535
Views
33
CrossRef citations to date
0
Altmetric
Research Article

Potential roles of activation-induced cytidine deaminase in promotion or prevention of autoimmunity in humans

, , &
Pages 148-156 | Received 08 Nov 2012, Accepted 09 Nov 2012, Published online: 10 Jan 2013

References

  • Notarangelo L. D., Duse M., Ugazio A. G.. Immunodeficiency with hyper-IgM (HIM). Immunodefic. Rev.. 1992; 3:101–121.
  • Durandy A., Taubenheim N., Peron S., Fischer A.. Pathophysiology of B-cell intrinsic immunoglobulin class switch recombination deficiencies. Adv. Immunol.. 2007; 94:275–306.
  • Korthauer U., Graf D., Mages H. W., . Defective expression of T-cell CD40 ligand causes X-linked immunodeficiency with hyper-IgM. Nature. 1993; 361:539–541.
  • Ferrari S., Giliani S., Insalaco A., . Mutations of CD40 gene cause an autosomal recessive form of immunodeficiency with hyper IgM. Proc. Natl. Acad. Sci. USA. 2001; 98:12614–12619.
  • Levy J., Espanol-Boren T., Thomas C., . Clinical spectrum of X-linked hyper-IgM syndrome. J. Pediatr.. 1997; 131:47–54.
  • Winkelstein J. A., Marino M. C., Ochs H., . The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003; 82:373–384.
  • Revy P., Muto T., Levy Y., . Activation-induced cytidine deaminase (AID) deficiency causes the autosomal recessive form of the Hyper-IgM syndrome (HIGM2). Cell. 2000; 102:565–575.
  • Petersen-Mahrt S. K., Harris R. S., Neuberger M. S.. AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature. 2002; 418:99–104.
  • Bransteitter R., Pham P., Scharff M. D., Goodman M. F.. Activation-induced cytidine deaminase deaminates deoxycytidine on single-stranded DNA but requires the action of RNase. Proc. Natl. Acad. Sci. USA. 2003; 100:4102–4107.
  • Basu U., Meng F. L., Keim C., . The RNA exosome targets the AID cytidine deaminase to both strands of transcribed duplex DNA substrates. Cell. 2011; 144:353–363.
  • Imai K., Zhu Y., Revy P., . Analysis of class switch recombination and somatic hypermutation in patients affected with autosomal dominant hyper-IgM syndrome type 2. Clin. Immunol.. 2005; 115:277–285.
  • Geisberger R., Rada C., Neuberger M. S.. The stability of AID and its function in class-switching are critically sensitive to the identity of its nuclear-export sequence. Proc. Natl. Acad. Sci. USA. 2009; 106:6736–6741.
  • Imai K., Slupphaug G., Lee W. I., . Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol.. 2003; 4:1023–1028.
  • Rada C., Di Noia J. M., Neuberger M. S.. Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol. Cell. 2004; 16:163–171.
  • Guikema J. E., Linehan E. K., Tsuchimoto D., . APE1- and APE2-dependent DNA breaks in immunoglobulin class switch recombination. J. Exp. Med.. 2007; 204:3017–3026.
  • Shen H. M., Tanaka A., Bozek G., Nicolae D., Storb U.. Somatic hypermutation and class switch recombination in Msh6( − / − )Ung( − / − ) double-knockout mice. J. Immunol.. 2006; 177:5386–5392.
  • Ehrenstein M. R., Rada C., Jones A. M., Milstein C., Neuberger M. S.. Switch junction sequences in PMS2-deficient mice reveal a microhomology-mediated mechanism of Ig class switch recombination. Proc. Natl. Acad. Sci. USA. 2001; 98:14553–14558.
  • Schrader C. E., Vardo J., Stavnezer J.. Role for Mismatch Repair Proteins Msh2, Mlh1, and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions. J. Exp. Med.. 2002; 195:367–373.
  • Peron S., Metin A., Gardes P., . Human PMS2 deficiency is associated with impaired immunoglobulin class switch recombination. J. Exp. Med.. 2008; 205:2465–2472.
  • Gardes P., Forveille M., Alyanakian M. A., . Human MSH6 deficiency is associated with impaired antibody maturation. J. Immunol.. 2012; 188:2023–2029.
  • Yan C. T., Boboila C., Souza E. K., . IgH class switching and translocations use a robust non-classical end-joining pathway. Nature. 2007; 449:478–482.
  • Ta V. T., Nagaoka H., Catalan N., . AID mutant analyses indicate requirement for class-switch-specific cofactors. Nat. Immunol.. 2003; 4:843–848.
  • Barreto V., Reina-San-Martin B., Ramiro A. R., McBride K. M., Nussenzweig M. C.. C-terminal deletion of AID uncouples class switch recombination from somatic hypermutation and gene conversion. Mol. Cell. 2003; 12:501–508.
  • Meyers G., Ng Y. S., Bannock J. M., . Activation-induced cytidine deaminase (AID) is required for B-cell tolerance in humans. Proc. Natl. Acad. Sci. USA. 2011; 108:11554–11559.
  • Herve M., Isnardi I., Ng Y. S., . CD40 ligand and MHC class II expression are essential for human peripheral B cell tolerance. J. Exp. Med.. 2007; 204:1583–1593.
  • Suzuki K., Meek B., Doi Y., . Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc. Natl. Acad. Sci. USA. 2004; 101:1981–1986.
  • Quartier P., Bustamante J., Sanal O., . Clinical, immunologic and genetic analysis of 29 patients with autosomal recessive hyper-IgM syndrome due to Activation-Induced Cytidine Deaminase deficiency. Clin. Immunol.. 2004; 110:22–29.
  • Sibilia J., Durandy A., Schaeverbeke T., Fermand J. P.. Hyper-IgM syndrome associated with rheumatoid arthritis: report of RA in a patient with primary impaired CD40 pathway. Br. J. Rheumatol.. 1996; 35:282–284.
  • Wardemann H., Yurasov S., Schaefer A., . Predominant autoantibody production by early human B cell precursors. Science. 2003; 301:1374–1377.
  • Nemazee D., Hogquist K. A.. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr. Opin. Immunol.. 2003; 15:182–189.
  • Menard L., Saadoun D., Isnardi I., . The PTPN22 allele encoding an R620 W variant interferes with the removal of developing autoreactive B cells in humans. J. Clin. Invest.. 2011; 121:3635–3644.
  • Isnardi I., Ng Y. S., Srdanovic I., . IRAK-4- and MyD88-dependent pathways are essential for the removal of developing autoreactive B cells in humans. Immunity. 2008; 29:746–757.
  • Sauer A. V., Morbach H., Brigida I., . Defective B cell tolerance in adenosine deaminase deficiency is corrected by gene therapy. J. Clin. Invest.. 2012; 122:2141–2152.
  • Mao C., Jiang L., Melo-Jorge M., . T cell-independent somatic hypermutation in murine B cells with an immature phenotype. Immunity. 2004; 20:133–144.
  • Han J. H., Akira S., Calame K., . Class switch recombination and somatic hypermutation in early mouse B cells are mediated by B cell and Toll-like receptors. Immunity. 2007; 27:64–75.
  • Ueda Y., Liao D., Yang K., Patel A., Kelsoe G.. T-independent activation-induced cytidine deaminase expression, class-switch recombination, and antibody production by immature/transitional 1 B cells. J. Immunol.. 2007; 178:3593–3601.
  • Kuraoka M., Liao D., Yang K., . Activation-induced cytidine deaminase expression and activity in the absence of germinal centers: insights into hyper-IgM syndrome. J. Immunol.. 2009; 183:3237–3248.
  • Kuraoka M., Holl T. M., Liao D., . Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc. Natl. Acad. Sci. USA. 2011; 108:11560–11565.
  • Rathmell J. C., Cooke M. P., Ho W. Y., . CD95 (Fas)-dependent elimination of self-reactive B cells upon interaction with CD4+T cells. Nature. 1995; 376:181–184.
  • Rathmell J. C., Townsend S. E., Xu J. C., Flavell R. A., Goodnow C. C.. Expansion or elimination of B cells in vivo: dual roles for CD40- and Fas (CD95)-ligands modulated by the B cell antigen receptor. Cell. 1996; 87:319–329.
  • Schiemann B., Gommerman J. L., Vora K., . An essential role for BAFF in the normal development of B cells through a BCMA-independent pathway. Science. 2001; 293:2111–2114.
  • Mackay F., Woodcock S. A., Lawton P., . Mice transgenic for BAFF develop lymphocytic disorders along with autoimmune manifestations. J. Exp. Med.. 1999; 190:1697–1710.
  • Shlomchik M. J., Marshak-Rothstein A., Wolfowicz C. B., Rothstein T. L., Weigert M. G.. The role of clonal selection and somatic mutation in autoimmunity. Nature. 1987; 328:805–811.
  • Paul E., Manheimer-Lory A., Livneh A., . Pathogenic anti-DNA antibodies in SLE: idiotypic families and genetic origins. Int. Rev. Immunol.. 1990; 5:295–313.
  • van Es J. H., Gmelig Meyling F. H., van de Akker W. R., . Somatic mutations in the variable regions of a human IgG anti-double-stranded DNA autoantibody suggest a role for antigen in the induction of systemic lupus erythematosus. J. Exp. Med.. 1991; 173:461–470.
  • Stott D. I., Hiepe F., Hummel M., Steinhauser G., Berek C.. Antigen-driven clonal proliferation of B cells within the target tissue of an autoimmune disease. The salivary glands of patients with Sjogren's syndrome. J. Clin. Invest.. 1998; 102:938–946.
  • Sims G. P., Shiono H., Willcox N., Stott D. I.. Somatic hypermutation and selection of B cells in thymic germinal centers responding to acetylcholine receptor in myasthenia gravis. J. Immunol.. 2001; 167:1935–1944.
  • Wellmann U., Letz M., Herrmann M., . The evolution of human anti-double-stranded DNA autoantibodies. Proc. Natl. Acad. Sci. USA. 2005; 102:9258–9263.
  • Jiang C., Zhao M. L., Waters K. M., Diaz M.. Activation-induced deaminase contributes to the antibody-independent role of B cells in the development of autoimmunity. Autoimmunity. 2012; 45:440–448.
  • Jiang C., Foley J., Clayton N., . Abrogation of lupus nephritis in activation-induced deaminase-deficient MRL/lpr mice. J. Immunol.. 2007; 178:7422–7431.
  • Jiang C., Zhao M. L., Diaz M.. Activation-induced deaminase heterozygous MRL/lpr mice are delayed in the production of high-affinity pathogenic antibodies and in the development of lupus nephritis. Immunology. 2009; 126:102–113.
  • Zan H., Zhang J., Ardeshna S., . Lupus-prone MRL/faslpr/lpr mice display increased AID expression and extensive DNA lesions, comprising deletions and insertions, in the immunoglobulin locus: concurrent upregulation of somatic hypermutation and class switch DNA recombination. Autoimmunity. 2009; 42:89–103.
  • Hase K., Takahashi D., Ebisawa M., . Activation-induced cytidine deaminase deficiency causes organ-specific autoimmune disease. PLoS One. 2008; 3:e3033.
  • Zaheen A., Boulianne B., Parsa J. Y., . AID constrains germinal center size by rendering B cells susceptible to apoptosis. Blood. 2009; 114:547–554.
  • Morgan H. D., Dean W., Coker H. A., Reik W., Petersen-Mahrt S. K.. Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J. Biol. Chem.. 2004; 279:52353–52360.
  • Rai K., Huggins I. J., James S. R., . DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell. 2008; 135:1201–1212.
  • Bhutani N., Brady J. J., Damian M., . Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature. 2010; 463:1042–1047.
  • Popp C., Dean W., Feng S., . Genome-wide erasure of DNA methylation in mouse primordial germ cells is affected by AID deficiency. Nature. 2010; 463:1101–1105.
  • Bennett C. L., Christie J., Ramsdell F., . The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat. Genet.. 2001; 27:20–21.
  • Brunkow M. E., Jeffery E. W., Hjerrild K. A., . Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat. Genet.. 2001; 27:68–73.
  • Qin H., Suzuki K., Nakata M., . Activation-induced cytidine deaminase expression in CD4+T cells is associated with a unique IL-10-producing subset that increases with age. PLoS One. 2011; 6:e29141.
  • Chan O. T., Hannum L. G., Haberman A. M., Madaio M. P., Shlomchik M. J.. A novel mouse with B cells but lacking serum antibody reveals an antibody-independent role for B cells in murine lupus. J. Exp. Med.. 1999; 189:1639–1648.
  • Guo W., Smith D., Aviszus K., . Somatic hypermutation as a generator of antinuclear antibodies in a murine model of systemic autoimmunity. J. Exp. Med.. 2010; 207:2225–2237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.