427
Views
28
CrossRef citations to date
0
Altmetric
Research Article

Development of novel therapies for MG: Studies in animal models

, &
Pages 446-460 | Received 26 Nov 2009, Accepted 30 Nov 2009, Published online: 19 Mar 2010

References

  • Shelton GD. Acquired myasthenia gravis: What we have learned from experimental and spontaneous animal models. Vet Immunol Immunopathol. 1999; 69:239–249.
  • Link H, Xiao BG. Rat models as tool to develop new immunotherapies. Immunol Rev. 2001; 184:117–128.
  • Meinl E, Klinkert WE, Wekerle H. The thymus in myasthenia gravis. Changes typical for the human disease are absent in experimental autoimmune myasthenia gravis of the Lewis rat. Am J Pathol. 1991; 139:995–1008.
  • Lennon VA, Lambert EH, Leiby KR, Okarma TB, Talib S. Recombinant human acetylcholine receptor alpha-subunit induces chronic experimental autoimmune myasthenia gravis. J Immunol. 1991; 146:2245–2248.
  • Shigemoto K, Kubo S, Maruyama N, Hato N, Yamada H, Jie C, Kobayashi N, Mominoki K, Abe Y, Ueda N, Matsuda S. Induction of myasthenia by immunization against muscle-specific kinase. J Clin Invest. 2006; 116:1016–1024.
  • Jha S, Xu K, Maruta T, Oshima M, Mosier DR, Atassi MZ, Hoch W. Myasthenia gravis induced in mice by immunization with the recombinant extracellular domain of rat muscle-specific kinase (MuSK). J Neuroimmunol. 2006; 175:107–117.
  • Aissaoui A, Klingel-Schmitt I, Couderc J, Chateau D, Romagne F, Jambou F, Vincent A, Levasseur P, Eymard B, Maillot MC, Galanaud P, Berrih-Aknin S, Cohen-Kaminsky S. Prevention of autoimmune attack by targeting specific T-cell receptors in a severe combined immunodeficiency mouse model of myasthenia gravis. Ann Neurol. 1999; 46:559–567.
  • Schonbeck S, Padberg F, Hohlfeld R, Wekerle H. Transplantation of thymic autoimmune microenvironment to severe combined immunodeficiency mice. A new model of myasthenia gravis. J Clin Invest. 1992; 90:245–250.
  • Bartfeld D, Fuchs S. Specific immunosuppression of experimental autoimmune myasthenia gravis by denatured acetylcholine receptor. Proc Natl Acad Sci USA. 1978; 75:4006–4010.
  • Weiner HL. Oral tolerance: Immune mechanisms and treatment of autoimmune diseases. Immunol Today. 1997; 18:335–343.
  • Toussirot EA. Oral tolerance in the treatment of rheumatoid arthritis. Curr Drug Targets Inflamm Allergy. 2002; 1:45–52.
  • Wang ZY, Qiao J, Link H. Suppression of experimental autoimmune myasthenia gravis by oral administration of acetylcholine receptor. J Neuroimmunol. 1993; 44:209–214.
  • Okumura S, McIntosh K, Drachman DB. Oral administration of acetylcholine receptor: Effects on experimental myasthenia gravis. Ann Neurol. 1994; 36:704–713.
  • Ma CG, Zhang GX, Xiao BG, Link J, Olsson T, Link H. Suppression of experimental autoimmune myasthenia gravis by nasal administration of acetylcholine receptor. J Neuroinimunol. 1995; 58:51–60.
  • Drachman DB, Okumura S, Adams RN, McIntosh KR. Oral tolerance in myasthenia gravis. Ann NY Acad Sci. 1996; 778:258–272.
  • Shi FD, Bai XF, Li HL, Huang YM, Van der Meide PH, Link H. Nasal tolerance in experimental autoimmune myasthenia gravis (EAMG): Induction of protective tolerance in primed animals. Clin Exp Immunol. 1998; 111:506–512.
  • Tzartos SJ, Lindstrom JM. Monoclonal antibodies used to probe acetylcholine receptor structure: Localization of the main immunogenic region and detection of similarities between subunits. Proc Natl Acad Sci USA. 1980; 77:755–759.
  • Im SH, Barchan D, Fuchs S, Souroujon MC. Suppression of ongoing experimental myasthenia by oral treatment with an acetylcholine receptor recombinant fragment. J Clin Invest. 1999; 104:1723–1730.
  • Barchan D, Souroujon MC, Im SH, Antozzi C, Fuchs S. Antigen-specific modulation of experimental myasthenia gravis: Nasal tolerization with recombinant fragments of the human acetylcholine receptor alpha-subunit. Proc Natl Acad Sci USA. 1999; 96:8086–8091.
  • Im SH, Barchan D, Fuchs S, Souroujon MC. Mechanism of nasal tolerance induced by a recombinant fragment of acetylcholine receptor for treatment of experimental myasthenia gravis. J Neuroimmunol. 2000; 111:161–168.
  • Maiti PK, Feferman T, Im SH, Souroujon MC, Fuchs S. Immunosuppression of rat myasthenia gravis by oral administration of a syngeneic acetylcholine receptor fragment. J Neuroimmunol. 2004; 152:112–120.
  • Barchan D, Asher O, Tzartos SJ, Fuchs S, Souroujon MC. Modulation of the anti-acetylcholine receptor response and experimental autoimmune myasthenia gravis by recombinant fragments of the acetylcholine receptor. Eur J Immunol. 1998; 28:616–624.
  • Yi HJ, Chae CS, So JS, Tzartos SJ, Souroujon MC, Fuchs S, Im SH. Suppression of experimental myasthenia gravis by a B-cell epitope-free recombinant acetylcholine receptor. Mol Immunol. 2008; 46:192–201.
  • Souroujon MC, Carmon S, Fuchs S. Modulation of anti-acetylcholine receptor antibody specificities and of experimental autoimmune myasthenia gravis by synthetic peptides. Immunol Lett. 1992; 34:19–25.
  • Souroujon MC, Carmon S, Fuchs S. Regulation of experimental autoimmune myasthenia grayis by synthetic peptides of the acetylcholine receptor. Ann NY Acad Sci. 1993; 681:332–334.
  • Atassi MZ, Ruan KH, Jinnai K, Oshima M, Ashizawa T. Epitope-specific suppression of antibody response in experimental autoimmune myasthenia gravis by a monomethoxypolyethylene glycol conjugate of a myasthenogenic synthetic peptide. Proc Natl Acad Sci USA. 1992; 89:5852–5856.
  • Wu B, Deng C, Goluszko E, Christadoss P. Tolerance to a dominant T cell epitope in the acetylcholine receptor molecule induces epitope spread and suppresses murine myasthenia gravis. J Immunol. 1997; 159:3016–3023.
  • Karachunski PI, Ostlie NS, Okita DK, Garman R, Conti-Fine BM. Subcutaneous administration of T-epitope sequences of the acetylcholine receptor prevents experimental myasthenia gravis. J Neuroimmunol. 1999; 93:108–121.
  • Shenoy M, Oshima M, Atassi MZ, Christadoss P. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146–162 of acetylcholine receptor. Clin Immunol Immunopathol. 1993; 66:230–238.
  • Karachunski PI, Ostlie NS, Okita DK, Conti-Fine BM. Prevention of experimental myasthenia gravis by nasal administration of synthetic acetylcholine receptor T epitope sequences. J Clin Invest. 1997; 100:3027–3035.
  • Baggi F, Andreetta F, Caspani E, Milani M, Longhi R, Mantegazza R, Cornelio F, Antozzi C. Oral administration of an immunodominant T-cell epitope downregulates Th1/Th2 cytokines and prevents experimental myasthenia gravis. J Clin Invest. 1999; 104:1287–1295.
  • Deng C, Goluszko E, Christadoss P. Fas/Fas ligand pathway, apoptosis, and clonal anergy involved in systemic acetylcholine receptor T cell epitope tolerance. J Immunol. 2001; 166:3458–3467.
  • Souroujon MC, Maiti PK, Feferman T, Im SH, Raveh L, Fuchs S. Suppression of myasthenia gravis by antigen-specific mucosal tolerance and modulation of cytokines and costimulatory factors. Ann NY Acad Sci. 2003; 998:533–536.
  • Gautam M, Noakes PG, Mudd J, Nichol M, Chu GC, Sanes JR, Merlie JP. Failure of postsynaptic specialization to develop at neuromuscular junctions of rapsyn-deficient mice. Nature. 1995; 377:232–236.
  • Im SH, Barchan D, Souroujon MC, Fuchs S. Role of tolerogen conformation in induction of oral tolerance in experimental autoimmune myasthenia gravis. J Immunol. 2000; 165:3599–3605.
  • Venkatesh N, Im SH, Balass M, Fuchs S, Katchalski-Katzir E. Prevention of passively transferred experimental autoimmune myasthenia gravis by a phage library-derived cyclic peptide. Proc Natl Acad Sci USA. 2000; 97:761–766.
  • Im SH, Barchan D, Feferman T, Raveh L, Souroujon MC, Fuchs S. Protective molecular mimicry in experimental myasthenia gravis. J Neuroimmunol. 2002; 126:99–106.
  • Sela M, Mozes E. Therapeutic vaccines in autoimmunity. Proc Natl Acad Sci USA. 2004; 101 Suppl 2: 14586–14592.
  • Ben-David H, Sharabi A, Dayan M, Sela M, Mozes E. The role of CD8+CD28 regulatory cells in suppressing myasthenia gravis-associated responses by a dual altered peptide ligand. Proc Natl Acad Sci USA. 2007; 104:17459–17464.
  • Aruna BV, Ben-David H, Sela M, Mozes E. A dual altered peptide ligand down-regulates myasthenogenic T cell responses and reverses experimental autoimmune myasthenia gravis via up-regulation of Fas–FasL-mediated apoptosis. Immunology. 2006; 118:413–424.
  • Vanderlugt CL, Miller SD. Epitope spreading in immune-mediated diseases: Implications for immunotherapy. Nat Rev Immunol. 2002; 2:85–95.
  • Feferman T, Im SH, Fuchs S, Souroujon MC. Breakage of tolerance to hidden cytoplasmic epitopes of the acetylcholine receptor in experimental autoimmune myasthenia gravis. J Neuroimmunol. 2003; 140:153–158.
  • Souroujon MC, Barchan D, Fuchs S. Analysis and modulation of the immune response of mice to acetylcholine receptor by anti-idiotypes. Immunol Lett. 1985; 9:331–336.
  • Souroujon MC, Pachner AR, Fuchs S. The treatment of passively transferred experimental myasthenia with anti-idiotypic antibodies. Neurology. 1986; 36:622–625.
  • Araga S, LeBoeuf RD, Blalock JE. Prevention of experimental autoimmune myasthenia gravis by manipulation of the immune network with a complementary peptide for the acetylcholine receptor. Proc Natl Acad Sci USA. 1993; 90:8747–8751.
  • Loutrari H, Kokla A, Tzartos SJ. Passive transfer of experimental myasthenia gravis via antigenic modulation of acetylcholine receptor. Eur J Immunol. 1992; 22:2449–2452.
  • Araga S, Galin FS, Kishimoto M, Adachi A, Blalock JB. Prevention of experimental autoimmune myasthenia gravis by a monoclonal antibody to a complementary peptide for the main immunogenic region of the acetylcholine receptors. J Immunol. 1996; 157:386–392.
  • Verschuuren JJ, Graus YM, Van Breda Vriesman PJ, Tzartos S, De Baets MH. In vivo effects of neonatal administration of antiidiotype antibodies on experimental autoimmune myasthenia gravis. Autoimmunity. 1991; 10:173–179.
  • Tzartos SJ, Bitzopoulou K, Gavra I, Kordas G, Jacobson L, Kostelidou K, Lagoumintzis G, Lazos O, Poulas K, Sideris S, Sotiriadis A, Trakas N, Zisimopoulou P. Antigen-specific apheresis of pathogenic autoantibodies from myasthenia gravis sera. Ann NY Acad Sci. 2008; 1132:291–299.
  • Berrih S, Morel E, Gaud C, Raimond F, Le Brigand H, Bach JF. Anti-AChR antibodies, thymic histology, and T cell subsets in myasthenia gravis. Neurology. 1984; 34:66–71.
  • Truffault F, Cohen-Kaminsky S, Khalil I, Levasseur P, Berrih-Aknin S. Altered intrathymic T-cell repertoire in human myasthenia gravis. Ann Neurol. 1997; 41:731–741.
  • Xu L, Villain M, Galin FS, Araga S, Blalock JE. Prevention and reversal of experimental autoimmune myasthenia gravis by a monoclonal antibody against acetylcholine receptor-specific T cells. Cell Immunol. 2001; 208:107–114.
  • Oshima M, Maruta T, Ohtani M, Deitiker PR, Mosier D, Atassi MZ. Vaccination with a MHC class II peptide in Alum and inactive pertussis strongly ameliorates clinical MG in C57BL/6 mice. J Neuroimmunol. 2006; 171:8–16.
  • Oshima M, Deitiker P, Atassi MZ. Targeting the antigen-binding site of HLA-restricting alleles in treatment of autoimmune disease. Crit Rev Immunol. 2007; 27:271–288.
  • Fattorossi A, Battaglia A, Buzzonetti A, Ciaraffa F, Scambia G, Evoli A. Circulating and thymic CD4 CD25 T regulatory cells in myasthenia gravis: Effect of immunosuppressive treatment. Immunology. 2005; 116:134–141.
  • Sun Y, Qiao J, Lu CZ, Zhao CB, Zhu XM, Xiao BG. Increase of circulating CD4+CD25+T cells in myasthenia gravis patients with stability and thymectomy. Clin Immunol. 2004; 112:284–289.
  • Luther C, Poeschel S, Varga M, Melms A, Tolosa E. Decreased frequency of intrathymic regulatory T cells in patients with myasthenia-associated thymoma. J Neuroimmunol. 2005; 164:124–128.
  • Balandina A, Lecart S, Dartevelle P, Saoudi A, Berrih-Aknin S. Functional defect of regulatory CD4(+)CD25+T cells in the thymus of patients with autoimmune myasthenia gravis. Blood. 2005; 105:735–741.
  • Wang W, Milani M, Ostlie N, Okita D, Agarwal RK, Caspi RR, Conti-Fine BM. C57BL/6 mice genetically deficient in IL-12/IL-23 and IFN-gamma are susceptible to experimental autoimmune myasthenia gravis, suggesting a pathogenic role of non-Th1 cells. J Immunol. 2007; 178:7072–7080.
  • Shi FD, Li H, Wang H, Bai X, van der Meide PH, Link H, Ljunggren HG. Mechanisms of nasal tolerance induction in experimental autoimmune myasthenia gravis: Identification of regulatory cells. J Immunol. 1999; 162:5757–5763.
  • Sheng JR, Li L, Ganesh BB, Vasu C, Prabhakar BS, Meriggioli MN. Suppression of experimental autoimmune myasthenia gravis by granulocyte-macrophage colony-stimulating factor is associated with an expansion of Foxp3+ regulatory T cells. J Immunol. 2006; 177:5296–5306.
  • Liu R, La Cava A, Bai XF, Jee Y, Price M, Campagnolo DI, Christadoss P, Vollmer TL, Van Kaer L, Shi FD. Cooperation of invariant NKT cells and CD4+CD25+T regulatory cells in the prevention of autoimmune myasthenia. J Immunol. 2005; 175:7898–7904.
  • Ben-David H, Aruna BV, Seger R, Sela M, Mozes E. A 50-kDa ERK-like protein is up-regulated by a dual altered peptide ligand that suppresses myasthenia gravis-associated responses. Proc Natl Acad Sci USA. 2006; 103:18232–18237.
  • Aricha R, Feferman T, Souroujon MC, Fuchs S. Overexpression of phosphodiesterases in experimental autoimmune myasthenia gravis: Suppression of disease by a phosphodiesterase inhibitor. FASEB J. 2006; 20:374–376.
  • Zhang GX, Xiao BG, Yu LY, van der Meide PH, Link H. Interleukin 10 aggravates experimental autoimmune myasthenia gravis through inducing Th2 and B cell responses to AChR. J Neuroimmunol. 2001; 113:10–18.
  • Aricha R, Feferman T, Fuchs S, Souroujon MC. Ex vivo generated regulatory T cells modulate experimental autoimmune myasthenia gravis. J Immunol. 2008; 180:2132–2139.
  • Sheng JR, Li LC, Ganesh BB, Prabhakar BS, Meriggioli MN. Regulatory T cells induced by GM-CSF suppress ongoing experimental myasthenia gravis. Clin Immunol. 2008; 128:172–180.
  • Meriggioli MN, Sheng JR, Li L, Prabhakar BS. Strategies for treating autoimmunity: Novel insights from experimental myasthenia gravis. Ann NY Acad Sci. 2008; 1132:276–282.
  • Xiao BG, Duan RS, Link H, Huang YM. Induction of peripheral tolerance to experimental autoimmune myasthenia gravis by acetylcholine receptor-pulsed dendritic cells. Cell Immunol. 2003; 223:63–69.
  • Yarilin D, Duan R, Huang YM, Xiao BG. Dendritic cells exposed in vitro to TGF-betal ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol. 2002; 127:214–219.
  • Zhang X, Zhang Y. Neural-immune communication in Caenorhabditis elegans. Cell Host Microbe. 2009; 5:425–429.
  • Duan RS, Adikari SB, Huang YM, Link H, Xiao BG. Protective potential of experimental autoimmune myasthenia gravis in Lewis rats by IL-10-modified dendritic cells. Neurobiol Dis. 2004; 16:461–467.
  • Kong QF, Sun B, Wang GY, Zhai DX, Mu LL, Wang DD, Wang JH, Li R, Li HL. BM stromal cells ameliorate experimental autoimmune myasthenia gravis by altering the balance of Th cells through the secretion of IDO. Eur J Immunol. 2009; 39:800–809.
  • Christadoss P. C5 gene influences the development of murine myasthenia gravis. J Immunol. 1988; 140:2589–2592.
  • Christadoss P, Tuzun E, Li J, Saini SS, Yang H. Classical complement pathway in experimental autoimmune myasthenia gravis pathogenesis. Ann NY Acad Sci. 2008; 1132:210–219.
  • Zhou Y, Gong B, Lin F, Rother RP, Medof ME, Kaminski HJ. Anti-C5 antibody treatment ameliorates weakness in experimentally acquired myasthenia gravis. J Immunol. 2007; 179:8562–8567.
  • Soltys J, Kusner LL, Young A, Richmonds C, Hatala D, Gong B, Shanmugavel V, Kaminski HJ. Novel complement inhibitor limits severity of experimentally myasthenia gravis. Ann Neurol. 2009; 65:67–75.
  • Im SH, Barchan D, Maiti PK, Raveh L, Souroujon MC, Fuchs S. Suppression of experimental myasthenia gravis, a B cell-mediated autoimmune disease, by blockade of IL-18. FASEB J. 2001; 15:2140–2148.
  • Im SH, Barchan D, Maiti PK, Fuchs S, Souroujon MC. Blockade of CD40 ligand suppresses chronic experimental myasthenia gravis by down-regulation of Th1 differentiation and up-regulation of CTLA-4. J Immunol. 2001; 166:6893–6898.
  • Duan RS, Wang HB, Yang JS, Scallon B, Link H, Xiao BG. Anti-TNF-alpha antibodies suppress the development of experimental autoimmune myasthenia gravis. J Autoimmun. 2002; 19:169–174.
  • Yang H, Tuzun E, Alagappan D, Yu X, Scott BG, Ischenko A, Christadoss P. IL-1 receptor antagonist-mediated therapeutic effect in murine myasthenia gravis is associated with suppressed serum proinflammatory cytokines, C3, and anti-acetylcholine receptor IgGl. J Immunol. 2005; 175:2018–2025.
  • Le Panse R, Cizeron-Clairac G, Cuvelier M, Truffault F, Bismuth J, Nancy P, De Rosbo NK, Berrih-Aknin S. Regulatory and pathogenic mechanisms in human autoimmune myasthenia gravis. Ann NY Acad Sci. 2008; 1132:135–142.
  • Le Panse R, Cizeron-Clairac G, Bismuth J, Berrih-Aknin S. Microarrays reveal distinct gene signatures in the thymus of seropositive and seronegative myasthenia gravis patients and the role of CC chemokine ligand 21 in thymic hyperplasia. J Immunol. 2006; 177:7868–7879.
  • Souroujon MC, Feferman T, Berrih-Aknin S, Fuchs S. Chemokines and chemokine receptors in MG and EAMG. In: Christadoss P, editors. Myasthenia gravis: Disease mechanisms and immune intervention. Linus Publishing Inc; 2009, in press.
  • Feferman T, Maiti PK, Berrih-Aknin S, Bismuth J, Bidault J, Fuchs S, Souroujon MC. Overexpression of IFN-induced protein l0 and its receptor CXCR3 in myasthenia gravis. J Immunol. 2005; 174:5324–5331.
  • Feferman T, Aricha R, Mizrachi K, Geron E, Alon R, Souroujon MC, Fuchs S. Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-gamma inducible protein 10 (IP-10) and its receptor CXCR3. J Neuroimmunol. 2009; 209:87–95.
  • Menon RT, Feferman T, Aricha R, Souroujon MC, Fuchs S. Suppression of experimental autoimmune myasthenia gravis by combination therapy: Pentoxifylline as a steroid-sparing agent. J Neuroimmunol. 2008; 201–202:128–135.
  • Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001; 345:747–755.
  • Dalakas MC. The use of intravenous immunoglobulin in the treatment of autoimmune neuromuscular diseases: Evidence-based indications and safety profile. Pharmacol Ther. 2004; 102:177–193.
  • Lemieux R, Bazin R, Neron S. Therapeutic intravenous immunoglobulins. Mol Immunol. 2005; 42:839–848.
  • Zhu KY, Feferman T, Maiti PK, Souroujon MC, Fuchs S. Intravenous immunoglobulin suppresses experimental myasthenia gravis: Immunological mechanisms. J Neuroimmunol. 2006; 176:187–197.
  • Fuchs S, Feferman T, Zhu KY, Meidler R, Margalit R, Wang N, Laub O, Souroujon MC. Suppression of experimental autoimmune myasthenia gravis by intravenous immunoglobulin and isolation of a disease-specific IgG fraction. Ann NY Acad Sci. 2007; 1110:550–558.
  • Fuchs S, Feferman T, Meidler R, Brenner T, Laub O, Souroujon MC. The disease-specific arm of the therapeutic effect of intravenous immunoglobulin in autoimmune diseases: Experimental autoimmune myasthenia gravis as a model. Isr Med Assoc J. 2008; 10:58–60.
  • Fuchs S, Feferman T, Meidler R, Margalit R, Sicsic C, Wang N, Zhu KY, Brenner T, Laub O, Souroujon MC. A disease-specific fraction isolated from IVIG is essential for the immunosuppressive effect of IVIG in experimental autoimmune myasthenia gravis. J Neuroimmunol. 2008; 194:89–96.
  • Brenner T, Abramsky O, Lisak RP. Influence of alpha-fetoprotein on the in vitro and in vivo immune response to acetylcholine receptor. Ann NY Acad Sci. 1981; 377:208–221.
  • Brenner T, Abramsky O. Immunosuppression of experimental autoimmune myasthenia gravis by alpha-fetoprotein rich formation. Immunol Lett. 1981; 3:163–167.
  • Brenner T, Zielinski A, Argov Z, Abramsky O. Prevention of experimental autoimmune myasthenia gravis in rats by fetal alpha-fetoprotein-rich fractions. Tumour Biol. 1984; 5:263–274.
  • Schneider-Gold C, Hartung HP, Gold R. Mycophenolate mofetil and tacrolimus: New therapeutic options in neuroimmunological diseases. Muscle Nerve. 2006; 34:284–291.
  • Sathasivam S. Steroids and immunosuppressant drugs in myasthenia gravis. Nat Clin Pract Neurol. 2008; 4:317–327.
  • Janssen SP, Phernambucq M, Martinez-Martinez P, De Baets MH, Losen M. Immunosuppression of experimental autoimmune myasthenia gravis by mycophenolate mofetil. J Neuroimmunol. 2008; 201–202:111–120.
  • Ubiali F, Nava S, Nessi V, Longhi R, Pezzoni G, Capobianco R, Mantegazza R, Antozzi C, Baggi F. Pixantrone (BBR2778) reduces the severity of experimental autoimmune myasthenia gravis in Lewis rats. J Immunol. 2008; 180:2696–2703.
  • Karussis DM, Lehmann D, Brenner T, Wirguin I, Mizrachi-Koll R, Sicsic C, Abramsky O. Immunomodulation of experimental autoimmune myasthenia gravis with linomide. J Neuroimmunol. 1994; 55:187–193.
  • Linker RA, Kieseier BC, Gold R. Identification and development of new therapeutics for multiple sclerosis. Trends Pharmacol Sci. 2008; 29:558–565.
  • Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J, Bitonti A. Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol. 2007; 178:5390–5398.
  • Soreq H, Seidman S. Acetylcholinesterase—new roles for an old actor. Nat Rev Neurosci. 2001; 2:294–302.
  • Behra M, Cousin X, Bertrand C, Vonesch JL, Biellmann D, Chatonnet A, Strahle U. Acetylcholinesterase is required for neuronal and muscular development in the zebrafish embryo. Nat Neurosci. 2002; 5:111–118.
  • Brenner T, Hamra-Amitay Y, Evron T, Boneva N, Seidman S, Soreq H. The role of readthrough acetylcholinesterase in the pathophysiology of myasthenia gravis. FASEB J. 2003; 17:214–222.
  • Boneva N, Hamra-Amitay Y, Wirguin I, Brenner T. Stimulated-single fiber electromyography monitoring of anti-sense induced changes in experimental autoimmune myasthenia gravis. Neurosci Res. 2006; 55:40–44.
  • Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumfad N, Eaton JW, Tracey KJ. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature. 2000; 405:458–462.
  • de Jonge WJ, Ulloa L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br J Pharmacol. 2007; 151:915–929.
  • Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T. Anti-inflammatory properties of cholinergic up-regulation: A new role for acetylcholinesterase inhibitors. Neuropharmacology. 2006; 50:540–547.
  • Brenner T, Nizri E, Irony-Tur-Sinai M, Hamra-Amitay Y, Wirguin I. Acetylcholinesterase inhibitors and cholinergic modulation in myasthenia gravis and neuroinflammation. J Neuroimmunol. 2008; 201–202:121–127.
  • Argov Z, McKee D, Agus S, Brawer S, Shlomowitz N, Yoseph OB, Soreq H, Sussman JD. Treatment of human myasthenia gravis with oral antisense suppression of acetylcholinesterase. Neurology. 2007; 69:699–700.
  • Kaminski HJ. Restoring balance at the neuromuscular junction. Neurology. 2007; 69:629–630.
  • Cartaud A, Coutant S, Petrucci TC, Cartaud J. Evidence for in situ and in vitro association between beta-dystroglycan and the subsynaptic 43K rapsyn protein. Consequence for acetylcholine receptor clustering at the synapse. J Biol Chem. 1998; 273:11321–11326.
  • Rybakova IN, Humston JL, Sonnemann KJ, Ervasti JM. Dystrophin and utrophin bind actin through distinct modes of contact. J Biol Chem. 2006; 281:9996–10001.
  • Hoedemaekers A, Bessereau JL, Graus Y, Guyon T, Changeux JP, Berrih-Aknin S, van Breda Vriesman P, De Baets MH. Role of the target organ in determining susceptibility to experimental autoimmune myasthenia gravis. J Neuroimmunol. 1998; 89:131–141.
  • Hoedemaekers A, Graus Y, van Breda Vriesman P, de Baets M. Age-and sex-related resistance to chronic experimental autoimrmine myasthenia gravis (EAMG) in Brown Norway rats. Clin Exp Immunol. 1997; 107:189–197.
  • Losen M, Stassen MH, Martinez-Martinez P, Machiels BM, Duimel H, Frederik P, Veldman H, Wokke JH, Spaans F, Vincent A, De Baets MH. Increased expression of rapsyn in muscles prevents acetylcholine receptor loss in experimental autoimmune myasthenia gravis. Brain. 2005; 128:2327–2337.
  • Martinez-Martinez P, Losen M, Duimel H, Frederik P, Spaans F, Molenaar P, Vincent A, De Baets MH. Overexpression of rapsyn in rat muscle increases acetylcholine receptor levels in chronic experimental autoimmune myasthenia gravis. Am J Pathol. 2007; 170:644–657.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.