotency of embryonic stem cells. Cell Tissue Res. 2008;331:5–22, doi:10.1007/s00441-007-0520-5.
  • Chew JL, Loh YH, Zhang W, et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol. 2005;25:6031–6046, doi:10.1128/MCB.25.14.6031-6046.2005.
  • zur Nieden NI, Cormier JT, Rancourt DE, Kallos MS. Embryonic stem cells remain highly pluripotent following long term expansion as aggregates in suspension bioreactors. J Biotechnol. 2007;129:421–432, doi:10.1016/j.jbiotec.2007.01.006.
  • Carey BW, Markoulaki S, Hanna J, et al. Reprogramming of murine and human somatic cells using a single polycistronic vector. Proc Natl Acad Sci USA. 2009;106:157–162, doi:10.1073/pnas.0811426106.
  • Chang CW, Lai YS, Pawlik KM, et al. Polycistronic lentiviral vector for “hit and run” reprogramming of adult skin fibroblasts to induced pluripotent stem cells. Stem Cells. 2009;27:1042–1049, doi:10.1002/stem.39.
  • Papapetrou EP, Sadelain M. Generation of transgene-free human induced pluripotent stem cells with an excisable single polycistronic vector. Nat Protoc. 2011;6:1251–1273, doi:10.1038/nprot.2011.374.
  • Si-Tayeb K, Noto FK, Sepac A, et al. Generation of human induced pluripotent stem cells by simple transient transfection of plasmid DNA encoding reprogramming factors. BMC Dev Biol. 2010;10:81, doi:10.1186/1471-213X-10-81.
  • Warlich E, Kuehle J, Cantz T, et al. Lentiviral vector design and imaging approaches to visualize the early stages of cellular reprogramming. Mol Ther: J Am Soc Gene Ther. 2011;19:782–789, doi:10.1038/mt.2010.314.
  • Yusa K, Rad R, Takeda J, Bradley A. Generation of transgene-free induced pluripotent mouse stem cells by the piggyBac transposon. Nat Methods. 2009;6:363–369, doi:10.1038/nmeth.1323.
  • Anokye-Danso F, Trivedi CM, Juhr D, et al. Highly efficient miRNA-mediated reprogramming of mouse and human somatic cells to pluripotency. Cell Stem Cell. 2011;8:376–388, doi:10.1016/j.stem.2011.03.001.
  • Kim D, Kim CH, Moon JI, et al. Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell. 2009;4:472–476, doi:10.1016/j.stem.2009.05.005.
  • Zhou H, Wu S, Joo JY, et al. Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell. 2009;4:381–384, doi:10.1016/j.stem.2009.04.005.
  • Plews JR, Li J, Jones M, et al. Activation of pluripotency genes in human fibroblast cells by a novel mRNA based approach. PLoS ONE. 2010;5:e14397, doi:10.1371/journal.pone.0014397.
  • Warren L, Manos PD, Ahfeldt T, et al. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell. 2010;7:618–630, doi:10.1016/j.stem.2010.08.012.
  • Yakubov E, Rechavi G, Rozenblatt S, Givol D. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun. 2010;394:189–193, doi:10.1016/j.bbrc.2010.02.150.
  • Voelkel C, Galla M, Maetzig T, et al. Protein transduction from retroviral Gag precursors. Proc Natl Acad Sci USA. 2010;107:7805–7810, doi:10.1073/pnas.0914517107.
  • Novak A, Shtrichman R, Germanguz I, et al. Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles, using a single excisable lentivirus. Cell Reprog. 2010;12:665–678, doi:10.1089/cell.2010.0027.
  • Fang Y, Orner BP. Induction of pluripotency in fibroblasts through the expression of only four nuclear proteins. ACS Chem Biol. 2006;1:557–558, doi:10.1021/cb600402w.
  • Picanco-Castro V, Russo-Carbolante E, Reis LC, et al. Pluripotent reprogramming of fibroblasts by lentiviral mediated insertion of SOX2, C-MYC, and TCL-1A. Stem Cells Dev. 2011;20:169–180, doi:10.1089/scd.2009.0424.
  • Woltjen K, Michael IP, Mohseni P, et al. piggyBac transposition reprograms fibroblasts to induced pluripotent stem cells. Nature. 2009;458:766–770, doi:10.1038/nature07863.
  • Hu K, Yu J, Suknuntha K, et al. Efficient generation of transgene-free induced pluripotent stem cells from normal and neoplastic bone marrow and cord blood mononuclear cells. Blood. 2011;117:e109–e119, doi:10.1182/blood-2010-07-298331.
  • Kunisato A, Wakatsuki M, Kodama Y, et al. Generation of induced pluripotent stem cells by efficient reprogramming of adult bone marrow cells. Stem Cells Dev. 2010;19:229–238, doi:10.1089/scd.2009.0149.
  • Meng X, Neises A, Su RJ, et al. Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Mol Ther: J Am Soc Gene Ther. 2012;20:408–416, doi:10.1038/mt.2011.258.
  • Ye Z, Zhan H, Mali P, et al. Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood. 2009;114:5473–5480, doi:10.1182/blood-2009-04-217406.
  • Brown ME, Rondon E, Rajesh D, et al. Derivation of induced pluripotent stem cells from human peripheral blood T lymphocytes. PLoS ONE. 2010;5:e11373, doi:10.1371/journal.pone. 0011373.
  • Haase A, Olmer R, Schwanke K, et al. Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell. 2009;5:434–441, doi:10.1016/j.stem.2009.08.021.
  • Giorgetti A, Montserrat N, Aasen T, et al. Generation of induced pluripotent stem cells from human cord blood using OCT4 and SOX2. Cell Stem Cell. 2009;5:353–357, doi:10.1016/j.stem.2009.09.008.
  • Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood. Blood. 2009;113:5476–5479, doi:10.1182/blood-2009-02-204800.
  • Seki T, Yuasa S, Fukuda K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat Protoc. 2012;7:718–728, doi:10.1038/nprot.2012.015.
  • Staerk J, Dawlaty MM, Gao Q, et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell. 2010;7:20–24, doi:10.1016/j.stem.2010.06.002.
  • Saha K, Jaenisch R. Technical challenges in using human induced pluripotent stem cells to model disease. Cell Stem Cell. 2009;5:584–595, doi:10.1016/j.stem.2009.11.009.
  • Gross B, Sgodda M, Rasche M, et al. Improved generation of patient-specific induced pluripotent stem cells using a chemically defined and Matrigel-based approach. Curr Mol Med; in press.
  • Koche RP, Smith ZD, Adli M, et al. Reprogramming factor expression initiates widespread targeted chromatin remodeling. Cell Stem Cell. 2011;8:96–105, doi:10.1016/j.stem.2010.12.001.
  • Silva J, Barrandon O, Nichols J, et al. Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol. 2008;6:e253, doi:10.1371/journal.pbio.0060253.
  • Mikkelsen TS, Hanna J, Zhang X, et al. Dissecting direct reprogramming through integrative genomic analysis. Nature. 2008;454:49–55, doi:10.1038/nature07056.
  • Kretsovali A, Hadjimichael C, Charmpilas N. Histone deacetylase inhibitors in cell pluripotency, differentiation, and reprogramming. Stem Cells Int. 2012;2012:184154, doi:10.1155/2012/ 184154.
  • Huangfu D, Maehr R, Guo W, et al. Induction of pluripotent stem cells by defined factors is greatly improved by small-molecule compounds. Nat Biotechnol. 2008;26:795–797, doi:10.1038/nbt1418.
  • Li W, Wei W, Zhu S, et al. Generation of rat and human induced pluripotent stem cells by combining genetic reprogramming and chemical inhibitors. Cell Stem Cell. 2009;4:16–19, doi:10.1016/j.stem.2008.11.014.
  • Lin T, Ambasudhan R, Yuan X, et al. A chemical platform for improved induction of human iPSCs. Nat Methods. 2009;6:805–808, doi:10.1038/nmeth.1393.
  • Ichida JK, Blanchard J, Lam K, et al. A small-molecule inhibitor of tgf-Beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell. 2009;5:491–503, doi:10.1016/j.stem.2009.09.012.
  • Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol. 2007;25:681–686, doi:10.1038/nbt1310.
  • Xu Y, Zhu X, Hahm HS, et al. Revealing a core signaling regulatory mechanism for pluripotent stem cell survival and self-renewal by small molecules. Proc Natl Acad Sci USA. 2010;107:8129–8134, doi:10.1073/pnas.1002024107.
  • Esteban MA, Wang T, Qin B, et al. Vitamin C enhances the generation of mouse and human induced pluripotent stem cells. Cell Stem Cell. 2010;6:71–79, doi:10.1016/j.stem.2009.12.001.
  • Shi Y, Zhao Y, Deng H. Powering reprogramming with vitamin C. Cell Stem Cell. 2010;6:1–2, doi:10.1016/j.stem.2009.12.012.
  • Wang T, Chen K, Zeng X, et al. The histone demethylases Jhdm1a/1b enhance somatic cell reprogramming in a vitamin-C-dependent manner. Cell Stem Cell. 2011;9:575–587, doi:10.1016/j.stem.2011.10.005.
  • Greenlee AR, Kronenwetter-Koepel TA, Kaiser SJ, et al. Combined effects of Matrigel and growth factors on maintaining undifferentiated murine embryonic stem cells for embryotoxicity testing. Toxicol In Vitro. 2004;18:543–553, doi:10.1016/j.tiv.2004.01.013.
  • Greenlee AR, Kronenwetter-Koepel TA, Kaiser SJ, Liu K. Comparison of Matrigel and gelatin substrata for feeder-free culture of undifferentiated mouse embryonic stem cells for toxicity testing. Toxicol In Vitro. 2005;19:389–397, doi:10.1016/j.tiv.2004.11.002.
  • Zhou YP, Rochat A, Hatzfeld A, et al. bFGF-stimulated MEF-conditioned medium is capable of maintaining human embryonic stem cells. Fen Zi Xi Bao Sheng Wu Xue Bao. 2009;42:193–199.
  • Heydarkhan-Hagvall S, Gluck JM, Delman C, et al. The effect of vitronectin on the differentiation of embryonic stem cells in a 3D culture system. Biomaterials. 2012;33:2032–2040, doi:10.1016/j.biomaterials.2011.11.065.
  • Li J, Bardy J, Yap LY, et al. Impact of vitronectin concentration and surface properties on the stable propagation of human embryonic stem cells. Biointerphases. 2010;5:FA132–FA142, doi:10.1116/1.3525804.
  • Li Z, Leung M, Hopper R, et al. Feeder-free self-renewal of human embryonic stem cells in 3D porous natural polymer scaffolds. Biomaterials. 2010;31:404–412, doi:10.1016/ j.biomaterials.2009.09.070.
  • Mahlstedt MM, Anderson D, Sharp JS, et al. Maintenance of pluripotency in human embryonic stem cells cultured on a synthetic substrate in conditioned medium. Biotechnol Bioeng. 2010;105:130–140, doi:10.1002/bit.22520.
  • Ludwig TE, Bergendahl V, Levenstein ME, et al. Feeder-independent culture of human embryonic stem cells. Nat Methods. 2006;3:637–646, doi:10.1038/nmeth902.
  • Ludwig TE, Levenstein ME, Jones JM, et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol. 2006;24:185–187, doi:10.1038/nbt1177.
  • Olmer R, Haase A, Merkert S, et al. Long term expansion of undifferentiated human iPS and ES cells in suspension culture using a defined medium. Stem Cell Res. 2010;5:51–64, doi:10.1016/j.scr.2010.03.005.
  • Laurent LC, Ulitsky I, Slavin I, et al. Dynamic changes in the copy number of pluripotency and cell proliferation genes in human ESCs and iPSCs during reprogramming and time in culture. Cell Stem Cell. 2011;8:106–118, doi:10.1016/j.stem.2010.12.003.
  • Bock C, Kiskinis E, Verstappen G, et al. Reference maps of human ES and iPS cell variation enable high-throughput characterization of pluripotent cell lines. Cell. 2011;144:439–452, doi:10.1016/j.cell.2010.12.032.
  • Chin MH, Mason MJ, Xie W, et al. Induced pluripotent stem cells and embryonic stem cells are distinguished by gene expression signatures. Cell Stem Cell. 2009;5:111–123, doi:10.1016/j.stem.2009.06.008.
  • Chin MH, Pellegrini M, Plath K, Lowry WE. Molecular analyses of human induced pluripotent stem cells and embryonic stem cells. Cell Stem Cell. 2010;7:263–269, doi:10.1016/j.stem.2010. 06.019.
  • Narva E, Autio R, Rahkonen N, et al. High-resolution DNA analysis of human embryonic stem cell lines reveals culture-induced copy number changes and loss of heterozygosity. Nat Biotechnol. 2010;28:371–377, doi:10.1038/nbt.1615.
  • Spits C, Mateizel I, Geens M, et al. Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol. 2008;26:1361–1363, doi:10.1038/nbt.1510.
  • Baker DE, Harrison NJ, Maltby E, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo. Nat Biotechnol. 2007;25:207–215, doi:10.1038/nbt1285.
  • Draper JS, Smith K, Gokhale P, et al. Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol. 2004;22:53–54, doi:10.1038/nbt922.
  • Mitalipova MM, Rao RR, Hoyer DM, et al. Preserving the genetic integrity of human embryonic stem cells. Nat Biotechnol. 2005;23:19–20, doi:10.1038/nbt0105-19.
  • Martins-Taylor K, Nisler BS, Taapken SM, et al. Recurrent copy number variations in human induced pluripotent stem cells. Nat Biotechnol. 2011;29:488–491, doi:10.1038/nbt.1890.
  • Newman AM, Cooper JB. Lab-specific gene expression signatures in pluripotent stem cells. Cell Stem Cell. 2010;7:258–262, doi:10.1016/j.stem.2010.06.016.
  • Dommergues M, Aubeny E, Dumez Y, et al. Hematopoiesis in the human yolk sac: quantitation of erythroid and granulopoietic progenitors between 3.5 and 8 weeks of development. Bone Marrow Transpl. 1992;9(Suppl. 1):23–27.
  • Durand C, Dzierzak E. Embryonic beginnings of adult hematopoietic stem cells. Haematologica. 2005;90:100–108.
  • Medvinsky A, Dzierzak E. Definitive hematopoiesis is autonomously initiated by the AGM region. Cell. 1996;86:897–906.
  • Yahata T, Muguruma Y, Yumino S, et al. Quiescent human hematopoietic stem cells in the bone marrow niches organize the hierarchical structure of hematopoiesis. Stem Cells. 2008;26:3228–3236, doi:10.1634/stemcells.2008-0552.
  • Choi KD, Vodyanik MA, Slukvin II. Generation of mature human myelomonocytic cells through expansion and differentiation of pluripotent stem cell-derived line-CD34+CD43+CD45+ progenitors. J Clin Invest. 2009;119:2818–2829, doi:10.1172/JCI38591.
  • Choi KD, Yu J, Smuga-Otto K, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells. Stem Cells. 2009;27:559–567, doi:10.1634/stemcells.2008-0922.
  • Kim SJ, Kim BS, Ryu SW, et al. Hematopoietic differentiation of embryoid bodies derived from the human embryonic stem cell line SNUhES3 in co-culture with human bone marrow stromal cells. Yonsei Med J. 2005;46:693–699.
  • Ledran MH, Krassowska A, Armstrong L, et al. Efficient hematopoietic differentiation of human embryonic stem cells on stromal cells derived from hematopoietic niches. Cell Stem Cell. 2008;3:85–98, doi:10.1016/j.stem.2008.06.001.
  • Ng ES, Davis RP, Hatzistavrou T, et al. Directed differentiation of human embryonic stem cells as spin embryoid bodies and a description of the hematopoietic blast colony forming assay. Curr Protoc Stem Cell Biol. 2008;Chapter 1:Unit 1D.3, doi:10.1002/9780470151808.sc01d03s4.
  • Niwa A, Heike T, Umeda K, et al. A novel serum-free monolayer culture for orderly hematopoietic differentiation of human pluripotent cells via mesodermal progenitors. PLoS ONE. 2011;6:e22261, doi:10.1371/journal.pone.0022261.
  • Pick M, Azzola L, Mossman A, et al. Differentiation of human embryonic stem cells in serum-free medium reveals distinct roles for bone morphogenetic protein 4, vascular endothelial growth factor, stem cell factor, and fibroblast growth factor 2 in hematopoiesis. Stem Cells. 2007;25:2206–2214, doi:10.1634/stemcells.2006-0713.
  • Zambidis ET, Peault B, Park TS, et al. Hematopoietic differentiation of human embryonic stem cells progresses through sequential hematoendothelial, primitive, and definitive stages resembling human yolk sac development. Blood. 2005;106:860–870, doi:10.1182/blood-2004-11-4522.
  • Trivedi P, Hematti P. Simultaneous generation of CD34+ primitive hematopoietic cells and CD73+ mesenchymal stem cells from human embryonic stem cells cocultured with murine OP9 stromal cells. Exp Hematol. 2007;35:146–154, doi:10.1016/j.exphem.2006.09.003.
  • Wang L, Menendez P, Shojaei F, et al. Generation of hematopoietic repopulating cells from human embryonic stem cells independent of ectopic HOXB4 expression. J Exp Med. 2005;201:1603–1614, doi:10.1084/jem.20041888.
  • Narayan AD, Chase JL, Lewis RL, et al. Human embryonic stem cell-derived hematopoietic cells are capable of engrafting primary as well as secondary fetal sheep recipients. Blood. 2006;107:2180–2183, doi:10.1182/blood-2005-05-1922.
  • Chicha L, Feki A, Boni A, et al. Human pluripotent stem cells differentiated in fully defined medium generate hematopoietic CD34− and CD34+ progenitors with distinct characteristics. PLoS ONE. 2011;6:e14733, doi:10.1371/journal.pone.0014733.
  • Chang CJ, Mitra K, Koya M, et al. Production of embryonic and fetal-like red blood cells from human induced pluripotent stem cells. PLoS ONE. 2011;6:e25761, doi:10.1371/journal.pone.0025761.
  • Dias J, Gumenyuk M, Kang HJ, et al. Generation of red blood cells from human induced pluripotent stem cells. Stem Cells Dev. 2011;20:1639–1647, doi:10.1089/scd.2011.0078.
  • Dixon N, Kishnani PS, Zimmerman S. Clinical manifestations of hematologic and oncologic disorders in patients with Down syndrome. Am J Med Genet Part C: Semin Med Genet. 2006;142C:149–157.
  • Blink M, van den Heuvel-Eibrink MM, de Haas V, et al. Low frequency of type-I and type-II aberrations in myeloid leukemia of Down syndrome, underscoring the unique entity of this disease. Haematologica. 2012;97:632–634, doi:10.3324/haematol.2011.057505.
  • Zwaan CM, Reinhardt D, Hitzler J, Vyas P. Acute leukemias in children with Down syndrome. Hematol Oncol Clin N. 2010;24:19–34, doi:10.1016/j.hoc.2009.11.009.
  • Wechsler J, Greene M, McDevitt MA, et al. Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome. Nat Genet. 2002;32:148–152, doi:10.1038/ng955.
  • Alford KA, Reinhardt K, Garnett C, et al. Analysis of GATA1 mutations in Down syndrome transient myeloproliferative disorder and myeloid leukemia. Blood. 2011;118:2222–2238, doi:10.1182/blood-2011-03-342774.
  • Klusmann JH, Godinho FJ, Heitmann K, et al. Developmental stage-specific interplay of GATA1 and IGF signaling in fetal megakaryopoiesis and leukemogenesis. Gene Dev. 2010;24:1659–1672, doi:10.1101/gad.1903410.
  • Li Z, Godinho FJ, Klusmann JH, et al. Developmental stage-selective effect of somatically mutated leukemogenic transcription factor GATA1. Nat Genet. 2005;37:613–619, doi:10.1038/ng1566.
  • Klusmann JH, Li Z, Bohmer K, et al. miR-125b-2 is a potential oncomiR on human chromosome 21 in megakaryoblastic leukemia. Genes Dev. 2010;24:478–490, doi:10.1101/gad.1856210.
  • Mou X, Wu Y, Cao H, et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down Syndrome. Stem Cell Res Ther. 2012;3:14.
  • De Vita S, Canzonetta C, Mulligan C, et al. Trisomic dose of several chromosome 21 genes perturbs haematopoietic stem and progenitor cell differentiation in Down's syndrome. Oncogene. 2010;29:6102–6114, doi:10.1038/Onc.2010.351.
  • Chou ST, VanDorn D, Yao Y, et al. Patient-derived induced pluripotent stem cells reveal distinct hematopoietic defects conferred by Trisomy 21 and Truncated GATA-1. Blood. 2011;118: 416–416.
  • Tunstall-Pedoe O, Roy A, Karadimitris A, et al. Abnormalities in the myeloid progenitor compartment in Down syndrome fetal liver precede acquisition of GATA1 mutations. Blood. 2008;112:4507–4511, doi:10.1182/blood-2008-04-152967.
  • Chou ST, Opalinska JB, Yao Y, et al. Trisomy 21 enhances human fetal erythro-megakaryocytic development. Blood. 2008;112:4503–4506, doi:10.1182/blood-2008-05-157859.
  • MacLean GA, Menne TF, Park IH, et al. Altered hematopoiesis in trisomy 21 as revealed through in vitro differentiation of isogenic human pluripotent cells. Blood. 2011;118:419–420.
  • Bedel A, Moreau-Gaudry F, Pasquet JM, et al. Induced pluripotent stem cells (iPSC) from chronic myeloid leukemia: study of BCR–ABL addiction and effect of tyrosine kinase inhibitors. Blood. 2011;118:1602–1603.
  • Urbach A, Bar-Nur O, Daley GQ, Benvenisty N. Differential modeling of fragile X syndrome by human embryonic stem cells and induced pluripotent stem cells. Cell Stem Cell. 2010;6:407–411, doi:10.1016/j.stem.2010.04.005.
  • Witko-Sarsat V, Rieu P, Descamps-Latscha B, et al. Neutrophils: molecules, functions and pathophysiological aspects. Lab Invest. 2000;80:617–653.
  • Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol. 2010;191:677–691, doi:10.1083/jcb.201006052.
  • Bohn G, Welte K, Klein C. Severe congenital neutropenia: new genes explain an old disease. Curr Opin Rheumatol. 2007;19:644–650, doi:10.1097/BOR.0b013e3282f05cc2.
  • Rosenberg PS, Alter BP, Bolyard AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood. 2006;107:4628–4635, doi:10.1182/blood-2005-11-4370.
  • Klein C, Grudzien M, Appaswamy G, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39:86–92, doi:10.1038/ng1940.
  • Kostmann R. Infantile genetic agranulocytosis; agranulocytosis infantilis hereditaria. Acta Paediatr Suppl. 1956;45:1–78.
  • Modem S, Reddy TR. An anti-apoptotic protein, Hax-1, inhibits the HIV-1 rev function by altering its sub-cellular localization. J Cell Physiol. 2008;214:14–19, doi:10.1002/jcp.21305.
  • Grenda DS, Murakami M, Ghatak J, et al. Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood. 2007;110:4179–4187, doi:10.1182/blood-2006-11-057299.
  • Matsushita H, Asai S, Komiya S, et al. A family of severe congenital neutropenia with −199C to A substitution in ELA2 promoter. Am J Hematol. 2006;81:985–986, doi:10.1002/ajh.20637.
  • Boxer LA, Stein S, Buckley D, et al. Strong evidence for autosomal dominant inheritance of severe congenital neutropenia associated with ELA2 mutations. J Pediatr. 2006;148:633–636, doi:10.1016/j.jpeds.2005.12.029.
  • Chao JR, Parganas E, Boyd K, et al. Hax1-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature. 2008;452:98–102, doi:10.1038/Nature06604.
  • Grenda DS, Johnson SE, Mayer JR, et al. Mice expressing a neutrophil elastase mutation derived from patients with severe congenital neutropenia have normal granulopoiesis. Blood. 2002;100:3221–3228, doi:10.1182/blood-2002-05-1372.
  • Hiramoto T, Ebihara Y, Mizoguchi Y, et al. Suppressed neutrophil development in hematopoiesis of induced pluripotent stem cells derived from a severe congenital neutropenia patient with ELA2 mutation. Blood. 2011;118:331.
  • Morishima T, Watanabe KI, Niwa A, et al. Reduced production of mature neutrophils from induced pluripotent stem cells derived from a severe congenital neutropenia patient with HAX1 gene deficiency. Blood. 2011;118:1033.
  • Gasparyan AY. Platelets in inflammation and thrombosis. Inflamm Allergy Drug Targets. 2010;9:319–321.
  • Miyazaki H. Physiologic role of TPO in thrombopoiesis. Stem Cells. 1996;14(Suppl. 1):133–138, doi:10.1002/stem.5530140717.
  • Geddis AE. Congenital amegakaryocytic thrombocytopenia. Pediatr Blood Cancer. 2011;57:199–203, doi:10.1002/pbc.22927.
  • Takayama N, Hirata S, Jono-Ohnishi R, et al. Modeling congenital amegakaryocytic thrombocytopenia using patient-specific induced pluripotent stem cells. Blood. 2011; 118:320–320.
  • Labbaye C, Spinello I, Quaranta MT, et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis. Nat Cell Biol. 2008;10:788–801, doi:10.1038/Ncb1741.
  • Turner JI, Eisbacher M, Johnson LN, Chong B. Analysis of gene regulation by Fli-1 during megakaryopoeisis. Blood. 2003;102:158b–158b.
  • Preudhomme C, Renneville A, Bourdon V, et al. High frequency of RUNX1 biallelic alteration in acute myeloid leukemia secondary to familial platelet disorder. Blood. 2009;113:5583–5587, doi:10.1182/blood-2008-07-168260.
  • Michaud J, Wu F, Osato M, et al. In vitro analyses of known and novel RUNX1/AML1 mutations in dominant familial platelet disorder with predisposition to acute myelogenous leukemia: implications for mechanisms of pathogenesis. Blood. 2002;99:1364–1372.
  • Ardlie NG, Coupland WW, Schoefl GI. Hereditary thrombocytopathy: a familial bleeding disorder due to impaired platelet coagulant activity. Aust NZ J Med. 1976;6:37–45.
  • Owen C, Barnett M, Fitzgibbon J. Familial myelodysplasia and acute myeloid leukaemia—a review. Br J Haematol. 2008;140:123–132, doi:10.1111/j.1365-2141.2007.06909.x.
  • Ma X, Does M, Raza A, Mayne ST. Myelodysplastic syndromes—incidence and survival in the United States. Cancer. 2007;109:1536–1542, doi:10.1002/Cncr.22570.
  • Chen F, Peng GJ, Zhang K, et al. FANCA gene mutation analysis in Fanconi anemia patients. Zhonghua Xue Ye Xue Za Zhi. 2005;26:616–618.
  • Song L. A possible approach for stem cell gene therapy of Fanconi anemia. Curr Gene Ther. 2009;9:26–32.
  • Gluckman E, Berger R, Dutreix J. Bone marrow transplantation for Fanconi anemia. Semin Hematol. 1984;21:20–26.
  • Raya A, Rodriguez-Piza I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature. 2009;460:53–59, doi:10.1038/nature08129.
  • Townes TM. Gene replacement therapy for sickle cell disease and other blood disorders. Hematol Am Soc Hematol Educ Prog. 2008;193–196, doi:10.1182/asheducation-2008.1.193.
  • Sebastiano V, Maeder ML, Angstman JF, et al. In situ genetic correction of the sickle cell anemia mutation in human induced pluripotent stem cells using engineered zinc finger nucleases. Stem Cells. 2011;29:1717–1726, doi:10.1002/stem.718.
  • Zou J, Mali P, Huang X, et al. Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease. Blood. 2011;118:4599–4608, doi:10.1182/blood-2011-02-335554.
  • Wang Y, Zheng CG, Jiang Y, et al. Genetic correction of beta-thalassemia patient-specific iPS cells and its use in improving hemoglobin production in irradiated SCID mice. Cell Res. 2012;22:637–648, doi:10.1038/cr.2012.23.
  • Herbschleb-Voogt E, Pearson PL, Vossen JM, Meera Khan P. Basic defect in the expression of adenosine deaminase in ADA-SCID disease investigated through the cells of an obligate heterozygote. Hum Genet. 1981;56:379–386.
  • Gaspar HB, Bjorkegren E, Parsley K, et al. Successful reconstitution of immunity in ADA-SCID by stem cell gene therapy following cessation of PEG-ADA and use of mild preconditioning. Mol Ther: J Am Soc Gene Ther. 2006;14:505–513, doi:10.1016/j.ymthe.2006.06.007.
  • Aiuti A, Slavin S, Aker M, et al. Correction of ADA-SCID by stem cell gene therapy combined with nonmyeloablative conditioning. Science. 2002;296:2410–2413, doi:10.1126/science. 1070104.
  • Park IH, Arora N, Huo H, et al. Disease-specific induced pluripotent stem cells. Cell. 2008;134:877–886, doi:10.1016/j.cell.2008.07.041.
  • Dunbar CE. The yin and yang of stem cell gene therapy: insights into hematopoiesis, leukemogenesis, and gene therapy safety. Hematol Am Soc Hematol Educ Prog. 2007;2007:460–465, doi:10.1182/asheducation-2007.1.460.
  • Gropp M, Itsykson P, Singer O, et al. Stable genetic modification of human embryonic stem cells by lentiviral vectors. Mol Ther: J Am Soc Gene Ther. 2003;7:281–287.
  • Ma Y, Ramezani A, Lewis R, et al. High-level sustained transgene expression in human embryonic stem cells using lentiviral vectors. Stem Cells. 2003;21:111–117, doi:10.1634/stemcells.21-1-111.
  • Wu C, Dunbar CE. Stem cell gene therapy: the risks of insertional mutagenesis and approaches to minimize genotoxicity. Front Med. 2011;5:356–371, doi:10.1007/s11684-011-0159-1.
  • Hacein-Bey-Abina S, Von Kalle C, Schmidt M, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–419.
  • Stein S, Ott MG, Schultze-Strasser S, et al. Genomic instability and myelodysplasia with monosomy 7 consequent to EVI1 activation after gene therapy for chronic granulomatous disease. Nat Med. 2010;16:198–204, doi:10.1038/Nm.2088.
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA. 1996;93:1156–1160.
  • Miller JC, Holmes MC, Wang J, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol. 2007;25:778–785, doi:10.1038/Nbt1319.
  • Doyon Y, Vo TD, Mendel MC, et al. Enhancing zinc-finger-nuclease activity with improved obligate heterodimeric architectures. Nat Methods. 2011;8:74–79, doi:10.1038/Nmeth.1539.
  • Zou J, Sweeney CL, Chou BK, et al. Oxidase-deficient neutrophils from X-linked chronic granulomatous disease iPS cells: functional correction by zinc finger nuclease-mediated safe harbor targeting. Blood. 2011;117:5561–5572, doi:10.1182/blood-2010-12-328161.
  • Muller LU, Milsom MD, Harris CE, et al. Overcoming reprogramming resistance of Fanconi anemia cells. Blood 2012; doi:10.1182/blood-2012-02-408674.
  • Kaufman DS. Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood. 2009;114:3513–3523, doi:10.1182/blood-2009-03-191304.
  • Lapillonne H, Kobari L, Mazurier C, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine. Haematologica. 2010;95:1651–1659, doi:10.3324/haematol.2010.023556.
  • Morishima T, Watanbe KI, Niwa A, et al. Neutrophil differentiation from human-induced pluripotent stem cells. J Cell Physiol. 2011;226:1283–1291, doi:10.1002/jcp.22456.
  • Nakamura S, Takayama N, Nakauchi H, Eto K. Platelet production system using an immortalized megakaryocyte cell line derived from human pluripotent stem cells. Blood. 2011;118:3.
  • Shafa M, Sjonnesen K, Yamashita A, et al. Expansion and long-term maintenance of induced pluripotent stem cells in stirred suspension bioreactors. J Tissue Eng Regen Med. 2012;6:462–472, doi:10.1002/term.450.
  • Olmer R, Lange A, Selzer S, et al. Suspension culture of human pluripotent stem cells in controlled, stirred bioreactors. Tissue Eng Part C: Methods. 2012; doi:10.1089/ten.TEC.2011.0717.
  • Zweigerdt R, Olmer R, Singh H, et al. Scalable expansion of human pluripotent stem cells in suspension culture. Nat Protoc. 2011;6:689–700, doi:10.1038/nprot.2011.318.
  • Sachlos E, Risueno RM, Laronde S, et al. Identification of drugs including a dopamine receptor antagonist that selectively target cancer stem cells. Cell. 2012;149:1284–1297, doi:10.1016/j.cell.2012.03.049.
  • Mou X, Wu Y, Cao H, et al. Generation of disease-specific induced pluripotent stem cells from patients with different karyotypes of Down Syndrome. Stem Cell Res Ther. 2012;3:14, doi:10.1186/scrt105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.